软磁粉末混合料的制作方法

文档序号:10517180阅读:439来源:国知局
软磁粉末混合料的制作方法
【专利摘要】本发明涉及适于软磁应用如感应器芯的复合铁基粉末。本发明还涉及生产软磁组件的方法,和通过该方法生产的组件。
【专利说明】软磁粉末混合料 发明领域
[0001] 本发明涉及细粒粘土材料,优选在热诱导脱羟基化期间显示出高重量损失的那些 的用途,所述材料适于与软磁粉末材料以及任选其它材料如润滑剂或者铁硅铝磁合金 (sendust)或其它合金如FeSi混合。所得软磁复合粉末用于制备软磁组件,例如压粉磁芯 (dust core)。本发明还涉及通过使用该软磁复合粉末得到的软磁组件。
[0002] 发明背景
[0003] 软磁材料用于各种应用,例如感应器中的芯材、电机的定子和转子、致动器、传感 器和变压器芯。传统上,软磁芯,例如电机中的转子和定子由叠层钢层压物制成。软磁复合 物也可由通常铁基的软磁颗粒制造,其中各个颗粒上具有电绝缘涂层。通过使用传统粉末 冶金方法将绝缘颗粒任选与润滑剂和/或粘合剂一起压实,得到软磁组件,例如压粉磁芯。 通过使用粉末冶金技术,可以以在设计方面比使用钢层压物可能的更高的自由度生产这类 组件,因为该组件可带有三维磁通量,并且因为三维形状可通过压实方法得到。显示出这类 组件具有良好的磁特性,例如铁耗(core loss)或电阻率。
[0004] 在关于改进电阻率的方法的研究中,使用和提议了不同的方法。一种方法基于在 使这些颗粒经受压实以前将电绝缘涂层或膜施涂于粉末颗粒上。因此,存在描述不同类型 的电绝缘涂层的大量出版物,例如US6,309,748和US6,562,458<^?124620981描述了铁磁金 属基粉末,其中将金属基粉末的表面用由有机硅树脂和具有层状结构的粘土矿物如膨润土 或滑石的细粒组成的层涂覆。JP2002170707A描述了涂有含磷层的合金铁颗粒,其中成合金 元素可以为硅、镍或铝。在第二步骤中,将涂覆粉末与硅酸钠水溶液混合,其后干燥,其中压 粉磁芯通过将粉末模塑,其后将模塑部件在500-1000 °C的温度下热处理而生产。JP51-089198公开了在通过将铁粉模塑,其后将模塑部件热处理而生产压粉磁芯时硅酸钠作为用 于铁粉颗粒的粘合剂的用途。
[0005]为得到高性能软磁复合组件,理想的是能够使电绝缘粉末经受在高压下压缩模 塑,因为通常想要得到具有高密度的部件。高密度通常改进磁性能。具体而言,需要高密度 以使磁滞损耗保持在低水平并得到高饱和通量密度。另外,电绝缘必须经得起所需的压实 压力而在将压实部件从模具中脱出时不受损。这又意味着脱出力必须不是太高的。
[0006] 对于主要意欲在较高频率,g卩2kHz以上,特别是5-lOOkHz的频率下使用的粉末磁 芯,较高的电阻率和较低的铁耗是必要的。优选,饱和通量密度应为足够高的以能够磁芯缩 小。另外,应当可生产磁芯而未必使用模具壁润滑和/或升高的温度将金属粉末压实。优选, 应删除这些步骤。
[0007] 即使通过铁粉制成的组件的磁性能是可接受的,对于一些应用,需要提高组件的 机械强度。
[0008] 发明概述
[0009] 根据第一方面,本发明涉及复合铁基粉末混合物,其包含涂有以下层的铁颗粒:1) 第一层,其为含磷层;和2)第二层,其包含与粘土矿物组合的碱性硅酸盐,其中粘土包含页 硅酸盐,且其中粘土为具有如通过分析离心分析测量为0.1-0.4μπι的粒度(D 5q)的颗粒。
[0010] 发明人显示通过使用根据本发明的用显示出小粒度的粘土涂覆的铁基粉末制造 磁组件,例如电机的感应器,改进了这类组件的机械强度。
[0011] 本发明涉及铁基软磁复合粉末,其芯颗粒涂有涂层,赋予适于通过将粉末压实,其 后热处理工艺生产感应器的材料性能。
[0012] 根据第二方面,本发明涉及包含根据本发明第一方面的复合铁基粉末混合物的软 磁组件。
[0013] 软磁组件优选为感应器磁芯。本发明有利地提供具有可接受的磁性能,例如低铁 耗和高饱和通量密度以及良好机械强度的感应器磁芯。
[0014] 另外,根据第三方面,本发明涉及所述铁基软磁复合粉末在通过将复合粉末压实, 其后热处理工艺生产感应器中的用途。
[0015] 本发明还提供如下文所述生产这类感应器磁性的方法。
[0016] 本发明的至少一个目的通过本发明涂覆铁基粉末实现。铁基粉末具有包含磷层, 即第一层,和与粘土组合的水玻璃(也称为碱性硅酸盐)的层,即第二层的涂层。
[0017] 磷涂层,即第一层通常为最接近铁芯的层。将因此涂覆的铁基粉末颗粒与至少一 类粘土作为第二层的一部分混合。所述粘土由具有0. Ιμπι至0.4μηι的平均粒度的颗粒构成 (或者换言之组成)。在一个优选实施方案中,粘土在热诱导脱羟基化期间显示出12重量% 以上的重量损失。
[0018]将涂有含有磷的第一层和含有水玻璃的第二层的涂覆铁基粉末和粘土混合产生 复合铁基粉末,其中粘土颗粒附着在铁基粉末颗粒的表面。具体而言,水玻璃可在加入铁基 粉末并将铁基粉末与粘土混合以后加入。
[0019] 铁基粉末颗粒可包含其它成合金元素,例如Si、Ρ或Ni,且为软磁的。
[0020] 根据第四方面,本发明还提供生产烧结磁组件的方法,其包括步骤:
[0021] a)提供根据本发明第一方面的涂覆铁基粉末;
[0022] b)将任选与润滑剂混合的涂覆铁粉在模具中在400_1200MPa的压实压力下,任选 以单轴挤压运动压实;
[0023] c)将压实组件从模具中脱出;和
[0024] d)将脱出的组件优选在至多700°C的温度下,更优选在500-690°C下热处理。
[0025] 此外,根据第五方面,本发明提供根据本发明第四方面的方法生产的组件,例如感 应器。
[0026] 附图简述
[0027] 现在例如参考示例实施方案、实验和附图描述本发明的实施方案,其中:
[0028]图1为显示粘土脱羟基化期间的相对质量降低对相对横向断裂强度(TRS)的影响 的图。%-TRS提高对比坯体的TRS与烧结体的TRS。
[0029]图2为显示粘土粒度对相对横向断裂强度的影响的图。
[0030]图3为显示不同量的两种粘土试样对横向断裂强度的影响的图,其中一种试样具 有细颗粒和在脱羟基化期间的高重量损失,且另一种具有粗颗粒和低重量损失。
[0031] 发明详述
[0032] 如本文所用,术语"粉末"定义为在摇动或倾斜时可自由流动的包含大量细颗粒的 干散固体。
[0033]如本文所用,术语"铁基粉末"定义为其颗粒包含至少99重量%铁的粉末。
[0034]铁基粉末可以为纯铁粉,其颗粒具有低含量的污染物如碳或氧。颗粒的铁含量优 选为99.0重量%以上,然而,还可使用与例如硅、磷或镍形成合金的铁基粉末。对于纯铁基 粉末,或者对于其颗粒与刻意加入的成合金元素形成合金的铁基粉末,除铁以及可能存在 的成合金元素外,粉末包含由生产方法导致的不可避免的杂质产生的痕量元素。痕量元素 以这样小的量存在以致它们不影响材料的性能。
[0035]铁基粉末的粒度的选择由意欲的用途,即组件通常适于的用途确定。铁基粉末的 平均粒度,当涂层为非常薄的时,其也粗略地为涂覆粉末的平均粒度,可以为20-300μπι。合 适铁基粉末的平均粒度的实例为例如20_80μπι,所谓的200目粉末,70-130μπι,100目粉末,或 者130-250μπι,40目粉末。用于测定粒度的方法是根据标准ISO 13320-1:1999通过激光衍射 测量。
[0036]除粘土涂层外,铁基颗粒被含磷涂层涂覆。含磷涂层为第一层。通常施涂于裸铁基 粉末上的含磷涂层可根据US6,348,265所述方法施涂。
[0037] 简言之,将铁或铁基粉末与溶于溶剂如丙酮中的磷酸混合,其后干燥以在粉末上 得到薄含磷和氧涂层。加入的溶液的量尤其取决于粉末的粒度;然而,量应优选足以得到具 有20-300nm的厚度的涂层。磷酸的浓度应为1-5%,并且可喷雾到铁颗粒上,或者使用如上 文的磷酸溶液分批混合。
[0038] 作为选择,可通过将铁基粉末与溶于水中的磷酸铵溶液混合或者使用含磷物质和 其它溶剂的其它组合而加入薄含磷涂层。
[0039] 所得含磷涂层,即第一层优选仅构成涂覆铁基粉末重量的一小部分。特别是,含磷 涂层优选占本发明铁基粉末(即具有第一和第二涂层)总重量的0.01-0.15%。
[0040] 粘土层通过根据本发明将粉末颗粒与粘土混合而施涂于铁颗粒上。
[0041] 更详细地讲,包含碱性硅酸盐和粘土涂层的第二层在施涂第一层以后施涂,即施 涂于磷涂覆的铁基粉末上。第二层可通过将磷涂覆的铁基粉末与粘土颗粒或者具有所述小 粒度的粘土和通常称为水玻璃的水溶性碱性硅酸盐的混合物混合而施涂。这之后通常是在 20-250 °C的温度下或者在真空中的干燥步骤。
[0042]粘土颗粒优选显示出在热诱导脱羟基化期间的高重量损失。热诱导脱羟基化期间 的重量损失可通过使用热重分析(TGA)测定。TGA可使用来自Netzsch Scandinavia(21121 瑞典)的Jupiter STA 449F3测量。分析程序如下:将纯粘土试样称重(5mg),然后 放入试样夹持器中。将试样和参比在氮气中以l〇°C/min的速率加热至1100°C。当试样加热 时,连续监控试样的重量。在240-730Γ的温度范围内的重量损失视为粘土脱羟基化期间的 重量降低。对于各试样,进行两次测量。
[0043]优选,脱羟基化期间的重量降低为12重量%以上,更优选13重量%以上,或者甚至 更优选14重量%以上,即在240-750°C温度范围内观察到的重量损失分别超过12、13或14重 量%。
[0044] 根据本发明,当粘土颗粒为相对小的,即在0 · Ιμπι至0 ·4μηι或者优选0 · Ιμπι至0 · 3μηι 的粒度范围内时,实现本发明的优点。最优选,粘土粒度为约〇.3μπι。这些优点由实施例清楚 地显示,并阐述于图2和3中,其中具有本发明粘土颗粒的试样与其中粘土粒度为较大的试 样相比显示出改进的%TRS提高。其它性能也改进,如实施例中的表1所示。
[0045] 粘土颗粒的粒度通过分析离心分析测定,且为D5Q值,即50%的颗粒小于D5Q值。更 详细地讲,粘土颗粒的粒度分布通过分析离心分析,使用来自T e a m a t 〇 r (25〇23Helsingborg,瑞典)的 LUMISizer 根据标准 IS013318_1 和 ISOIMI8-2 测定。
[0046]关于粘土的所有提及意指粘土矿物。粘土矿物为含水错页娃酸盐,有时具有可变 比例的铁、锰、碱金属、碱土金属和其它阳离子。本发明粘土因此包含页硅酸盐。适用于本发 明中的粘土的实例包括高岭土、球状粘土、火泥、粗陶土和陶土(earthware clay)。这些类 型的粘土是技术人员熟知的。粘土优选为高岭土。待与涂覆铁基粉末混合的含有指定页硅 酸盐的粘土的量应优选为涂覆复合铁基粉末的〇. 2-5%,优选0.5-4重量%。
[0047] 待与磷涂覆的铁基粉末混合的作为固体碱性硅酸盐计算的碱性硅酸盐的量应优 选为涂覆复合铁基粉末的〇. 1-0.9重量%,优选涂覆铁基粉末的0.2-0.8重量%。显示出可 使用各种类型的水溶性碱性硅酸盐,因此可使用钠、钾和锂硅酸盐。
[0048] 压实和热处理
[0049] 在压实以前,可将涂覆复合铁基粉末与合适的有机润滑剂如蜡、低聚物或聚合物、 脂肪酸基衍生物或其组合混合。合适润滑剂的实例为EBS,即乙烯双硬脂酰胺,可由 HdganSsAB,瑞典得到的Kenolube?,金属硬脂酸盐如硬脂酸锌或者脂肪酸或其其它衍 生物。润滑剂可以以总混合物的〇. 05-1.5 %,优选〇. 1-1.2重量%的量加入。
[0050] 压实可在400-1200MPa的压实压力下在环境温度或升高的温度下进行。
[0051 ] 在压实以后,使压实组件经受在至多700°C,优选500-690°C的温度下热处理。热处 理时的合适气氛的实例为惰性气氛如氮气或氩气,或者氧化气氛如空气。
[0052]本文中所有百分数基于重量。 实施例
[0053]以下实施例意欲阐述特定实施方案且不限制本发明的范围。
[0054] 实施例1
[0055] 粘土颗粒的粒度分布通过分析离心分析,使用来自T e a m a t 〇 r ( 2 5 0 23Helsingborg,瑞典)的LUMISizer根据标准IS013318-1和IS013318-2测定。将试样分散于 20mM NaCl溶液中至0.2重量%或0.4重量%的最终浓度以达到约30 %的初始透过率。对于 各个试样,进行两次测量。测量在+7 °C下以300rpm至4000rpm的速度跃升进行。粒度显示于 表1中。表1中的试样包含2%粘土和0.6%水玻璃。
[0056]
[0057] 实施例2
[0058] 粘土试样的热特性通过TGA,使用来自Netzsch Scandinavia(21121 Ma丨md,瑞 典)的Jupiter STA 449F3测定。分析程序如下:将纯粘土试样称重(5mg),然后放入试样夹 持器中。将试样和参比在氮气中以l〇°C/min的速率加热至1100 °C。当试样加热时,连续监控 试样的重量。在240-730°C的温度范围内的重量损失视为粘土脱羟基化期间的重量降低。对 于各试样,进行两次测量。由于脱羟基化导致的相对重量降低列于表1中。
[0059] 实施例3
[0060] 使用lkg粉末ASM200100.30的试样,其为具有99.5重量%以上的铁含量且由 HdganiSAB,瑞典市购的水雾化铁粉。将粉末颗粒根据W02008/069749用含磷溶液处理。 简言之,涂覆溶液通过将20ml的85重量%磷酸溶于1000ml丙酮中而制备,并且每1000g粉 末,使用30ml丙酮溶液。在将磷酸溶液与金属粉末混合以后,使混合物干燥。试样的化学分 析公开了通过使用水溶液而得到的粉末的氧含量比基础粉末中高0.2%以上,而通过使用 本发明方法而得到的粉末的氧含量具有比基础粉末的高少于0.2 %的氧含量。对于所有试 样,试样的AES分析显示100nm以下的氧化物厚度。
[0061 ]铁粉的平均粒度通过ISO 13320-1中的激光衍射法测定为约45μπι。将铁粉用根据 US6,348,265的含磷溶液和0.6重量%的量的水玻璃处理。将所得干磷涂覆的铁粉进一步与 根据本发明或者对比例的粘土以根据表1的变化量混合。在120Γ下干燥1小时以得到干粉 末以后,将粉末与〇 · 6% Kenohlbe?混合并在8〇〇MPa下压实成具有45mm内径、55mm外径和 5mm高度的环。其后使压实组件经受在氮气气氛中在530°C或650°C下的热处理工艺0.5小 时。
[0062] 实施例4
[0063] 烧结组件的横向断裂强度(TRS)根据ISO 3325:1996标准评估。通过在短期静载条 件下在载体之间的中点施加负荷而使置于两个载体上的6mm厚试片破裂。TRS值显示于表1 中。
[0064] 实施例5
[0065] 将来自实施例3的所得试样在800MPa或llOOMPa下压实成具有45mm内径、55mm外径 和5mm高度的环。其后使压实组件经受在氮气气氛中在650°C下的热处理工艺30分钟。结果 显示于表1中。
[0066] 实施例6
[0067] 所得试样的比电阻率通过四点测量测量。对于最大磁导率ymax和矫顽磁性测量,将 环以对初级电路而言1 〇〇圈,以及对于二次电路而言1〇〇圈"卷绕",从而能够借助磁滞回线 记录仪Brockhaus MPG 200测量磁性能。对于铁耗,借助Walker Scientific Inc.AMH-401P0D仪器,将环以对初级电路而言100圈,以及对于二次电路而言30圈"卷绕"。矫顽磁性 显示为可接受的。
【主权项】
1. 复合铁基粉末混合物,其包含涂有以下层的铁颗粒: 1) 第一层,其为含磷层;和 2) 第二层,其包含与粘土组合的碱性硅酸盐, 其中粘土包含页硅酸盐,且其中粘土为具有如通过分析离心分析测量为0.1-0.4μπι的 粒度(D5〇)的颗粒。2. 根据权利要求1的复合铁基粉末混合物,其中粘土含量为复合铁基粉末的0.2-5重 量%,优选0.5-4重量%。3. 根据权利要求1或2中任一项的复合铁基粉末混合物,其中粘土为高岭土。4. 根据前述权利要求中任一项的复合铁基粉末混合物,其中粘土包含如通过分析离心 分析测量具有〇. 1-0.3μπι,优选约0.3μπι的粒度(D5Q)的颗粒。4. 根据前述权利要求中任一项的复合铁基粉末混合物,其中粘土具有如通过TGA测量 为12重量%以上的热诱导脱羟基化时的重量损失。5. 软磁组件,其包含根据前述权利要求中任一项的复合铁基粉末混合物。6. 根据权利要求5的软磁组件,其为感应器芯。7. 根据权利要求6的软磁组件,其中感应器芯具有可接受的磁性能,例如低磁芯损耗和 高饱和通量密度。8. 根据权利要求6的软磁组件,其中感应器芯具有良好的机械强度。9. 根据权利要求1-4中任一项的复合铁基粉末混合物在通过将复合粉末压实,其后热 处理工艺而生产感应器中的用途。10. 生产烧结磁组件的方法,其包括步骤: a) 提供根据权利要求1-4中任一项的涂覆铁基粉末; b) 将涂覆铁基粉末压实; c) 将压实组件从模具中脱出; d) 将脱出的组件热处理。11. 根据权利要求10的方法,其中在步骤b)中,在压实以前将涂覆铁基粉末与润滑剂混 合,和/或其中将它在模具中在400-1200MPa的压实压力下以单轴挤压运动压实。12. 根据权利要求10的方法,其中在步骤e)中,在至多700 °C,优选500-690 °C的温度下 热处理。13. 通过根据权利要求10-12中任一项的方法生产的组件,优选其中组件为感应器。
【文档编号】H01F41/02GK105873697SQ201480069686
【公开日】2016年8月17日
【申请日】2014年12月19日
【发明人】叶舟, A-C·海尔森
【申请人】霍加纳斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1