成型单晶体生长设备的制作方法

文档序号:2652阅读:319来源:国知局
专利名称:成型单晶体生长设备的制作方法
本发明属于熔融物晶体生长领域,有关难熔光学透明金属化合物单晶体生长设备,具体地说,是指成型单晶体生长设备。
本发明所述之成型单晶体生长设备用于制取各种难熔光学透明金属化合物的单晶体,例如淡兰宝石、红宝石、氧化钪、钇铝石榴石,这些化合物的熔化温度在2000℃左右,实际上不需要机械加工,广泛应用于仪表制造、化工、冶金和其它工业部门,用于制造化学食品元件、照明和光学仪表、油井钻机配件、超纯合金合成和分析容器、首饰等。
对于成型单晶体的要求是很高的。主要质量指标为几何尺寸精度、电击穿强度、总透光率、单晶坯的结晶学失取向性能和机械强度。例如,管状兰宝石单晶体对规定直径的容许偏差为±0.2毫米,耐电击穿强度为50千伏/毫米,总透光率>92%。
影响单晶体质量的主要因素是“熔融物-单晶体”系统内温度场的特性,这一特性取决于对单晶体进行热屏蔽的隔热板的形状和相互位置。
已有的难熔光学透明金属化合物成型单晶体生长设备有一个密封室,室内有一个带杯状加热器的绝热装置,加热器内有一个坩埚,坩锅能沿杯状加热器轴线方向作往复移动。圆柱状成形有毛细管型通孔,用以将熔融物自坩锅输送到位于成形器上端面上的单晶体结晶区,成形器上端面的形状与生长的单晶体横截面形状相同,位于加热器上缘下面,以及水平放置的平板式隔热板,隔热板上有同轴的孔,可通过生长的单晶体。
隔热板用于在结晶生长过程中以及结晶冷却时沿单晶体长度产生要求的温度梯度。此外,这些隔热板还能使单晶体结晶区内的温度均匀。
平板式隔热板用难熔材料制成,为环状,每个厚0.5至1毫米,10至20个叠成一组。相邻隔热板的间隙为板厚的5倍以上。大约半数的隔热板位于加热器内,其余的隔热板在加热器上方。隔热板与加热器间、隔热板与单晶体间的间隙不应超过隔热板厚度的两倍。利用这些隔热板,在成型单晶体生长设备内可保证20至30℃/厘米的温度梯度。
这种沿单晶体生长部分长度的温度梯度降低了拉晶过程的稳定性,甚至在结晶区内较小的温度变化也会使熔融物柱的高度产生相对于要求值的偏差,结果导致生长的单晶体横截面几何尺寸变化,因而降低晶体产品的合格率。
应该指出,由于在新单晶体生长的每个工艺循环以前,隔热板组装配和安装的误差,实际上使用这种隔热板在单晶体结晶区内和直接在成形器上端面上都不可能得到恒温。而且,靠近加热表面的平板式隔热板的边缘会过热。这会导致隔热板翅曲,而且在制造设备元件的金属(特别是钼)、从加热器表面蒸发的碳,以及单晶体生长工艺过程所需的惰性气体含有的杂质之间会发生有害的物理化学作用。由于这种作用而产生的气体进入熔融物和单晶体,会降低其光学性能。
本发明的主要任务是设计这样一种难熔光学透明金属化合物成型单晶体生长设备,其热屏蔽能使成形器上端面的温度均匀,提高生长的单晶体几何尺寸的精度,从而提高单晶体的合格率。
解决此一任务的方法是难熔光学透明金属化合物成型单晶体生长设备有一密封室,密封室内有一带杯形加热器的绝热装置,加热器内有一坩锅,坩锅可沿杯形加热器轴线往复移动,圆柱形成形器有毛细孔状通孔,用以将熔融物自坩锅内输送至单晶体结晶区,结晶区位于成形器上端上方,上端面形状与生长的单晶体横截面相同,位置低于加热器上缘,平板形隔热板水平安放,板上有同轴孔,可通过生长的单晶体,按照本发明,应增加一个空心圆筒形隔热板,装在平板式隔热板的孔内,与这些孔同心。
空心圆筒的高度最好是成形器上端面与加热器上缘间距离的1至1.6倍,其厚度为0.1至0.15倍,外径为1.5至2.0倍成形器上端面外圆的直径。
这种附加的隔热板用导热材料做成圆筒状,可使成形器上端温度分布情况为最大温差不超过3℃。这样在加热器内生长的单晶体高度方向的温度梯度达到120至160℃/厘米,在生长的单晶体横截面内至结晶前沿不同距离处的温差小于3℃,这样可使单晶体生长的稳定性提高。
利用上述成形单晶体生长设备可得到的成型晶体横截面几何尺寸精度为±0.05毫米,单晶体合格率亦可提高35~40%。
下面通过实施例和附图对本发明进行更详细的说明,附图上是按照本发明绘制的难熔光学透明金属化合物成型单晶体生长设备的总图(纵剖面示意图)。
下面的管状单晶体生长设备为例来说明难熔光学透明金属化合物成型单晶体生长设备。这种设备有一个密封室1,密封室内有一个绝热装置2,用石墨和石墨化织物制成。装置2内有一电阻加热器3,用石墨制成,为杯状,其底部与电源接通(图中未示)。
加热器3壁厚随高度而不同。自加热器上缘4至其三分之一高度左右壁厚相同,其余部分的壁厚增加,在底部的壁厚约为上缘4处壁厚的1.3倍。
在加热器3内,沿其轴线装有坩锅5和成形器6,用以将兰宝石管状单晶体成形。
坩锅5为锥形,用钼制成,其内表面经过抛光。坩锅5的高度均为加热器3高度的三分之一。坩锅5可沿加热器3轴线往复移动。坩锅固定在推杆8上,推杆穿过加热器3底部的孔9。
附图上的坩锅5是在上限位置,在此位置生长单晶体7。此时成形器6位于加热器3中部,其下端面10插入难熔光学透明金属化合物的熔融物11内,在本实施例中是氧化铝熔融物。坩锅5在下限位置(图中未示)时紧靠加热器3底部。在此位置将生长单晶体7用的难熔金属化合物原料装入并熔化。
成形器6装在法兰12上,法兰12位于加热器3中部。为了延长法兰12的使用寿命,其直径不应超过坩锅5直径。成形器6上端面13位置比加热器3的上缘4约低三分之一的加热器高度。在成形器6上端面13上方是单晶体7的结晶区14。法兰12装在拉杆15上,拉杆端部用螺纹连接在环16上,环16部分地盖住了绝热装置2上部的孔17。
成形器6用浸渍难熔金属化合物的熔融物的材料制成,此处是用钼制成,成形器用于将熔融物11自坩锅5经毛细管系统输送到结晶区14,在结晶区生成要求形状的单晶体7。在本实施例中,成形器6有一个环形间隙18状的毛细管系统,用以形成环状单晶体7。单晶体7最大直径比成形器6上端13最大直径小0.1至0.2毫米;单晶体7最小直径比成形器6上端13最小直径大0.05至0.1毫米。
密封室1的上部有孔19,孔内通过推杆20。推杆20端部装有晶种夹持器21,夹持器内有单晶体晶种22。
为了优化单晶体7生长的温度条件,本实施例中的设备有三个平板状隔热板23。平板状隔热板23水平装设在法兰12上方,用以减少结晶区14内的热损耗。隔热板23用钼制成,为平板环状,厚1毫米。其间隙为6毫米。
此外,还有一隔热板24,用以在单晶体7任意横截面四周保持均匀的温度。此隔热板做成空心圆筒状,用钼制造,一端固定在法兰12上,与生长的单晶体7同轴。隔热板24穿过平板式隔热板23上的孔25,孔25也是为通过生长的单晶体7用的。
附图上的实施例中,平板式隔热板23用销钉(图中未示)固定在隔热板24的外表面上。
隔热板24的高度H为成形器6上端面13至加热器3上缘4距离L的1至1.6倍。隔热板24高度H小于此值时,单晶体7内的温度梯度增大,晶体组织显著恶化,表面上沉积钼、碳、铝、氧的化合物,降低单晶体的合格率。隔热板24高度H大于1.6L时,单晶体7的组织无大的变化。
如果生长的单晶体7的横截面为三角形、六角形、梯形等形状,则隔热板24外径D应为成形器6上端13外圆直径d的1.5至2.0倍。相应地隔热板24的横截面形状在最简单的情况下应为环状、三角形、六角形或相应于生长的单晶体7形状的形状。在制取管状单晶体7的情况下,直径d等于成形器6上端13的直径。
隔热板24的厚度a应为单晶体7外径D的0.1至0.15倍。
如隔热板24的直径D小于1.5d或大于2d,而其厚度a小于0.1d或大于0.15d,则不能保证单晶体7外部有均匀的温度。
为了能用目力观察熔融物柱26在结晶区13内的状态并随时调整单晶体7在成形器6上端13水平上的生长条件,在密封室1内装了一个窗口27,并在绝热装置2、加热器3和隔热板24上相应地与此窗口同轴从单晶体7相对两面做了孔28、29、30。
上述难熔光学透明金属化合物成型单晶体生长设备的工作原理如下将推杆8向上推动,使坩锅5固定在加热器3内的上限位置,通过绝热装置2的孔17装入原料,原料为任意形状的氧化铝块。然后拉出推杆8,使坩锅5降到下限位置(图中未示),在加热器3内装上法兰12、成形器6和隔热板23、24等全套组件。
将密封室密封,抽真空,真空度达6.7×103帕,进行退火。为此将加热器3通电,加热器3发出的热能将装有原料的坩锅5和成形器6升温到1300至1500℃,在此温度下保持20至30分钟,将设备除气。加热温度可用高温计控制。然后将密封室1充满惰性气体(通常用氩气),压力为9.81×104至10.79×104帕。原料在坩锅5内熔化,然后将装有熔融物11的坩锅5升至上限位置,先使成形器6的下端面10与熔融物11相接触。再进入工作位置,此时坩锅5内熔融物11表面至成形器6上端13的距离约为20毫米。熔融物11沿间隙18由坩锅5进入结晶区14。
然后将杆20下降,直至晶种22与成形器6的端面13接触,晶种22熔化。此时在晶种22与成形器6上端13之间形成一个高0.2至0.3毫米的熔融物柱25。然后单晶体7就扩张成要求的截面。带有晶种22的杆20以0.5至1毫米/分钟的速度移动,晶体随之扩张。
熔融物柱26在成形器6上端13上扩张时,逐渐形成封闭的环状。然后杆20以1至5毫米/分钟的速度上升,将单晶体7拉出结晶区14。
当晶种22熔化、单晶体7扩张和拉出时,对在结晶区14内的熔融物柱26的状况进行目力观察。当熔融物柱26的形状偏离要求的形状时,应通过改变加热器3的功率而改变其加热温度。
当拉伸单晶体7时,特别明显的是在制取大直径的单晶体或同时生长一组单晶体时,由于隔热板24是用钼制成,而钼具有高导热率,就保证了单晶体7任何一个横截面周围都有均匀的温度。此外,由于单晶体7与隔热板24间的间隙足够大,结晶区14内的温度梯度等于120至160℃/厘米,这就可以得到有精确横截面尺寸的单晶体(全长±0.05毫米)。
当单晶体7达到要求的长度时,可通过将坩锅5下降的方法使单晶体7与熔融物柱26断开。然后通过减少加热器3的功率使单晶体7以20至30℃/分钟的速度冷却至1550至1600℃。
达到1550至1600℃后,将加热器3电源断开,单晶体7自然冷却到环境介质温度(20℃)。
权利要求
1.一种难熔光学透明金属化合物成型单晶体生长设备,它有一个密封室(1),室内有一个带杯形加热器(3)的绝热装置(2),加热器内有一坩锅(5),坩锅可沿杯形加热器轴线往复移动。圆柱形成形器(6)有毛细管型通孔,用以将熔融物(11)自坩锅(5)输送至单晶体(7)的结晶区(14)。结晶区位于成形器(6)上端(13)上方,成形器上端形状与生长的单晶体(7)的横截面相同,位置在加热器(3)上缘(4)下面。还有平板式隔热板(23),水平装设,上面有同轴孔(25),用以通过生长的单晶体(7)。这种设备的特征为它有一个附加的空心圆筒形隔热板(24),装在平板式隔热板(23)的孔(25)内,与孔同心。
2.按权利要求
1所述之成型单晶体生长设备,其特征为空心圆筒高度为成形器(6)上端(13)与加热器(3)上缘(4)之间距离的1至1.6倍,其厚度为0.1至0.15倍,其外径为成形器(6)上端(13)外圆直径的1.5至2.0倍。
专利摘要
一种难熔光学透明金属化合物成型单晶体生长设备,有一密封室,室内有一杯形加热器的绝热装置,加热器由有一坩埚可沿杯形加絷器的轴线往复移动。圆柱形成形器有毛细管式通孔,将熔融物从坩埚输送至单晶体的结晶区内,它位于成形器上端上方。其形状与单晶体(7)横截面形状相同。加热器(3)内有水平的平板式隔热板,有同轴孔用以通过生长的单晶体,孔由还装有一空心圆筒形隔热板。
文档编号C30B15/34GK87108007SQ87108007
公开日1988年6月8日 申请日期1987年11月26日
发明者德米特里·亚科莱维奇·克拉维斯基, 莱夫·马科维奇·萨图洛斯基, 莱奥尼德·彼特罗维奇·埃格罗夫, 伯里斯·本特斯诺维奇·彼茨, 莱奥尼德·萨穆洛维奇·库奥恩, 埃弗姆·阿莱克桑德罗维奇·弗里曼, 维克托·瓦希利维奇·阿维亚诺夫, 阿莱克桑德·沃维奇·阿利少夫 申请人:全苏电热工设备科研设计结构和工艺所导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1