一种纤维增强三元层状陶瓷零件的表面氮化方法与流程

文档序号:12395232阅读:237来源:国知局
本发明涉及一种氮化方法,尤其是一种纤维增强三元层状陶瓷零件的氮化方法。
背景技术
:航空发动机传动系统零件多为钢制材料,受材质属性限制,其最高服役温度大约在430℃左右。随着航空发动机性能的不断提升,钢制零件的环境使用温度也不断提高,原有钢制齿轮、轴承等零件已不能满足使用要求。Si3N4、ZrO2、塞隆(SiAlON)等陶瓷材料在高温环境下表现出良好的力学性能,可以满足在高温环境下服役的要求,但这类材料常温下硬度高且脆性大,无法进行铣削等机械加工,即便制造出此类陶瓷零件,由于其模量高、耐冲击性极差,无法满足航空发动机传动系统零件高可靠性的实际工程要求。技术实现要素:本发明的目的是提供一种纤维增强三元层状陶瓷零件的表面氮化强化方法,以三元层状MAX相为基体,以纤维为增强相,经过热压烧结后,制备出陶瓷批体,待机械加工成实际零件后,进行高温氮化强化,改善三元层状陶瓷材料相对较低的硬度和高温蠕变抗力,满足陶瓷零件在室温下兼具一定的可机械加工性能的同时,在高温环境下具有良好力学性能,通过氮化处理,在陶瓷零件表面生成致密的高模量氮化物陶瓷膜层,改善零件的耐蚀性和耐磨性。本发明中以Ti3AlC2为代表的Mn+1AXn相陶瓷基体,包括Ti4AlC3、Ti3SiC2、Ti3AlC2、Ti2AlC、Ti2AlN、Ti2SnC、Ti4AlN3、Ta4AlC3、Nb2AlC、Cr2AlC、Ta2AlC等。本发明的具体技术方案是,所述的纤维增强三元层状陶瓷零件制备方法包括以下步骤:1、MAX相块体陶瓷材料经过球磨后制备成MAX相陶瓷粉体,取30目以上的粉体备用;2、在所述的粉末中加入与MAX相材料粉末体积分数比为(0.5~30):(70~99.5)的纤维,所述的纤维为碳纤维、SiC纤维、SiO2纤维、BN纤维、AlBO4中的一种或多种,纤维可以是长纤维,也可以是短纤维;3、MAX相材料粉末和纤维混合后,进行烧结,烧结温度在1100~1600℃,烧结压力为20~40MPa,烧结时间为1~4h,形成毛坯;4、将毛坯加工成零件;5、对零件进行表面氮化,所述的氮化方法包括以下步骤:a.将零件置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始氮化;b.氮化过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;c.保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、氮气和氩气的混合气或氮气和氢气的混合气中的一种;氮源气体的混合比见下表所示:氮源气体组成N2N2:H2N2:ArNH3体积比—1:(2~8)1:(3~10)—d.继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行离子氮化,氮化时间4~100h,保温结束后,以30~150℃/h的冷却速度,炉冷至300~500℃;e.关闭电源,随炉冷至150℃打开炉门,取出零件,氮化完毕;6、将零件空冷至室温后,进行最终精密加工。本发明通过在MAX相三元层状陶瓷材料中引入纤维增强相,经过烧结后,制得的纤维增强三元层状陶瓷复合材料,不仅在室温下具有良好的机械加工性能,耐温性良好,材料通过纤维得到进一步增强、增韧,加工后的零件经过离子氮化后,在表面原位生成一层致密的高模量氮化物陶瓷膜层,耐蚀性和耐磨性均大幅提升。有效氮化层的厚度可达0.05~0.25mm,形成心部具有一定韧性、工作表面具有一定硬度的纤维增强可加工三元层状陶瓷复合材料零件,这种纤维增强三元层状陶瓷复合材料零件氮化后的组织结构类似钢制零件氮化后的组织结构,具有耐冲击、加工性好的特点。通过本发明制造的零件,如齿轮、轴承等,可以用于制造服役于450℃以上高温环境的零件,具有加工工艺好、耐冲击等优点。具体实施方式一种纤维增强三元层状陶瓷零件的氮化方法,所述的方法包括以下步骤:1、MAX相块体陶瓷材料经过球磨后制备成MAX相陶瓷粉体,取30目以上的粉体备用;2、在所述的粉末中加入与MAX相材料粉末体积分数比为(0.5~30):(70~99.5)的纤维,所述的纤维为碳纤维、SiC纤维、SiO2纤维、BN纤维、AlBO4中的一种或多种,纤维可以是长纤维,也可以是短纤维;3、MAX相材料粉末和纤维混合后,进行烧结,烧结温度在1100~1600℃,烧结压力为20~40MPa,烧结时间为1~4h,形成毛坯;4、将毛坯加工成零件;5、对零件进行表面氮化,所述的氮化方法包括以下步骤:a.将零件置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始氮化;b.氮化过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;c.保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、氮气和氩气的混合气或氮气和氢气的混合气中的一种;氮源气体的混合比见下表所示:氮源气体组成N2N2:H2N2:ArNH3体积比—1:(2~8)1:(3~10)—d.继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行离子氮化,氮化时间4~100h,保温结束后,以30~150℃/h的冷却速度,炉冷至300~500℃;e.关闭电源,随炉冷至150℃打开炉门,取出零件,氮化完毕;6、将零件空冷至室温后,进行最终精密加工。实施例某航空器上使用的齿轮,工作环境最高可达450℃,其加工方法包括以下步骤:1、烧结的Ti3AlC2块体陶瓷材料,经过球磨后制备成Ti3AlC2陶瓷粉体,取100目以上的粉体备用;2、在所述的粉末中加入与其体积分数比为5:95的长度为1~5mm的SiC短纤维;3、Ti3AlC2材料粉末和纤维混合后,进行烧结,烧结温度在1200℃,烧结压力为30MPa,烧结时间为2h,形成毛坯;4、将毛坯加工成零件;5、对零件进行表面氮化,所述的氮化方法包括以下步骤:a.将零件置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始氮化;b.氮化过程中,氮化炉的升温速率为2℃/min,升温至400℃时保温1h;c.保温结束后,通入氮源气体,所述的氮源气体为氮气;d.继续以1.5℃/min的升温速率升温至900℃范围内进行离子氮化,氮化时间10h,氮化结束后,以1.5℃/h的冷却速度,炉冷至400℃;e.关闭电源,随炉冷至150℃以下打开炉门,取出零件,氮化完毕;6、将零件空冷至室温后,进行最终精密加工。加工后的齿轮,室温100g载荷作用下,显微硬度在HV900以上,在450℃时力学性能稳定,达到使用要求。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1