微波烧结制备0.5NBT‑0.5BCTZ‑xwt%MgO高储能密度陶瓷材料及方法与流程

文档序号:11123408阅读:485来源:国知局
微波烧结制备0.5NBT‑0.5BCTZ‑xwt%MgO高储能密度陶瓷材料及方法与制造工艺

本发明属于电子陶瓷领域,具体涉及一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料及方法。



背景技术:

随着脉冲功率技术的发展,对脉冲功率设备中储能元件的储能密度提出了更高的要求。与其它储能装置相比,电容器具有放电功率大、利用效率高、储能密度上升空间大等优点,正逐渐成为脉冲功率设备中的储能元件而被广泛应用于电磁轨道炮武器、全电动军舰、战斗用车辆和混合动力汽车等国防及现代工业领域。但现有的脉冲电容器存在许多不利因素,如储能密度低、易发生爆炸、放电电流小、放电寿命短等,难以满足新技术进一步发展的需求。因此,开发出具有高储能密度的电介质材料已成为提高电容器储能特性的关键。陶瓷电容器具有使用温度范围宽、寿命长、性能可靠等优点而被广泛使用。其中铁电陶瓷材料具有介电常数大,非线性效应强等优点,单位体积铁电陶瓷材料的储能密度J可由下式计算:

J=∫EdP

其中P为极化强度,E为其击穿强度。

铁电陶瓷材料的储能密度取决于击穿强度的大小(Eb),剩余极化强度(Pr)和最大极化强度(Pm)之间的差值以及电滞回线的闭合面积。研究发现MgO的击穿强度高达1000kV/cm,将其添加到陶瓷中,可有效提高基体材料的击穿强度,但MgO可与基体材料发生反应,从而影响其他性能,如极化强度。



技术实现要素:

本发明的目的在于克服现有技术中存在的缺陷,提供一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料及方法,抑制MgO与基体材料发生反应,提高制得的陶瓷材料储能密度。

为实现上述目的,本发明方法采用如下的技术方案:

包括以下步骤:

首先将BCTZ陶瓷粉体、NBT陶瓷粉体和氧化镁粉体按照化学式0.5NBT-0.5BCTZ-xwt%MgO的化学计量比配料,混合均匀并经造粒和成型后,采用微波烧结在900~1100℃下保温4~20min烧结成瓷,得到高储能密度陶瓷材料;其中,x取值范围为3~7。

进一步地,所述的混合均匀是通过球磨实现的。

进一步地,所述的球磨是以去离子水作为球磨介质。

进一步地,所述的球磨的时间为6~8h。

进一步地,混合均匀后在70℃~90℃下烘干,然后进行造粒。

进一步地,BCTZ的化学式为Ba0.85Ca0.15Zr0.1Ti0.9O3,BCTZ陶瓷粉体通过以下步骤制得:按照BCTZ的化学计量比将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀,然后在1250~1300℃下保温2~4h合成BCTZ陶瓷粉体。

进一步地,NBT的化学式为Na0.5Bi0.5TiO3,NBT陶瓷粉体通过以下步骤制得:按照NBT的化学计量比将将碳酸钠、氧化铋和二氧化钛混合均匀,然后在800~850℃下保温4~6h合成NBT陶瓷粉体。

进一步地,采用微波烧结在1000℃下保温5~10min烧结成瓷。

本发明材料的技术方案是:其化学式为0.5NBT-0.5BCTZ-xwt%MgO,其中,x取值范围为3~7。

与现有技术相比,本发明具有以下有益的技术效果:

本发明通过微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO陶瓷,具有加热速度快、均匀加热等优点,同时采用较低的烧结温度和较短的烧结时间,可以有效抑制MgO与基体材料发生反应,也可以优化材料的微观结构,提高其致密度,从而有效提高材料的击穿强度,制得高储能密度陶瓷材料。在烧结过程中,由于烧结温度低、烧结时间短,从而降低MgO在材料内部的扩散速率,使得过量的MgO在晶界处积累,可以有效抑制晶粒生长,细化陶瓷材料的晶粒,使得陶瓷材料具有均匀的微观形貌。快速烧结还可以抑制MgO与基体材料之间发生化学反应,使得晶粒保持原有的高极化强度特性。其次MgO的击穿强度高达1000kV/cm,MgO在晶界处聚集还可以有效降低陶瓷材料的介电损耗,大幅度提高其晶界电阻。因此,本发明采用微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO陶瓷以提高其击穿强度,保持其原有的高极化强度的特性,从而获得具有高储能密度的陶瓷材料。

本发明选取具有高极化强度的0.5NBT-0.5BCTZ弛豫铁电体作为基体材料,向其中添加MgO以提高其击穿强度,本发明采用微波烧结制备的0.5NBT-0.5BCTZ-xwt%MgO陶瓷材料的储能密度高达1.37J/cm3。本发明的制备方法设备简单、操作简单、成本低、烧结温度低、烧结时间短、可大规模生产,为大规模、低成本制备高储能密度陶瓷材料提供了基础。

【附图说明】

图1是样品的XRD图谱。

图2是实施例1添加3wt%MgO的陶瓷材料的电滞回线图。

图3是实施例4添加5wt%MgO的陶瓷材料的电滞回线图。

图4是实施例7添加7wt%MgO的陶瓷材料的电滞回线图。

【具体实施方式】

下面结合附图和实施例对本发明做进一步说明。

本发明微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料,化学式为0.5NBT-0.5BCTZ-xwt%MgO,其中,x取值范围为3~7,是指MgO的添加量是0.5NBT-0.5BCTZ总质量的3~7%。

实施例1

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-3wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,采用微波烧结在1000℃下保温5min烧结成瓷。

实施例2

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1250℃下保温3h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在850℃下保温5h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-3.5wt%MgO配料,用去离子水作为球磨介质球磨7h混合均匀,然后在85℃下烘干,经造粒、成型后,采用微波烧结在900℃下保温7min烧结成瓷。

实施例3

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1260℃下保温4h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在830℃下保温5.5h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-4wt%MgO配料,用去离子水作为球磨介质球磨8h混合均匀,然后在90℃下烘干,经造粒、成型后,采用微波烧结在950℃下保温10min烧结成瓷。

实施例4

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1280℃下保温3.6h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在820℃下保温4.5h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-5wt%MgO配料,用去离子水作为球磨介质球磨7.5h混合均匀,然后在75℃下烘干,经造粒、成型后,采用微波烧结在1100℃下保温4min烧结成瓷。

实施例5

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1290℃下保温2.8h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在810℃下保温6h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-5.5wt%MgO配料,用去离子水作为球磨介质球磨6.5h混合均匀,然后在70℃下烘干,经造粒、成型后,采用微波烧结在1050℃下保温12min烧结成瓷。

实施例6

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1300℃下保温2.5h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在800℃下保温4.8h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-6wt%MgO配料,用去离子水作为球磨介质球磨6.2h混合均匀,然后在72℃下烘干,经造粒、成型后,采用微波烧结在980℃下保温14min烧结成瓷。

实施例7

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1295℃下保温3.5h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在805℃下保温5.4h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-7wt%MgO配料,用去离子水作为球磨介质球磨7.4h混合均匀,然后在78℃下烘干,经造粒、成型后,采用微波烧结在970℃下保温16min烧结成瓷。

实施例8

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1285℃下保温2.1h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在815℃下保温4.4h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-6.5wt%MgO配料,用去离子水作为球磨介质球磨6.8h混合均匀,然后在84℃下烘干,经造粒、成型后,采用微波烧结在960℃下保温20min烧结成瓷。

实施例9

一种微波烧结制备0.5NBT-0.5BCTZ-xwt%MgO高储能密度陶瓷材料的方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1275℃下保温2.4h合成BCTZ陶瓷粉体,按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在835℃下保温5.8h合成NBT陶瓷粉体。将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.5NBT-0.5BCTZ-4.5wt%MgO配料,用去离子水作为球磨介质球磨7.6h混合均匀,然后在86℃下烘干,经造粒、成型后,采用微波烧结在920℃下保温18min烧结成瓷。

图1为本发明制备样品的XRD图谱,从图中可以看出所有样品均为钙钛矿晶体结构,添加MgO的样品的第二相只有MgO,说明MgO未与基体发生反应。

参见图2,为实施例1中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.16J/cm3,储能效率可达63.05%。图3为实施例4中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.37J/cm3,储能效率可达61.43%。图4为实施例7中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.29J/cm3,储能效率可达60.45%。

本发明以碳酸钡,碳酸钙,碳酸钠,氧化铋,二氧化钛,氧化锆和氧化镁为原料,分别合成NBT和BCTZ陶瓷粉体,采用微波烧结法,经配料、球磨,干燥、造粒、成型、微波烧结等工艺制备0.5Na0.5Bi0.5TiO3(NBT)-0.5Ba0.85-Ca0.15Zr0.1Ti0.9O3(BCTZ)-xwt%MgO(x=3-7)陶瓷材料。本发明的制备方法设备简单、操作简单、成本低、烧结温度低、烧结时间短、可大规模生产,为大规模、低成本制备高储能密度陶瓷材料提供了基础。

本发明采用微波烧结法制备0.5NBT-0.5BCTZ-xwt%MgO陶瓷材料,以提高其击穿强度,从而制得高储能密度陶瓷材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1