一种高精密切割砂轮磨料的制备方法

文档序号:10548860阅读:472来源:国知局
一种高精密切割砂轮磨料的制备方法
【专利摘要】本发明涉及超硬金刚石磨料,具体说是一种高精密切割砂轮磨料的制备方法,其包括制备二氧化钛溶胶和氧化铝溶胶;清洗金刚石颗粒;将清洗后的金刚石颗粒浸泡于上述二氧化钛溶胶中,静置后捞出;并加热烘干后冷却;再将冷却后的金刚石置于氧化铝溶胶中浸泡,接着烘干冷却;然后置于马弗炉炉内进行热处理。本发明将在金刚石表面涂覆二氧化钛与氧化铝复合薄膜,该善了金刚石的亲水性以及烧结过程中结合剂对金刚石的润湿性,有效增强金刚石磨料的抗热氧化性,可提高烧结后结合剂与金刚石磨料之间的结合力,从而大大改善了金刚石的性能,提高了其强度,可以作为超硬金刚石砂轮的磨料,适合磨削超硬材料。
【专利说明】
一种高精密切割砂轮磨料的制备方法
技术领域
[0001 ]本发明涉及高精密切割砂轮,具体说是高精密切割砂轮磨料的制备方法。
【背景技术】
[0002]近年来,随着科技的进步,人们对生产工具的要求向着高效率、高寿命高、高经济性的方向发展,在很多领域普通材料的工具已经不能满足劳动者日益提高的要求,所以以金刚石为代表的金刚石磨削工具发展迅速,其应用已经渗透到机械加工、汽车制造、航空航天、生物、医疗器具、电子信息、建筑、交通、地质采矿等领域。
[0003]目前,绝大部分人工合成的金刚石都为粉末状或细小的颗粒状,为了利用金刚石进行高精度,高效率磨削加工,通常采用结合剂将金刚石磨粒粘结起来并制成具有一定强度和形状的模具,以便于安装在各种磨床上进行磨削加工。与其他磨料如刚玉、碳化硅相比,用金刚石模具进行磨削时,其具有磨削效率高、使用寿命长、磨削力小,磨削温度低、磨削精度高等优点。但,现有的以金属材料为结合剂制备金刚石砂轮磨料的硬度不够强,不能适合高硬度材料的磨削。

【发明内容】

[0004]针对上述技术问题,本发明提供一种工艺较为简单的高精密切割砂轮磨料的制备方法。
[0005]本发明采用的技术方案为:一种高精密切割砂轮磨料的制备方法,其包括以下步骤:
(1)制备二氧化钛溶胶和氧化铝溶胶;
(2)清洗金刚石颗粒;
(3)将清洗后的金刚石颗粒浸泡于上述二氧化钛溶胶中,静置后捞出;并加热烘干后冷却;再将冷却后的金刚石置于氧化铝溶胶中浸泡,接着烘干冷却;
(4)然后置于马弗炉炉内进行热处理,得到表面涂覆有二氧化钛和氧化铝复合薄膜的金刚石磨料。
[0006]作为优选,在搅拌下将钛酸丁酯溶于无水乙醇中,接着加入二乙醇胺,待溶液混合均匀后,再滴加乙醇水溶液,继续搅拌,然后室温陈化,得到二氧化钛溶胶。
[0007]作为优选,所述二氧化钛溶胶中钛酸丁酯、水、二乙醇胺、乙醇的物质的量之比为1:1:1:(25—28)。
[0008]作为优选,将异丙醇铝、硝酸、去离子水混合均匀,90°C搅拌回流1h,然后静置24h,过滤得到氧化铝溶胶。
[0009]作为优选,所述异丙醇铝、硝酸、去离子水的物质的量之比为:1:0.2:90。
[0010]作为优选,清洗金刚石颗粒时,将金刚石颗粒先用盐酸溶液浸泡,再用去离子水冲洗并烘干,然后用丙酮超声清洗,接着用去离子水冲洗后干燥。
[0011 ] 作为优选,金刚石颗粒用盐酸溶液浸泡后用去离子水冲洗至冲洗液的pH值为7。
[0012]作为优选,金刚石颗粒浸泡于二氧化钛溶胶中静置捞出后,再置于70—90°C的烘箱中干燥4 一 6min,然后冷却;并重复上述步骤2—3次。
[0013]作为优选,冷却后的金刚石置于氧化铝溶胶中浸泡,捞出再置于70—90°C的烘箱中干燥4一 6min,然后冷却;并重复上述步骤2—3次。
[0014]作为优选,热处理时,先将马弗炉升温至90—100 0C后保温20—30min,然后以4一 7°C/min的升温速率升温至600—800°C,并保温50—60min后随炉冷却。
[0015]从以上技术方案可知,本发明将在金刚石表面涂覆二氧化钛与氧化铝复合薄膜,该善了金刚石的亲水性以及烧结过程中结合剂对金刚石的润湿性,有效增强金刚石磨料的抗热氧化性,可提高烧结后结合剂与金刚石磨料之间的结合力,从而大大改善了金刚石的性能,提高了其强度,可以作为超硬金刚石砂轮的磨料,适合磨削超硬材料。
【具体实施方式】
[0016]下面将详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
[0017]一种高精密切割砂轮磨料的制备方法,其包括以下步骤:
(I)制备二氧化钛溶胶;制备二氧化钛溶胶时,先在搅拌下将钛酸丁酯溶于无水乙醇中,接着加入二乙醇胺,待溶液混合均匀后,再滴加乙醇水溶液,继续搅拌,然后室温陈化,得到二氧化钛溶胶;在二氧化钛溶胶中钛酸丁酯、水、二乙醇胺、乙醇的物质的量之比为1:1:1: (25—28)。本发明采用钛酸丁酯为有机前驱体,以乙醇为有机溶剂,通过醇解、水解和缩聚反应制得二氧化钛溶胶。
[0018](2)制备氧化铝溶胶;将异丙醇铝、硝酸、去离子水混合均匀,90°C搅拌回流10h,然后静置24h,过滤得到氧化铝溶胶,其中异丙醇铝、硝酸、去离子水的物质的量之比为:1:
0.2:90。加入硝酸,可使氢离子吸附在聚沉的溶胶粒子表面,从而得到稳定的体系;静置使得溶胶胶粒的分散于聚集尽快达到相对稳定的平衡状态,从而使胶体具有单一的粒度分布。
[0019](3)清洗金刚石颗粒;清洗金刚石颗粒时,将金刚石颗粒先用盐酸溶液浸泡,再用去离子水冲洗至冲洗液的PH值为7,并烘干,然后用丙酮超声清洗,接着用去离子水冲洗后干燥,可避免涂膜时引入杂质,降低金刚石的性能。
[0020](4)将清洗后的金刚石颗粒浸泡于上述二氧化钛溶胶中,静置后捞出,并加热烘干后冷却;金刚石颗粒浸泡于二氧化钛溶胶中静置捞出后,再置于70—90°C的烘箱中干燥4 一6min,然后冷却;并重复上述步骤2—3次,使得涂膜的质量更好,涂层均匀;接着将涂覆有二氧化钛的金刚石置于氧化铝溶胶中浸泡,捞出再置于70—90°C的烘箱中干燥4 一 6min,然后冷却;并重复上述步骤2—3次。金刚石浸泡在溶胶后,其表面会形成一层溶胶薄膜,溶胶薄膜在后继的干燥和热处理过程中会在金刚石表面产生进一步缩聚,形成三维网络结构的凝胶薄膜。由于溶胶凝胶成膜的厚度较薄,因此需要多次成膜,提高金刚石磨料的性能。
[0021](5)然后置于马弗炉炉内进行热处理,得到表面涂覆有二氧化钛与氧化铝复合薄膜的金刚石磨料;热处理时,先将马弗炉升温至90—100°C后保温20—30min,然后以4一7°C/min的升温速率升温至600—800°C,并保温50—60min后随炉冷却。经过热处理后,薄膜致密度较高,附着力较强。
[0022]实施例1
先在搅拌下将钛酸丁酯溶于无水乙醇中,接着加入二乙醇胺,待溶液混合均匀后,再滴加乙醇水溶液,继续搅拌,然后室温陈化lh,得到二氧化钛溶胶,其中钛酸丁酯、水、二乙醇胺、乙醇的物质的量之比为1:1:1:25;与此同时将异丙醇铝、硝酸、去离子水混合均匀,90°C搅拌回流10h,然后静置24h,过滤得到氧化铝溶胶,其中异丙醇铝、硝酸、去离子水的物质的量之比为:1: 0.2:90。同时将金刚石颗粒先用盐酸溶液浸泡,再用去离子水冲洗至冲洗液的PH值为7,并烘干,然后用丙酮超声清洗,接着用去离子水冲洗后干燥,接着将清洗后的金刚石颗粒浸泡于上述二氧化钛溶胶中,静置后捞出,再置于70°C的烘箱中干燥6min,然后冷却;并重复上述步骤2次;接着将冷却后涂覆有二氧化钛的金刚石置于上述氧化铝溶胶中浸泡,捞出再置于70°C的烘箱中干燥6min,然后冷却;重复上述步骤3次,再置于马弗炉炉内,并将马弗炉升温至90°C后保温30min,然后以4°C/min的升温速率升温至600°C,并保温60min后随炉冷却。测试得到:薄膜厚度约121nm,磨料的硬度达76.3HV,抗压强度为9.21N,且薄膜与金刚石基体结合完好,在界面处未出现气孔等缺陷。
[0023]实施例2
先在搅拌下将钛酸丁酯溶于无水乙醇中,接着加入二乙醇胺,待溶液混合均匀后,再滴加乙醇水溶液,继续搅拌,然后室温陈化lh,得到二氧化钛溶胶,其中钛酸丁酯、水、二乙醇胺、乙醇的物质的量之比为1:1:1:26.5;与此同时将异丙醇铝、硝酸、去离子水混合均匀,90°(:搅拌回流10h,然后静置24h,过滤得到氧化铝溶胶,其中异丙醇铝、硝酸、去离子水的物质的量之比为:1:0.2:90。同时将金刚石颗粒先用盐酸溶液浸泡,再用去离子水冲洗至冲洗液的PH值为7,并烘干,然后用丙酮超声清洗,接着用去离子水冲洗后干燥,接着将清洗后的金刚石颗粒浸泡于上述二氧化钛溶胶中,静置后捞出,再置于80°C的烘箱中干燥5min,然后冷却;并重复上述步骤2次;接着将冷却后涂覆有二氧化钛的金刚石置于上述氧化铝溶胶中浸泡,捞出再置于80°C的烘箱中干燥5min,然后冷却;重复上述步骤2次,再置于马弗炉炉内,并将马弗炉升温至95°C后保温25min,然后以5°C/min的升温速率升温至700°C,并保温55min后随炉冷却。测试得到:薄膜厚度约115nm,磨料的硬度达78.3HV,抗压强度为9.46N,且薄膜与金刚石基体结合完好,在界面处未出现气孔等缺陷。
[0024]实施例3
先在搅拌下将钛酸丁酯溶于无水乙醇中,接着加入二乙醇胺,待溶液混合均匀后,再滴加乙醇水溶液,继续搅拌,然后室温陈化lh,得到二氧化钛溶胶,其中钛酸丁酯、水、二乙醇胺、乙醇的物质的量之比为1:1:1:28;与此同时将异丙醇铝、硝酸、去离子水混合均匀,90°C搅拌回流10h,然后静置24h,过滤得到氧化铝溶胶,其中异丙醇铝、硝酸、去离子水的物质的量之比为:1: 0.2:90。同时将金刚石颗粒先用盐酸溶液浸泡,再用去离子水冲洗至冲洗液的PH值为7,并烘干,然后用丙酮超声清洗,接着用去离子水冲洗后干燥,接着将清洗后的金刚石颗粒浸泡于上述二氧化钛溶胶中,静置后捞出,再置于90°C的烘箱中干燥4min,然后冷却;并重复上述步骤3次;接着将冷却后涂覆有二氧化钛的金刚石置于上述氧化铝溶胶中浸泡,捞出再置于90°C的烘箱中干燥4min,然后冷却;重复上述步骤2次,再置于马弗炉炉内,并将马弗炉升温至100°C后保温20min,然后以7°C/min的升温速率升温至800°C,并保温50min后随炉冷却。测试得到:薄膜厚度约120nm,磨料的硬度达77.8HV,抗压强度为9.39N,且薄膜与金刚石基体结合完好,在界面处未出现气孔等缺陷。
[0025]以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据本发明实施例,在【具体实施方式】以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
【主权项】
1.一种高精密切割砂轮磨料的制备方法,其包括以下步骤: (1)制备二氧化钛溶胶和氧化铝溶胶; (2)清洗金刚石颗粒; (3)将清洗后的金刚石颗粒浸泡于上述二氧化钛溶胶中,静置后捞出;并加热烘干后冷却;再将冷却后的金刚石置于氧化铝溶胶中浸泡,接着烘干冷却; (4)然后置于马弗炉炉内进行热处理,得到表面涂覆有二氧化钛和氧化铝复合薄膜的金刚石磨料。2.根据权利要求1所述高精密切割砂轮磨料的制备方法,其特征在于:在搅拌下将钛酸丁酯溶于无水乙醇中,接着加入二乙醇胺,待溶液混合均匀后,再滴加乙醇水溶液,继续搅拌,然后室温陈化,得到二氧化钛溶胶。3.如权利要求1所述高精密切割砂轮磨料的制备方法,其特征在于:所述二氧化钛溶胶中钛酸丁酯、水、二乙醇胺、乙醇的物质的量之比为1:1:1:(25—28)。4.如权利要求1所述高精密切割砂轮磨料的制备方法,其特征在于:将异丙醇铝、硝酸、去离子水混合均匀,90°C搅拌回流10h,然后静置24h,过滤得到氧化铝溶胶。5.如权利要求1所述高精密切割砂轮磨料的制备方法,其特征在于:所述异丙醇铝、硝酸、去离子水的物质的量之比为:1:0.2:90。6.如权利要求所述高精密切割砂轮磨料的制备方法,其特征在于:清洗金刚石颗粒时,将金刚石颗粒先用盐酸溶液浸泡,再用去离子水冲洗并烘干,然后用丙酮超声清洗,接着用去离子水冲洗后干燥。7.如权利要求6所述高精密切割砂轮磨料的制备方法,其特征在于:金刚石颗粒用盐酸溶液浸泡后用去离子水冲洗至冲洗液的pH值为7。8.如权利要求1所述高精密切割砂轮磨料的制备方法,其特征在于:金刚石颗粒浸泡于二氧化钛溶胶中静置捞出后,再置于70—90°C的烘箱中干燥4 一 6min,然后冷却;并重复上述步骤2—3次ο9.如权利要求1所述高精密切割砂轮磨料的制备方法,其特征在于:冷却后的金刚石置于氧化铝溶胶中浸泡,捞出再置于70—90°C的烘箱中干燥4 一 6min,然后冷却;并重复上述步骤2—3次。10.如权利要求1所述高精密切割砂轮磨料的制备方法,其特征在于:热处理时,先将马弗炉升温至90—100°C后保温20—30min,然后以4 一 7°C/min的升温速率升温至600—8000C,并保温50—60min后随炉冷却。
【文档编号】C23C18/12GK105908153SQ201610254468
【公开日】2016年8月31日
【申请日】2016年4月22日
【发明人】黎超英, 吴沛荣
【申请人】柳州凯通新材料科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1