一种旋压刀具及金属表面旋压强化方法

文档序号:10506188阅读:473来源:国知局
一种旋压刀具及金属表面旋压强化方法
【专利摘要】一种旋压刀具及金属表面旋压强化方法,属于金属表面强化方法技术领域。旋压刀具采用柱形结构,刀头采用弧面结构;在刀头设置有1~30个开口;或旋压刀具的柱形结构的底面上设置有1个或多个金属半球。金属表面旋压强化方法:1)清除金属表面油污和腐蚀产物;2)使旋压刀具与金属表面接触,且旋压刀具轴线与金属表面垂直;3)旋压刀具高速旋转,金属表面在刀具下方经过,刀具相对于金属工件旋压运动,到达处理面积时停止操作。本发明方法,适用于各种金属材料及其合金,如低强钢和高强钢,可提升金属表面强度和硬度,获得梯度组织结构,提升疲劳寿命;同时实施简单,工艺不复杂,有利于推广,有利于实现节能减排。
【专利说明】
-种旋压刀具及金属表面旋压强化方法
技术领域
[0001] 本发明属于金属表面强化方法技术领域,特别设及一种旋压刀具及金属表面旋压 强化方法。
【背景技术】
[0002] 通过调研和统计分析发现,疲劳断裂是导致金属构件失效的主要原因,占金属构 件失效案例总数的60% W上,因金属构件在服役过程中发生疲劳断裂,每年都会给社会带 来巨大的经济损失,有时甚至导致人员伤亡,所W其危害甚大。从定义上看,疲劳断裂是指 金属构件在交变载荷或循环载荷作用下长时间服役后发生断裂破坏的一种失效现象。
[0003] 金属构件疲劳开裂过程可W分为两个主要阶段:裂纹萌生阶段和裂纹扩展阶段。 对于大多数在交变载荷或循环载荷条件下服役的金属构件,疲劳裂纹主要从金属构件表面 萌生,随后向构件屯、部扩展。在裂纹萌生的最初阶段,它很难被肉眼观察到,等裂纹开始快 速扩展后,构件很快就发生断裂失效。因此,疲劳断裂破坏是很难预知的,也具有一定的突 然性。
[0004] 从理论上看,金属构件的疲劳寿命主要由两部分构成:裂纹萌生寿命和裂纹扩展 寿命。根据运一原理,无论是提高裂纹萌生寿命还是提高裂纹扩展寿命都对提高金属构件 的疲劳寿命有益。尤其,提高裂纹萌生寿命有助于降低构件疲劳开裂的风险,对抑制金属构 件高周疲劳开裂具有明显的效果。怎样才能提高构件的疲劳裂纹萌生寿命呢?
[0005] 通常提高材料的疲劳强度或者降低构件的应力水平可W提高材料的疲劳寿命。鉴 于疲劳裂纹通常在构件表面萌生,提高金属构件的表面强度可W抑制疲劳裂纹萌生并改善 构件疲劳性能,即表面强化。因此,金属构件表面强化是抑制疲劳裂纹萌生的重要手段。
[0006] 人们最早认识金属表面强化的作用始于上世纪初期,在对金属构件表面进行键击 和冲击后,无意中发现金属构件的疲劳性能有显著提升。据最早文献报道:在1926年,美国 汽车公司采用喷丸的方法改善汽车用曲轴的疲劳性能。从此W后,喷丸、抛丸、喷沙和表面 滚压等方法得到了广泛关注。通过大量的研究发现,喷丸和社制可W向金属表面引入残余 压应力,从而提高构件的疲劳性能。目前通过冷加工进行表面强化的主要方法包括:滚压、 社制、挤压、喷丸等。毫无疑问,喷丸是当下最成熟的表面强化技术,适用范围广泛且优点突 出,不受构件几何形状限制,对大多数金属材料表面强化效果比较好。然而,喷丸也有一些 缺点。
[0007] 首先,喷丸是W向金属构件表面引入残余压应力为主的表面强化方法,它的缺点 之一在于在通过正面的高速粒子撞击并不能产生良好的晶粒细化效果,尤其对高强材料晶 粒细化效果更差。从本质上是通过表面冲击变形,引入大量位错,位错的塞积可W阻碍自身 运动,提高表面金属的强度。虽然喷丸具有一定的表层晶粒细化效果,但晶粒细化主并不是 喷丸的主要强化机制。经喷丸的金属构件,在表面承受拉应力时,因为残余压应力的存在, 降低了应力水平,最终提高了构件的疲劳寿命。
[000引其次,高能金属、陶瓷或玻璃颗粒轰击金属构件表面,产生的加工表面较为粗糖。 从表面完整性角度出发,虽然构件力学性能提升,但对构件表面几何形状的影响会导致表 面粗糖,致使其抗疲劳效果下降,运一点是喷丸类技术的弱点。
[0009] 第=,喷丸加工时,个别能量较高的弹丸容易造成构件表面微裂纹。在喷丸表面强 化加工时,由于粒子是随机运动,每一个粒子所具有的能量不同,个别运动速度较高且能量 较大的粒子对构件表面轰击时,会对构件表面造成损伤,产生微裂纹,图1中给出了 一种基 体平均显微硬度为480HV的高强度钢表面喷丸后的样品截面形貌,图片的上边为喷丸表面, 向下为基体。从图1中可W看到,形变层很薄,经统计,变形层平均深度为12WI1。更值得注意 的是,个别喷丸冲击的弹坑内虽然变形较大,但出现了微裂纹如图2所示,运种微裂纹对构 件的疲劳性能影响很大,可能演化成为疲劳裂纹核屯、。微裂纹在构件表面相当于"缺口",在 运些微裂纹处随后可能萌生疲劳裂纹。
[0010] 第四,采用喷丸处理高强度金属材料时表面强化效果较差。因为喷丸过程中,高能 弹珠能量部分被反弹回去,部分转化成声波和热能,留在金属表面并且用于强化的能量会 大大降低,运样强化效果就不理想,强化效率也较低。
[0011] 据文献报道,喷丸对金属材料表面硬度提升效果为60%至150 %,材料的强度越 高,运种硬度提升效果越小。图3给出了过去十余年间,已发表文献中关于喷丸的学术论文 数据统计结果,包括钢材、侣合金等多种金属材料。从图2中可W清楚看到喷丸对不同强度 金属材料表面显微硬度的提升效果。图中方块代表基体平均显微硬度,而圆点代表喷丸后 金属材料表面的显微硬度。总体上看,不同材料和不同工艺获得的表面强化效果也不尽相 同,低强度材料喷丸强化效果较好,高强度材料喷丸表面强化效果略差。在现今的表面强化
技术领域,对一些形状不规则的金属构件,喷丸是一种非常有效的表面强化方法。对于一些 采用高强度金属材料制备的形状规则的金属构件,喷丸强化能力略显不足,运是其技术特 点决定的,因而它不再是一种最为理想的强化手段。对于一些规则构件的表面强化需要考 虑构件的表面完整性,主要包括两方面因素:表面力学性能和表面光洁度。因为缺口是影响 高强度金属材料疲劳性能的重要因素,所W降低表面粗糖度可有效提升材料疲劳性能。
[0012] 在传统表面强化方法中,应用最广的也是最成熟的方法就是喷丸强化。采用钢丸、 陶瓷丸或玻璃丸,快速击打构件表面,从而使表面发生塑性变形,主要向构件表层金属中引 入压应力,实现表面强化。它的优点是可适用于各种形状的构件,不受构件形状限制。它的 缺点是,喷丸后金属构件表面粗糖,表层金属晶粒细化效果略差,个别能量较高的弹丸击打 被加工金属表面容易随机产生表面微裂纹,尤其对高强度金属材料表面强化效果不理想。

【发明内容】

[0013] 针对现有技术的不足,本发明提供一种旋压刀具及金属表面旋压强化方法,该方 法是一种金属表面强化技术,特别是一种通过旋压加工提高板类金属构件表面强度和硬 度,实现梯度强化和硬化的加工方法。利用该方法对板类金属构件表面进行旋压加工可W 获得具有硬度梯度的金属表层组织结构,实现金属表面强化和硬化。被加工金属构件能在 交变载荷或循环载荷作用下长时间服役时,抑制疲劳裂纹在金属表面萌生,提高板类金属 构件的耐磨性和疲劳寿命。
[0014] 板类金属构件存在断裂失效问题:疲劳断裂是金属构件的主要失效方式,主要在 金属构件承受交变载荷或循环载荷时发生,约占金属构件失效案例的60% W上。在机械装 备制造过程中,经常会用到一些板类构件,如汽车的板黃等。然而,在对一些失效的板类构 件进行分析后发现,板类构件的失效是由于在受拉力侧喷丸产生的微裂纹处萌生了疲劳裂 纹,最终导致构件疲劳断裂。
[0015] 延长疲劳寿命。金属构件疲劳断裂失效过程主要分为两个阶段:裂纹萌生阶段和 裂纹扩展阶段。改善金属构件的疲劳寿命要着重改善裂纹萌生寿命和裂纹扩展寿命。尤其, 抑制裂纹萌生更有利于延长金属构件的疲劳寿命,从而降低金属构件的使用成本。金属构 件的疲劳裂纹一股都从表面萌生,如果在加工过程中和使用过程中产生表面损伤,就更容 易萌生疲劳裂纹,因而提高金属构件的表面强度是抑制疲劳裂纹萌生的有效方法,同时也 有利于提高金属构件表面的耐磨性,降低外来损伤几率。
[0016] 本发明提供了 一种金属表面强化方法:金属表面旋压强化方法。运种表面强化方 法适用于各种金属材料,对低强度金属材料制备的金属构件表面强化效果非常显著,尤其 适用于高强度金属材料制备的金属构件,在高强金属构件表面强化领域优势突出。金属表 面旋压强化方法适用于各种强度的铁合金、铁合金、铜合金、侣合金和儀合金材料,它能够 显著提升金属的表面强度和硬度,抑制疲劳裂纹萌生并提高金属构件服役安全性,改善金 属构件的疲劳寿命。金属表面旋压强化方法的主要目的包括:a.提高金属构件表面强度和 硬度,尤其是实现板类金属构件的表面强化。b.提高金属构件表面的耐磨性,减轻表面摩擦 损伤。C.通过金属表面旋压强化抑制疲劳裂纹萌生,提升金属构件(如板黃)的疲劳性能,延 长金属构件在交变载荷或循环载荷条件下的服役寿命。d.增加金属构件的科技含量,增加 金属构件的科技附加值。
[0017] 本发明的旋压刀具,所述刀具采用柱形结构,刀头采用弧面几何结构。
[0018] 所述的旋压刀具的刀头设置有开口。
[0019] 所述旋压刀具的开口数量为1~30个,且沿周向均布设置。所述的旋压刀具的柱形 的底面上设置有凸出的金属半球,金属半球的弧面作为刀头。
[0020] 所述旋压刀具的金属半球数量为1~500个,且沿柱形底面周向均布设置。
[0021 ]所述旋压刀具材料的硬度高于被加工金属初始表面硬度。
[0022] 所述旋压刀具的材料为碳钢、高溫合金、高速工具钢或陶瓷材料中的一种。
[0023] 采用上述的旋压刀具,进行金属表面旋压强化方法为:
[0024] 步骤1:对金属表面除油、除污、和除腐蚀产物;
[0025] 步骤2:使旋压刀具与金属表面接触,且旋压刀具轴线与被加工金属表面垂直;
[0026] 步骤3 :旋压刀具高速旋转,金属表面在刀具下方经过,刀具相对于金属工件旋压 运动,到达处理面积时停止操作;其中,旋压刀具的下压量为0.000001~5mm,进刀速度为 0.0 OOOOl~3. Om/min,刀具转数为1~10000转/分钟。
[0027] 所述的步骤1,采用喷沙的方法清除金属表面的油污和腐蚀产物。
[0028] 所述的步骤3中,采用锐床使旋压刀具快速旋转,向金属表面施加剪切应力,引入 残余压应力,实现表层晶粒细化,获得梯度微观组织,实现加工硬化。
[0029] 本发明的金属表面旋压强化方法,根据材料学中细晶强化和加工硬化的原理:实 际使用的金属结构材料大多是多晶体,可W采用细晶强化和加工硬化提高材料强度。Hall 1951和Petch 1953通过试验证实了在多晶金属中晶粒尺寸和屈服强度之间的关系并建立 了经典的化Il-Petch关系式:
[0030] o = o〇+k.d-i/2 (公式 I)
[0031] 式中,O,晶粒细化后金属强度,MPa; 〇日,晶粒细化前金属强度,MPa;k,HP常数;d,晶 粒半径,皿。根据化Il-Petch关系式(公式1),通过晶粒细化可W显著提升金属材料的屈服 强度,运一原理称为细晶强化原理。金属表面旋压加工后,近表层金属中晶粒将显著细化同 时强度提高,因而细晶强化是其主要强化机制之一。
[0032] 在室溫条件下使金属冷加工变形会引入大量的位错,直接导致位错密度显著增 加,因为位错会产生应变场,所W高密度位错可W阻碍位错运动:
[00削 OO = Oj+地 bp-i/2 (公式2)
[0034] 式中,〇〇,加工硬化后金属强度,MPa; Oj,加工硬化前金属强度,MPa; G,剪切模量;P, 位错密度;b,伯氏矢量。根据公式2,通过冷加工变形也可W提高金属材料强度和硬度,运一 原理称为加工硬化或应变强化。
[0035] 金属表面旋压强化充分利用了上述两种强化机制,提升板类金属构件的表面强度 和硬度,抑制疲劳裂纹萌生,提高构件疲劳寿命,同时也改善了构件的耐磨性。
[0036] 本发明的金属表面旋压强化方法,与现有技术相比,有益效果为:
[0037] (1)采用本发明的金属表面旋压强化方法加工低强钢和高强钢等金属材料均可W 显著提升表面强度和硬度。
[0038] (2)采用本发明的金属表面旋压强化方法加工低强钢和高强钢等金属材料可W获 得梯度组织结构。
[0039] (3)采用本发明的金属表面旋压强化方法加工低强钢和高强钢等金属材料可W提 升弯曲疲劳寿命。
[0040] (4)本发明的金属表面旋压强化方法对金属构件实施表面强化,可W大幅度提高 金属构件疲劳寿命,给企业和社会带来了巨大的经济效益,同时有利于实现节能减排。金属 表面旋压强化技术是一种冷加工表面强化技术,该技术可W通过大幅度提升金属表面硬度 和强度,最终提高板类金属构件的疲劳寿命。运会给企业和社会带来了巨大的经济效益,同 时使板类金属构件更加安全,在消费者使用运类金属构件时,保障了消费者的财产和生命 安全。金属表面旋压强化方法实施比较简单,工艺不复杂,有利于推广。
【附图说明】:
[0041] 图1喷丸构件截面弹坑处组织形貌;
[0042] 图2喷丸构件表面损伤处的微裂纹截面形貌;
[0043] 图3喷丸对不同金属材料的表面硬度的提升效果统计图;
[0044] 图4本发明实施例1的旋压刀具结构示意图;
[0045] 图5本发明实施例1的旋压刀具结构示意图;
[0046] 图6本发明实施例2的旋压刀具结构示意图;
[0047] 图7本发明实施例1的金属表面旋压强化方法的示意图;
[0048] 图8本发明实施例1的金属表面旋压强化方法的强化原理示意图;
[0049] 图9本发明实施例1的金属表面旋压强化处理后的60Si2Mn弹黃钢表面宏观形貌;
[0050] 图10 60Si2Mn弹黃钢不同处理条件下的显微硬度分布曲线;
[0051] 图11本发明实施例1的金属表面旋压强化处理后的60Si2Mn弹黃钢截面不同位置 显微硬度梯度关系;
[0052] 图12本发明实施例2的表面旋压强化处理后的60Si2Mn弹黃钢的表层梯度组织结 构和表层晶粒;
[0053] 图13本发明实施例2的金属表面旋压强化处理后的60Si2Mn弹黃钢截面不同位置 显微硬度梯度关系;
[0化4] 图14 30化Ni2.5MoV钢的不同处理条件下的显微硬度分布曲线;
[0055] 图15本发明实施例3的表面旋压强化处理后的30化Ni2.5MoV钢的表层梯度组织结 构;
[0056] 图16本发明实施例4的旋压刀具及进行表面旋压强化方法时的装置图示意图;
[0057] 图17本发明实施例4的表面旋压强化处理后的化-Ilat. %A1合金表层梯度组织结 构;
[0058] 图18本发明实施例4的表面旋压强化处理后的化-Ilat. %A1合金表面纳米尺寸晶 粒的透射电镜图片;
[0059] 图19本发明实施例4的金属表面旋压强化处理后的Cu-Ilat. %A1合金截面不同位 置显微硬度梯度关系。
【具体实施方式】
[0060] 实施例1
[0061 ] -种旋压刀具,如图4所示,所述刀具采用圆柱形结构,刀头采用弧面几何结构,弧 面的曲率半径为2mm,在刀头设置有4个开口,如图5所示,开口位置沿周向均布设置。设置开 口的作用是将磨损产生的少量金属细屑从刀具中屯、甩离,同时加速刀具冷却,减少加工产 生的少量金属屑和加工产生的溫度对刀具的危害。
[0062] 所述旋压刀具的材料为W18Cr4V高速工具钢,待处理的金属基体为平均显微硬度 为480HV,抗拉强度1600M化的60Si2Mn弹黃钢。
[0063] 采用上述的旋压刀具,进行60Si2Mn弹黃钢表面旋压强化方法为:
[0064] 步骤1:采用喷沙的方法清除60Si2Mn弹黃钢表面的油污和诱层;
[0065] 步骤2:使旋压刀具与60Si2Mn弹黃钢表面接触,且旋压刀具轴线与被加工的 60Si2Mn弹黃钢表面垂直;
[0066] 步骤3 :采用锐床使旋压刀具快速旋转,刀具相对于60Si2Mn弹黃钢旋压运动,向 60Si2Mn弹黃钢表面施加剪切应力,即引入残余压应力,实现表层晶粒细化,实现加工硬化, 获得梯度微观组织,达到处理面积时停止操作;其中,旋压刀具的下压量为300皿,进刀速度 为500皿/min,刀具转数为600转/分。
[0067] 本实施例的金属表面旋压强化方法,其旋压强化加工强化示意图如图7所示: 60Si2Mn弹黃钢表面旋压加工机构核屯、主要由旋压刀具和被加工金属平板构成;通过设备 给旋压刀具施加下压载荷;利用刀具自身旋转向构件表层金属中引入剪切应力;构件沿着 垂直于刀具轴线的方向在刀具下方匀速运动。
[0068] 其旋压表面强化原理示意图如图8所示:60Si2Mn弹黃钢表面旋压强化基本原理是 通过刀具与金属构件表面紧密接触,利用刀具的旋转对工件施加剪切应力使金属表面晶粒 细化实现细晶强化,利用刀具的下压向工件表层引入残余压应力实现加工硬化。
[0069] 本实施例加工后的60Si2Mn弹黃钢表面宏观形貌如图9所示,加工后的60Si2Mn弹 黃钢显微硬度分布曲线,如图10中曲线3S-300所示,表面显微硬度的显著提升,表面显微硬 度提升了21%,同时,获得了硬度梯度,根据显微硬度梯度判断,硬化层深度达到150WH,金 属表面旋压强化的效果明显优于传统喷丸强化效果;图10中曲线(Shot peening)为喷丸强 化加工后60Si2Mn弹黃显微硬度分布曲线,对比图10曲线3S-300可见,旋压强化与喷丸强化 后表面硬度梯度层相比较,旋压强化表面强度更高;硬度梯度层更深,表明旋压强化具有良 好的强化效果,尤其说明在高强钢强化上,更具有明显优势。本实施例的金属表面旋压强化 处理后的60Si2Mn弹黃钢截面不同位置显微硬度梯度关系如图11所示;
[0070] 实施例2
[0071 ] -种旋压刀具,同实施例1。
[0072] 采用上述的旋压刀具,进行60Si2Mn弹黃钢表面旋压强化方法为:
[0073] 步骤1:采用喷沙的方法清除60Si2Mn弹黃钢表面的油污和诱层;
[0074] 步骤2:使旋压刀具与60Si2Mn弹黃钢表面接触,且旋压刀具轴线与被加工的 60Si2Mn弹黃钢表面垂直;
[0075] 步骤3 :采用锐床使旋压刀具快速旋转,刀具相对于60Si2Mn弹黃钢旋压运动,向 60Si2Mn弹黃钢表面施加剪切应力,即引入残余压应力,实现表层晶粒细化,实现加工硬化, 获得梯度微观组织,达到处理面积时停止操作;其中,旋压刀具的下压量为200皿,进刀速度 为800皿/min,刀具转数为1000转/分钟。
[0076] 本实施例加工后的60Si2Mn弹黃钢显微硬度分布曲线,如图10中曲线3S-200所示, 表面显微硬度的显著提升,表面显微硬度分别提升了67%,同时,获得了硬度梯度,根据显 微硬度梯度判断,硬化层深度达到100M1,金属表面旋压强化的效果明显优于传统喷丸强化 效果;图10中曲线化nstrengthened)为未经任何处理的60Si2Mn弹黃钢的显微硬度分布曲 线,图10中曲线(Shot peening)为喷丸强化加工后60Si2Mn弹黃显微硬度分布曲线,对比图 10曲线(3S-200)可见,旋压强化与喷丸强化后表面硬度梯度层相比较,旋压强化表面强度 更高;硬度梯度层更深,表明旋压强化具有良好的强化效果,尤其说明在高强钢强化上,更 具有明显优势。本实施例的金属表面旋压强化处理后的60Si2Mn弹黃钢截面不同位置显微 硬度梯度关系如图13所示。经旋压加工的60Si2Mn钢表面显微硬度至少提升100HV,表面强 度至少提升约300MPa。
[0077] 本实施例的表面旋压强化处理后的60Si2Mn弹黃钢硬化层微观组织和力学性能检 。加工完成后取下工件,切取样品进行金相检测和硬度梯度测试,其表层梯度组织结构如 图12左图所示,扫描电镜二次电子像发现表层组织明显不同于基体;其透射电镜图片的表 层晶粒如图12右图所示,在表层金属中晶粒显著细化,获得大量纳米级晶粒,可见,对一种 基体硬度为480HV,抗拉强度为1600M化级别的高强钢进行表面旋压强化处理,在加工后的 表面上可见到明显的硬化层,硬化层的组织结构与基体相比具有显著差异,利用透射电镜 观察发现硬化层中金属晶粒细化达到纳米级别,晶粒细化效果非常显著。
[0078] 本实施例的表面旋压强化处理后的60Si2Mn弹黃钢主要强化技术参数列于表1,结 果该钢疲劳寿命显著提升,其初始疲劳强度为450MPa,表面旋压强化后,其疲劳强度达到 585MPa,疲劳强度提升了 30 %。
[0079] 表1 60Si2Mn钢经下压量为200WI1旋压强化技术参数统计表 「nORHl
[0081 ] 实施例3
[0082] -种旋压刀具,如图6所示,所述刀具采用圆柱形结构,所述的旋压刀具的圆柱体 的底面上设置有4个金属半球,金属半球的直径为3mm,金属半球位置沿周向均布设置。在平 面上均布着多个金属半球,利用金属半球向被加工金属构件表面引入残余压应力并实现晶 粒细化。
[0083] 所述旋压刀具的硬度高于被加工金属构件初始表面硬度。
[0084] 所述旋压刀具的材料为陶瓷材料,待处理的金属基体为平均显微硬度330HV,抗拉 强度 1OOOM 化的 30CrNi 2.5MoV 钢。
[00化]采用上述的旋压刀具,进行30化Ni2.5MoV钢表面旋压强化方法为:
[0086] 步骤1:采用喷沙的方法清除30化Ni2.5MoV钢表面的油污和诱层;
[0087] 步骤2:使旋压刀具与30CrNi2.5MoV钢表面接触,且旋压刀具轴线与被加工的 30化Ni2.5MoV钢表面垂直;
[0088] 步骤3:采用锐床使旋压刀具快速旋转,刀具相对于30CrNi2.5MoV钢旋压运动,向 30CrNi2.5MoV钢表面施加剪切应力,即引入残余压应力,实现表层晶粒细化,实现加工硬 化,获得梯度微观组织,达到处理面积时停止操作;其中,旋压刀具的下压量为300WH,进刀 速度为lOOOwn/min,刀具转数为400转/分。
[0089] 本实施例表面旋压强化处理后的30化M2.5MoV钢,加工完成后取下工件,切取样 品进行金相检测和硬度梯度测试,其表层梯度组织结构如图15所示,如图可见获得了梯度 组织结构;其显微硬度曲线如图14(3S-300)所示,传统喷丸处理的30化M2.5MOV钢的显微 硬度曲线如图14(Shot peening)所示,图中可见其硬度显著提升,显微硬度梯度曲线上,表 面硬度提升了 150HV,强度至少提升450MPa。
[0090] 本实施例表面旋压强化处理后的30化M2.5MoV钢力学性能检测,经表面旋压强化 加工后,30化Ni 2.5MoV钢的主要强化技术参数列于表2。
[0091] 表2 30化Ni2.5MoV钢经下压量为300WI1旋压强化技术参数统计表 r00991
L0093J 实施例4
[0094] -种旋压刀具,如图5所示,所述刀具采用圆柱形结构,刀头采用弧面几何结构,弧 面的曲率半径为5mm,在刀头设置有4个开口,开口位置沿周向均布设置。设置开口的作用是 将磨损产生的少量金属细屑从刀具中屯、甩离,同时加速刀具冷却,减少加工产生的少量金 属屑和加工产生的溫度对刀具的危害。通过旋压刀头向被加工金属构件表面引入连续的横 向剪切应力和纵向的压力,实验构建的表面晶粒细化和强化。
[00M]所述旋压刀具的硬度(洛氏硬度60皿C)远高于被加工金属构件(洛氏硬度10皿C) 初始表面硬度。
[0096] 所述旋压刀具的材料为硬质合金材料,待处理的金属为Cu-Ilat. %A1铜合金。处 理前,Cu-Ilat. %A1的显微硬度为140HV。
[0097] 采用上述的旋压刀具,进行化-Ilat. %A1合金表面旋压强化方法为:
[0098] 步骤1:采用喷沙的方法清除化-Ilat. %A1合金表面的油污和诱层;并用砂纸打磨 至800#,保持待强化面的表面粗糖度;
[0099] 步骤2:使旋压刀具与Cu-Ilat. %A1合金表面接触,且旋压刀具轴线与被加工的 Cu-Ilat. %A1合金表面垂直;
[0100] 步骤3:采用锐床使旋压刀具快速旋转,刀具相对于Cu-Ilat. %A1合金旋压运动, 向化-1 Iat. % Al合金表面施加剪切应力,即引入残余压应力,实现表层晶粒细化,实现加工 硬化,获得梯度微观组织,达到处理面积时停止操作;其中,旋压刀具的下压量为400WH,进 刀速度为1000皿/min,刀具转数为400转/分钟。
[0101] 本实施例的旋压刀具及进行表面旋压强化方法时的装置图示意图如图16所示。
[0102] 本实施例表面旋压强化处理后的Cu-I Iat. % Al合金,加工完成后取下工件,切取 样品进行金相检测和硬度梯度测试,其表层梯度组织结构如图17所示,如图可见获得了梯 度组织结构;表层晶粒已经纳米化,见图18;其截面不同位置显微硬度梯度关系如图19所 示,如图可见其表层硬度显著提升,显微硬度梯度曲线上,表面硬度提升了 110HV,强度至少 提升330M化。
[0103] 本实施例表面旋压强化处理后的Cu-I Iat. % Al力学性能检测,经表面旋压强化加 工后,化-1 Iat. % Al的主要强化技术参数列于表3。
[0104] 表3化-Ilat. % Al合金经下压量为400WI1旋压强化技术参数统计表
[0105]
[0
【主权项】
1. 一种旋压刀具,其特征在于,所述的刀具采用柱形结构,刀头采用弧面几何结构。2. 根据权利要求1所述的旋压刀具,其特征在于,所述的柱形结构为四棱柱结构、六棱 柱结构或圆柱形结构。3. 根据权利要求1所述的旋压刀具,其特征在于,在刀头设置有开口。4. 根据权利要求3所述的旋压刀具,其特征在于,所述旋压刀具的开口数量为1~30个, 且沿周向均布设置。5. 根据权利要求1所述的旋压刀具,其特征在于,所述的旋压刀具的柱形结构的底面上 设置有凸出的金属半球。6. 根据权利要求5所述的旋压刀具,其特征在于,所述旋压刀具的金属半球数量为1~ 500个,且沿周向均布设置。7. 根据权利要求1所述的旋压刀具,其特征在于,所述旋压刀具材料的硬度高于被加工 金属初始表面硬度。8. 根据权利要求1所述的旋压刀具,其特征在于,所述旋压刀具的材质为碳钢、高温合 金、高速工具钢或陶瓷材料中的一种。9. 采用权利要求1所述的旋压刀具,进行金属表面旋压强化方法,其特征在于,包括以 下步骤: 步骤1:对金属表面除油、除污和除腐蚀产物; 步骤2:使旋压刀具与金属表面接触,且旋压刀具轴线与被加工金属表面垂直; 步骤3:旋压刀具高速旋转,金属表面在刀具下方经过,刀具相对于金属工件旋压运动, 到达处理面积时停止操作;其中,旋压刀具的下压量为0.000001~5mm,进刀速度为 0.000001~3. Om/min,刀具转数为1~10000转/分钟。10. 根据权利要求9所述的金属表面旋压强化方法,其特征在于,所述的步骤1,采用喷 沙的方法清除金属表面的油污和腐蚀产物。
【文档编号】C21D7/04GK105861797SQ201610365249
【公开日】2016年8月17日
【申请日】2016年5月27日
【发明人】张哲峰, 王强, 朱艳坤
【申请人】中国科学院金属研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1