一种微波激励甲烷转化制氢工艺的制作方法

文档序号:3429169阅读:360来源:国知局
专利名称:一种微波激励甲烷转化制氢工艺的制作方法
技术领域
本发明涉及甲烷转化制氢技术,特别提供了微波激励甲烷转化制氢工艺。
氢是重要的化工物资和能源材料。尤其在保护地球环境地要求下,氢作为最清洁的燃料而备受瞩目。当前世界的主要能源材料是化石燃料,化石燃料的燃烧要产生大量的二氧化碳,一氧化碳等有害气体,地球的温室效应就与化石燃料的大量燃烧使用密切相关。而氢燃烧的产物只有水,无公害无污染。但是自然界的氢气资源很少,其主要通过分解其它含氢化合物来获得。甲烷是天然气的主要成份,地球上天然气的储量非常丰富,勘探结果表明天然气的资源总量要比煤和石油的总和还要多。甲烷是由碳和氢两种元素组成,其裂解可产生氢气。因此从资源丰富的甲烷制备氢具有很好的工业应用前景。现有的从甲烷制氢的途径主要有以下种
1,甲烷部分氧化制氢。此工艺过程的主要特点有甲烷转化率高,
氢的选择性高,反应空速高。但是此反应过程在高温下进行,需
要高浓度的氧气进料,反应工艺复杂,反应过程安全性较低,而
且此过程产生的氢、一氧化碳浓度较高,在应用上具有一定的局
限性。[Production of synthesis gas,Catal.Today 18(1993)305-324]
2,甲烷水汽重整制氢。此工艺过程的主要特点是甲烷转化率高,
氢的选择性高,反应过程较安全。但是此反应过程需要高温和大
量水蒸汽,反应过程能耗高,工艺复杂,产物氢中一氧化碳浓度
高,应用范围受到限制。[Production of synthesis gas,Catal.Today
18(1993)305-324]
3,电弧法裂解甲烷制氢此工艺过程的主要特点为甲烷转化率高,
工艺简单,产物氢不含一氧化碳,应用范围广。但是反应过程不
易控制,能耗太高,只能用于水电较发达的地区。[从煤和天然气
制取乙炔及其衍生物,化学工业出版社(1992)]
4,微波辐照下甲烷制氢此工艺过程的主要特点有甲烷转化率高,
反应过程容易控制,安全性高,产物氢不含一氧化碳,应用范围
广。但是此反应需要在负压下进行,不利于大规模工业化生产,
因而正处于研究中。[美国专利US4574038,Decomposition of
hydrocarbons in a microwave discharge,J.Phys.Chem.,Volume
73,number 6,6(1969)]
为了克服上述问题,本发明的目的是提供一种微波激励甲烷转化制氢的工艺,它是一定压力下含一定浓度甲烷的气体以一定流速通过反应区,反应区内放置有电磁场作用下易放电的物体,然后使用连续或脉冲微波对反应区进行辐射,电磁场作用下易放电的物质在微波作用下放电引发等离子体,从而裂解甲烷制取氢。该过程的特点是甲烷转化率高,反应过程容易控制,安全性高,工艺简单,产物氢不含一氧化碳,应用范围广,反应可在常压或常压以上进行,能够大规模工业化生产。
具体地说,本发明提供的一种微波激励甲烷转化制氢的工艺,是使甲烷气体通过反应区,反应区内放置有电磁场作用下易放电的物质,然后使用微波对反应区进行辐射,电磁场作用下易放电的物质在微波作用下放电引发等离子体,从而裂解甲烷制取氢,其特征在于,反应区内含甲烷气体压力为1-3个标准大气压,并且微波的频率应大于0.3GHz,输入功率最小为5W。
在上述的本发明中,反应区内放置的电磁场作用下易放电的物质可为铂、钨、铁、镍、铜及它们的合金或混合物,而最好可选钨作为放电物质。
另外,在上述的本发明中,反应区内放置的电磁场作用下易放电的物质也可为石墨、活性炭、碳化硅、碳化钨、碳化钼及其混合物,而最好为石墨。
另外,在上述的本发明中,甲烷气体浓度为1%-100%体积百分含量,适用于大量的含甲烷气体种类,如催化裂化干气,天然气,煤层气等。而最好甲烷气体浓度选择为50%-100%。
在上述的本发明中,含甲烷气体在反应区停留时间为1-10秒钟,停留时间越长甲烷转化率越高,尾气中氢气浓度越高。但是当停留时间超过10秒,甲烷转化率几乎为100%,并且尾气中氢气浓度也很难再提高,而且,停留时间过长,影响产物的产率,不利于工业化生产。因此,停留时间最好不超过10秒。
另外,在上述的本发明中,作用于反应区的微波可为连续或脉冲式,适用于大多数现有的微波装置。而且其微波频率只要能达到0.3GHz,输入功率超过5W就能进行甲烷转化反应。但是,通常作用于反应区的连续或脉冲微波的频率为0.915、2.45、5.80或22.0GHz,输入功率为100W以上,并且提高输入功率有利于甲烷转化成氢。具体的输入功率可根据实际反应要求和条件进行设定。
另外,在上述的本发明中,作用于反应区的脉冲微波的占空可为0.1-1,脉冲频率可为1-10Hz。
在本发明中,甲烷转化的主要产物为氢气和碳,副产少量乙炔,乙烯。
与公知技术相比本发明具有以下显著特点
1.反应气体在常温和常压或常压以上即可被引发进行反应,而通常甲烷的活化温度在常压,无催化剂条件下需高于1200℃,而常温下等离子体转化甲烷需要负压条件。高温和负压是甲烷活化过程在工业化道路上的两大困难。本发明通过在反应区内放置易放电的物体,在连续或脉冲微波作用下引发放电等离子体这一过程实现甲烷转化,使甲烷既能在常温下被引发进行反应,又能保证反应在常压或高于常压下稳定进行,这无疑将有利于天然气综合利用的工业化进程。
2.本发明中,甲烷的转化过程无需使用催化剂,避免了许多在催化反应中经常遇到的困难,这无疑大大简化了工艺流程,降低了甲烷的转化成本,更有利于此过程的进一步应用。
3.本发明中,尾气氢浓度高,产物氢中不含一氧化碳,应用范围非常广泛,尤其适用于对一氧化碳中毒的质子膜燃料电池领域。
4.本发明中,使用微波作为能量来源,清洁安全,而且微波供能系统响应迅速,生产过程容易控制,安全性高。
下面通过实施例祥述本发明
实施例1.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的金属棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将含甲烷100%的反应气通入反应管,反应气体在微波谐振腔中停留时间为5秒,反应气体的压力为1标准大气压,施加连续微波辐射,功率100W,频率2450MHz,调节短路活塞,使微波反射功率达到最小,金属棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。结果列于表1
表1不同金属放电物质对反应结果的影响
实施例2.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的碳或碳化物棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将含甲烷100%的反应气通入反应管,反应气体在微波谐振腔中停留时间为5秒,反应气体的压力为1标准大气压,施加连续微波辐射,功率100W,频率2450MHz,调节短路活塞,使微波反射功率达到最小,碳或碳化物棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。结果列于表2
表2不同碳或碳化物放电物质对反应结果的影响
实施例3.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的钨棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将不同甲烷浓度的气体通入反应管,反应气的稀释气体为氩气,反应气体在微波谐振腔中停留时间为5秒,反应气体的压力为1标准大气压,施加连续微波辐射,功率100W,频率2450MHz,调节短路活塞,使微波反射功率达到最小,钨棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。结果列于表3。由表3结果可知,提高甲烷浓度使产物中氢气浓度增加。而对于除氢以外产物选择性影响小。
表3不同甲烷浓度对反应结果的影响
实施例4.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的钨棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将含甲烷100%的反应气体通入反应管,反应气体在微波谐振腔中停留时间为5秒,施加连续微波辐射,功率100W,频率2450MHz,调节短路活塞,使微波反射功率达到最小,钨棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。反应气体的压力不同时,不同的反应结果列于表4。由表4结果可知,本发明的甲烷转化制氢的工艺方法可以在常压或加压下进行。这样有利于工业化大规模生产。
表4不同反应压力对反应结果的影响
实施例5.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的钨棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将含甲烷100%的气体通入反应管,反应气体的压力为1标准大气压,施加连续微波辐射,功率100W,频率2450MHz,调节短路活塞,使微波反射功率达到最小,钨棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。反应气体在微波谐振腔中停留时间不同时,反应结果不同,结果列于表5。由表5结果可知,甲烷在反应区停留时间越长,产物中氢的浓度越高。
表5不同停留时间对反应结果的影响
实施例6.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的钨棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将含甲烷100%的气体通入反应管,反应气体在微波谐振腔中停留时间为5秒,反应气体的压力为1标准大气压,施加连续微波辐射,频率2450MHz,调节短路活塞,使微波反射功率达到最小,钨棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。微波输入功率不同时,反应结果不同,结果列于表6。由表6的结果可知,把微波功率提高有利于甲烷转化为氢。
表6不同微波输入功率对反应结果的影响
实施例7.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的钨棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将含甲烷100%的气体通入反应管,反应气体在微波谐振腔中停留时间为5秒,反应气体的压力为1标准大气压,施加脉冲微波辐射,占空比为0.1,功率100W,频率2450MHz,调节短路活塞,使微波反射功率达到最小,钨棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。微波脉冲频率不同时,反应结果不同,结果列于表7。由表7的结果可知,提高脉冲频率,有利于提高氢气浓度。表7不同微波脉冲频率对反应结果的影响
实施例8.将内径为25毫米的石英反应管置于微波谐振腔中,将一段直径为3毫米,长10毫米的钨棒竖直置于反应管中轴线上并且位于微波谐振腔中央,将含甲烷100%的气体通入反应管,反应气体在微波谐振腔中停留时间为5秒,反应气体的压力为1标准大气压,施加脉冲微波辐射,脉冲频率5Hz,功率100W,频率2450MHz,调节短路活塞,使微波反射功率达到最小,钨棒尖端在此条件下产生放电引发等离子体,甲烷从而裂解产生氢。脉冲微波占空比不同时,反应结果不同,结果列于表8。由表8的结果可知,提高脉冲微波占空比有利于甲烷转化,并且能提高氢气的选择性。
表8不同微波脉冲占空比对反应结果的影响
权利要求
1.一种微波激励甲烷转化制氢的工艺,是使甲烷气体通过反应区,反应区内放置有电磁场作用下易放电的物质,然后使用微波对反应区进行辐射,电磁场作用下易放电的物质在微波作用下放电引发等离子体,从而裂解甲烷制取氢,其特征在于,反应区内含甲烷气体压力为1-3个标准大气压,并且微波的频率应大于0.3GHz,输入功率最小为5W。
2.按权利要求1所述的微波激励甲烷转化制氢的工艺,其特征在于,反应区内放置的电磁场作用下易放电的物质为铂、钨、铁、镍、铜及它们的合金或混合物。
3.按权利要求1所述的微波激励甲烷转化制氢的工艺,其特征在于,反应区内放置的电磁场作用下易放电的物质为石墨、活性炭、碳化硅、碳化钨、碳化钼及其混合物。
4.按权利要求1所述的微波激励甲烷转化制氢的工艺,其特征在于,甲烷气体浓度为1%-100%体积百分含量。
5.按权利要求1所述的微波激励甲烷转化制氢的工艺,其特征在于,甲烷气体浓度为50%-100%体积百分含量。
6.按权利要求1所述的微波激励甲烷转化制氢的工艺,其特征在于,含甲烷气体在反应区停留时间为1-10秒钟。
7.按权利要求1所述的微波激励甲烷转化制氢的工艺,其特征在于,作用于反应区的微波可为连续或脉冲式。
8.按权利要求6所述的微波激励甲烷转化制氢的工艺,其特征在于,作用于反应区的连续或脉冲微波的频率为0.915、2.45、5.80或22.0GHz。
9.按权利要求6所述微波激励甲烷转化制氢的工艺,其特征在于,作用于反应区的脉冲微波的占空比为0.1-1,脉冲频率为1-10Hz。
全文摘要
一种微波激励甲烷转化制氢的工艺,是使甲烷以1-10秒停留时间通过反应区,反应区内放置有电磁场作用下易放电的物质,然后使用连续或脉冲微波对反应区进行辐射,电磁场作用下易放电的物质在微波作用下放电引发等离子体,从而裂解甲烷制取氢。该工艺的特点是甲烷转化率高,反应过程容易控制,安全性高,工艺简单,产物氢不含一氧化碳,应用范围广,反应可在常压或常压以上进行,能够大规模工业化生产。
文档编号C01B3/00GK1390775SQ0111872
公开日2003年1月15日 申请日期2001年6月7日 优先权日2001年6月7日
发明者田志坚, 徐云鹏, 徐竹生, 林励吾, 徐金光, 王军威 申请人:中国科学院大连化学物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1