一种纳米ZSM-5分子筛的合成方法与流程

文档序号:12579356阅读:1863来源:国知局
一种纳米ZSM-5分子筛的合成方法与流程

本发明属于无机合成和催化剂制备技术领域,涉及一种纳米分子筛的合成方法,具体涉及一种纳米ZSM-5分子筛的制备方法。



背景技术:

Mobil公司于1972首次报道了采用季铵盐为模板剂合成ZSM-5分子筛的方法(USP3702886)。ZSM-5是一种具有MFI结构的高硅铝比分子筛,其结构中没有笼,而有3维交叉孔道结构,因此表现出独特的择性催化性能,同时ZSM-5有较强的酸性和优良的水热稳定性,在催化裂化、合成对二甲苯、甲醇转化制烯烃和汽油等方面有广泛应用。常规ZSM-5晶体一般为微米级,由于其孔径小(约),不利于分子扩散和传质,孔道内的酸性位难以充分利用,另一方面导致催化剂易积碳失活,影响其寿命。同时,微米级ZSM-5较小的外表面也不利于其在大分子催化反应(如重油裂解)中的应用。而纳米分子筛由于晶粒尺寸小,孔道长度短,缩短了分子的扩散路径,有利于分子扩散和传质,可以提高反应的活性、调节选择性,特别是提高催化剂稳定性。此外,小晶粒的纳米分子筛暴露更多的外表面酸性位,在大分子的催化反应中也有独特的优势。

目前的公开报道中,纳米ZSM-5分子筛的合成方法大致有以下几类:(1)基于传统合成方法通过合成原料的选择及调变晶化条件等控制晶粒大小,如Grieken等发现以正硅酸乙酯和异丙醇铝为硅、铝源,无钠条件下控制原料组成为Al2O3/60SiO2/21.4TPAOH/650H2O可以合成出晶粒大小为50nm的ZSM-5分子筛(Microporous&Mesoporous Materials,2000,39,135);(2)合成体系内加入表面活性剂,如ZSM-5合成中加入非离子表面活性剂吐温-20可以使ZSM-5的晶粒尺寸由约1.2μm减小到约150nm,(张艳侠,高硅铝比的纳米ZSM-5沸石分子筛的合成,大连理工大学硕士论文,2005);(3)限阈空间内晶化/硬模板法,如Schmidt等将合成原料浸渍到多孔炭黑中进行晶化,得到了晶粒尺寸为20-40nm的ZSM-5分子筛(Inorganic Chemistry,2000,39(11):2279-2283)。

专利CN1749162A报道了一种以高分子聚合物为模板剂合成分子筛的方法,根据该方法可以采用季铵盐聚合物(聚季铵盐)或聚季铵盐与季铵盐和有机胺混合物模板剂合成具有微孔-介孔复合孔结构的ZSM-5分子筛。



技术实现要素:

本发明的目的在于提供一种新的采用聚乙烯亚胺或聚乙烯亚胺和四丙基氢氧化铵为模板剂合成纳米ZSM-5分子筛的方法。

本发明提供一种新的采用聚乙烯亚胺或聚乙烯亚胺和四丙基氢氧化铵为模板剂合成纳米ZSM-5分子筛的方法,其步骤依次包括原料的混合、胶化、水热晶化以及过滤洗涤和焙烧。具体步骤如下:

(1)原料的混合:称取一定量的NaOH和NaAlO2置于聚丙烯材质的烧杯内,加入去离子水并在搅拌下使之溶解后,在搅拌下加入聚乙烯亚胺或聚乙烯亚胺和四丙基氢氧化铵的混合物,以上混合物搅拌至得到均匀溶液后再在搅拌下滴入一定量的LUDOX AS-40二氧化硅溶胶。

(2)胶化:上述所得原料的混合物,在搅拌状态下(600转/分)在一定温度下(20-50℃)进行胶化/预晶化,时间为0.5-10小时。

(3)胶化完成后将混合物转移至100ml装有聚四氟乙烯内衬的高压反应釜中进行动态晶化,晶化温度为120-180℃,晶化温度为2-10天。所谓动态晶化是指将反应釜固定于马达带动旋转的支架上,马达转动时反应釜进行上下翻转,釜内的反应物料可借釜的翻转扰动得以混合均匀。

(4)晶化完成后,反应釜置于冷水中快速冷却至室温,过滤并以去离子水洗涤,所得沉淀物在110℃干燥12小时,然后在空气气氛下马弗炉中进行焙烧,焙烧过程为:2℃/分钟升温至350℃,恒温3小时后再以1℃/分钟的升温速率升温至550℃,并恒温12小时,得到所述纳米ZSM-5分子筛。

附图说明

图1为聚乙烯亚胺体系内得到的纳米ZSM-5分子筛的粉末X射线衍射(XRD)图。具体操作见实施例1。

图2为聚乙烯亚胺体系内所得纳米ZSM-5分子筛的扫描电子显微镜(SEM)图。具体操作见实施例1。

图3为聚乙烯亚胺和四丙基氢氧化铵体系内得到的纳米ZSM-5分子筛的粉末X射线衍射(XRD)图。具体操作见实施例7。

图4为聚乙烯亚胺和四丙基氢氧化铵体系内得到的纳米ZSM-5分子筛的扫描电子显微镜(SEM)图。具体操作见实施例7。

具体实施方式

实施例1:NaOH 0.71g,NaAlO20.58g置于250ml聚丙烯材质烧杯内,加去离子水32.5g,于室温搅拌5分钟使NaOH和NaAlO2溶解,向上述溶液中加入29g平均分子量为70000的聚乙烯亚胺(50%水溶液),搅拌10分钟得到均匀溶液,将16g LUDOX AS-40二氧化硅溶胶在搅拌下缓慢滴加到上述溶液中。所得混合物在30℃磁力搅拌下(600转/分钟)放置4h进行胶化/预晶化,然后转移到100ml带有聚四氟乙烯内衬的高压釜中150℃晶化5天(采取的操作方式是将反应釜置于转动马达上,马达转速为80转/分钟)。晶化结束后反应釜置于冷水中快速降至室温后,抽滤,并以1L去离子水进行反复洗涤,所得沉淀在110℃干燥12小时,然后在空气气氛下马弗炉中进行焙烧,焙烧过程为:2℃/分钟升温至350℃,恒温3小时后再以1℃/分钟的升温速率升温至550℃,并恒温12小时,得到所述纳米ZSM-5分子筛。所得样品的XRD图和SEM图分别为图1和图2。

实施例2:NaOH 0.71g,NaAlO20.29g置于250ml聚丙烯材质烧杯内,加去离子水47g,于室温搅拌5分钟使NaOH和NaAlO2溶解,向上述溶液中加入 14.4g平均分子量为1800的聚乙烯亚胺,搅拌10分钟得到均匀溶液,将16g LUDOX AS-40二氧化硅溶胶在搅拌下缓慢滴加到上述溶液中。所得混合物在30℃磁力搅拌下(600转/分钟)放置4h进行胶化/预晶化,然后转移到100ml带有聚四氟乙烯内衬的高压釜中150℃晶化5天(采取的操作方式是将反应釜置于转动马达上,马达转速为60转/分钟)。晶化结束后反应釜置于冷水中快速降至室温后,抽滤,并以1L去离子水进行反复洗涤,所得沉淀在110℃干燥12小时。然后在空气气氛下马弗炉中进行焙烧,焙烧过程为:2℃/分钟升温至350℃,恒温3小时后再以1℃/分钟的升温速率升温至550℃,并恒温12小时,得到所述纳米ZSM-5分子筛;XRD显示,所得样品主要为ZSM-5,含有少量Magadiite杂相。

实施例3:操作同实施例2,物料加入量不变,135℃晶化10天。XRD显示,所得样品为ZSM-5和Y相SiO2(PDF#31-1233)混合相。

实施例4:操作同实施例2,NaOH 0.5g,NaAlO20.72g,去离子水48g,其他物料加入量不变,胶化时间3小时,155℃晶化10天。XRD显示,所得样品为ZSM-5。

实施例5:操作同实施例2,NaOH 0.44g,NaAlO20.72g,去离子水33.5g,平均分子量为70000的聚乙烯亚胺(50%水溶液)29g,其他物料加入量不变。XRD显示,所得样品为ZSM-5。

实施例6:操作同实施例2,NaOH 0.32g,NaAlO20.72g,去离子水48g,平均分子量为10000的聚乙烯亚胺14.5g,其他物料加入量不变。XRD显示,所得样品为ZSM-5。

实施例7:NaOH 0.44g,NaAlO20.72g置于250ml聚丙烯材质烧杯内,加去离子水36g,于室温搅拌5分钟使NaOH和NaAlO2溶解,向上述溶液中加入14.5g平均分子量为10000的聚乙烯亚胺,再滴加20%四丙基氢氧化铵溶液4.5g,搅拌10分钟得到均匀溶液,将20g LUDOX AS-40二氧化硅溶胶在搅拌下缓慢滴加到上述溶液中。所得混合物在25℃磁力搅拌下(600转/分钟)放置3h进行胶化/预晶化,然后转移到100ml带有聚四氟乙烯内衬的高压釜中150℃晶化10天(采取的操作方式是将反应釜置于转动马达上,马达转速为40转/分钟)。晶化结束后反应釜置于冷水中快速降至室温后,抽滤,并以1L去离子水进行反复洗涤,所得沉淀在110℃干燥12小时。然后在空气气氛下马弗炉中进行焙烧,焙烧过程为:2℃/分钟升温至350℃,恒温6小时后再以1℃/分钟的升温速率升温至550℃,并恒温20小时,得到所述纳米ZSM-5分子筛;所得样品的XRD图和SEM图分别为图3和图4。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1