一种低温共烧陶瓷材料及其制备方法与流程

文档序号:11123145
一种低温共烧陶瓷材料及其制备方法与制造工艺

本发明涉及电子器件及LTCC(低温共烧陶瓷)基板的材料,尤其涉及一种CBS(CaO-B2O3-SiO2系)微晶玻璃陶瓷系LTCC材料及其制备方法。



背景技术:

低温共烧陶瓷技术(Low Temperature Co-fired Ceramic,LTCC)是一种先进的无源集成及混合电路封装技术,已成为未来电子元件集成化的首选方式。在这种背景下,主要介质材料的低温共烧也成为一种重要的发展趋势。作为最有前途的LTCC材料之一,CBS系可析晶玻璃以硅灰石(β-CaSiO3)为主晶相,具备优异的介电性能与热性能,并同贵金属Ag、Au可在较低温度(<900℃)下烧结。

目前,国内主要在CBS体系基础上进行掺杂,但该体系的掺杂研究也仅处于起步阶段,到目前仍未研究出具有低介电常数(6.0±0.3范围内)、低损耗(小于0.001)且综合性能良好(抗弯强度>170MPa)的CBS系LTCC材料。

以上背景技术内容的公开仅用于辅助理解本发明的构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。



技术实现要素:

为解决上述技术问题,本发明提出一种低介电常数、低损耗和综合性能良好的低温共烧陶瓷材料及其制备方法。

为达到上述目的,本发明采用以下技术方案:

本发明公开了一种低温共烧陶瓷材料,由CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2组成,其中各个成分的质量百分比分别为:CaO为35%~50%、B2O3为5%~15%、SiO2为40%~55%、纳米Al2O3为1%~5%、MgO为1%~5%、纳米ZrO2为1%~5%。

本发明还公开了一种低温共烧陶瓷材料的制备方法,包括以下步骤:

S1:将原料CaCO3、B2O3、SiO2、Al2O3、MgO、ZrO2按照上述配方称得化学纯的CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2,将混合粉料经球磨混合,球磨介质为锆球,混合均匀后,过60目筛;

S2:将步骤S1中过筛后得到的混合粉料进行高温烧结,保温预定时间后,使混合粉料完全熔融和均匀化得到熔融物;

S3:将所述熔融物淬入去离子水,得到透明的碎玻璃体;

S4:将所述碎玻璃体进行粉碎,得到细玻璃体;

S5:将所述细玻璃体进行湿式球磨,再烘干后研磨,过120目筛,得到玻璃粉末;

S6:将所述玻璃粉末,外加造粒液进行造粒,过筛,取细粉压制成生坯;

S7:将所述生坯进行排胶;

S8:将排胶后的坯件进行烧结得到所述低温共烧陶瓷材料。

优选地,纳米Al2O3的平均粒径为60~100nm,纳米ZrO2的平均粒径为80~100nm。

优选地,步骤S1中球磨混合步骤是在振动球磨机中进行干式混合4~8h,且球磨混合步骤中料:球的重量比为1:(2~4)。

优选地,步骤S2中是在1350~1500℃的条件下高温烧结,保温时间为1~2.5h。

优选地,步骤S5中湿式球磨步骤中的料:球:水的重量比为1:4:1.5,球磨时间为6~10h,球磨机的转速为200~250rpm。

优选地,步骤S5中烘干步骤在70~100℃条件下进行,得到的玻璃粉末的平均粒径为0.5~2.0μm。

优选地,步骤S6具体包括:在所述玻璃粉末中加入质量百分比为10%的聚乙烯醇水溶液进行造粒,依次过60目和200目筛,取中间粉末压制成生坯,其中压制成型的压强为220~260MPa,保压时间为10~20s。

优选地,步骤S7具体包括:将所述生坯放入马弗炉中,以0.5~1℃/min的速率升温至450~500℃,保温4~8h,进行有机物的排除;步骤S8具体包括:将排胶后的坯件放入马弗炉中,以5~8℃/min的升温速率升温至840~880℃烧结,保温15~30min后,随炉自然冷却至室温。

本发明另外还公开了一种低温共烧陶瓷材料,是根据上述的制备方法制得的低温共烧陶瓷材料。

与现有技术相比,本发明的有益效果在于:本发明通过低硼配方(B以B2O3引入)和氧化物掺杂(纳米Al2O3、MgO和纳米ZrO2)的成分设计与工艺控制(干式混合和玻璃研磨)实现低温致密烧结,提出一种低介电常数、低损耗(多频率点介电常数、损耗均稳定)和综合性能良好的低温共烧陶瓷材料及其制备方法。通过本发明的制备方法烧结得到的低温共烧陶瓷材料由大量微细晶粒(CaSiO3)和少量玻璃组成,是一种典型的微晶玻璃陶瓷;该低温共烧陶瓷材料具有低的介电常数(ε=5.9~6.3@10MHZ~40GHZ)和超低损耗(tanδ=0.0004~0.0006@10MHZ~40GHZ),且多频率段的介电常数与损耗稳定,抗弯强度大于190MPa,综合性能良好,可广泛应用在滤波器和基板中。

附图说明

图1是本发明实施例1-1制备的低温共烧陶瓷材料样品的XRD图谱;

图2是本发明实施例1-1制备的低温共烧陶瓷材料样品截面的微观形貌图;

图3是本发明实施例1-1制备的低温共烧陶瓷材料样品多频率段的介电常数与损耗。

具体实施方式

下面对照附图并结合优选的实施方式对本发明作进一步说明。

在一种实施例中,一种低温共烧陶瓷材料,由CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2组成,其中各个成分的质量百分比分别为:CaO为35%~50%、B2O3为5%~15%、SiO2为40%~55%、纳米Al2O3为1%~5%、MgO为1%~5%、纳米ZrO2为1%~5%。

一种低温共烧陶瓷材料的制备方法,包括以下步骤:

S1:将原料CaCO3、B2O3、SiO2、Al2O3、MgO、ZrO2按照配方称得化学纯的CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2,将混合粉料经球磨混合,球磨介质为锆球,混合均匀后,过60目筛;

S2:将步骤S1中过筛后得到的混合粉料进行高温烧结,保温预定时间后,使混合粉料完全熔融和均匀化得到熔融物;

S3:将所述熔融物淬入去离子水,得到透明的碎玻璃体;

S4:将所述碎玻璃体进行粉碎,得到细玻璃体;

S5:将所述细玻璃体进行湿式球磨,再烘干后研磨,过120目筛,得到玻璃粉末;

S6:将所述玻璃粉末,外加造粒液进行造粒,过筛,取细粉压制成生坯;

S7:将所述生坯进行排胶;

S8:将排胶后的坯件进行烧结得到所述低温共烧陶瓷材料。

下列结合具体实施例和对比例对本发明的低温共烧陶瓷材料的制备方法进行进一步说明,本发明的低温共烧陶瓷材料的制备方法具体包括以下步骤:

(1)将原料CaCO3、B2O3、SiO2、Al2O3、MgO、ZrO2按照表1中的配方称得化学纯的CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2,将混合粉料经球磨混合,球磨介质为锆球,混合均匀后,过60目筛;

(2)将步骤(1)中过筛的混合粉料倒入铂金坩埚中,然后在1350~1500℃下保温1~2.5h,使其完全熔融和均匀化;

(3)将步骤(2)坩埚中的熔融物淬入去离子水,得到透明的碎玻璃体;

(4)将碎玻璃体经过粉碎机进行破碎,得到较细的玻璃体;

(5)将步骤(4)中的较细的玻璃体进行湿式球磨,在70~100℃下烘干后研磨,过120目筛,得到平均粒径为0.5~2.0μm的玻璃粉末;

(6)在步骤(5)得到的玻璃粉末中加入质量百分比为10%的PVA溶液进行造粒,依次过60目和200目筛,取中间粉料(即过了60目筛,而没有过200目筛的粉料,也即小于60目筛孔径且大于200目筛孔径的粉料)压制成生坯;

(7)将步骤(6)中的生坯放入马弗炉中,以1℃/min的速率升温至450℃,保温4h,进行有机物的排除;

(8)将步骤(7)中排胶后的坯件放入马弗炉中,以5℃/min的速率升温至840~880℃,保温15~30min,随炉自然冷却至室温。

其中:

步骤(1)中的纳米Al2O3的平均粒径为60~100nm,纳米ZrO2的平均粒径为80~100nm;

步骤(1)中球磨混合步骤是在振动球磨机中进行干式混合4~8h,且球磨混合步骤中料:球的重量比为1:(2~4);进一步地,干式混合6h,料:球的重量比为1:4;

步骤(5)中湿式球磨步骤中的料:球:水的重量比为1:4:1.5,球磨时间为6~10h,球磨机的转速为200~250rpm,进一步地,球磨时间为8h,球磨机的转速为200rpm;

步骤(6)中压制成型的压强为220~260MPa,保压时间为10~20s,进一步地,压强为260MPa,保压时间为20s;

步骤(6)中压制成型的生坯直径为14mm,厚度为6~7mm的圆柱状坯件。

表1各个实施例和各个对比例的化学组成

通过上述参数制备得到各个实施例以及各个对比例的低温共烧陶瓷材料,其中各个实施例以及各个对比例的低温共烧陶瓷材料的烧结性能如下表2所示。

表2各个实施例及各个对比例的低温共烧陶瓷材料的烧结性能

通过将实施例与对比例制备得到的低温共烧陶瓷材料进行对比,本发明实施例中的损耗tanδ明显小于对比例,且抗弯强度明显大于对比例;通过上述实施例可实现低温快速(850℃~870℃,15min)致密烧结,制备的CBS微晶玻璃陶瓷系材料具有低的介电常数(ε=5.9~6.3@12GHZ)、超低损耗(tanδ=0.0004~0.0006@12GHZ)和高的抗弯强度(大于190MPa)。其中:如图1所示,是本发明实施例1-1的低温共烧陶瓷材料样品的XRD图谱,从图中可以看出通过低硼配方制备出来的微晶玻璃陶瓷品相为较纯的CaSiO3相;如图2所示,是本发明实施例1-1的低温共烧陶瓷材料样品的微观形貌图;如图3所示,是本发明实施例1-1的低温共烧陶瓷材料样品多频率段的介电常数与损耗,从图中可以看出通过实施例1-1制备得到的低温共烧陶瓷材料的节点常数与损耗均稳定,分别为5.9~6.3、0.0004~0.0006@10MHZ~40GHZ。

本发明优选实施例的制备方法中,以Ca-B-Si为基础,纳米Al2O3、MgO、纳米ZrO2为掺杂(无掺杂的话,无法目标温度烧结,性能更无法表征),低温烧结下制得优异的物理机械性能和介电性能的低温共烧陶瓷材料,其中Mg作为碱土金属氧化物,防止CBS配方的微晶玻璃分相,纳米Al2O3和纳米ZrO2的引入使得干式混合更均匀,同时Al2O3也起到防止分相的作用,ZrO2作为形核剂。通过本发明优选实施例的制备方法制得的低温共烧陶瓷材料具有低的介电常数(ε=5.9~6.3@10MHZ~40GHZ)、超低损耗(tanδ=0.0004~0.0006@10MHZ~40GHZ)、高抗弯强度(>190MPa),且烧结温度较低(840℃~880℃)。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1