基于微波还原剥离氧化石墨烯或其复合物的高效催化宏量制备方法与流程

文档序号:11092566阅读:2663来源:国知局
基于微波还原剥离氧化石墨烯或其复合物的高效催化宏量制备方法与制造工艺

本发明属于石墨烯制备技术领域,具体涉及一种基于微波还原剥离氧化石墨烯(GO)或其复合物的高效催化宏量制备的方法。



背景技术:

石墨烯,是指由10层以下sp2碳原子构成的二维原子晶体材料,它有着优异的电学、热学和力学等性能,具有独一无二的二维大分子结构;这使得石墨烯在太阳能电池、发光二极管、ITO和FTO透明电极的选择、甲醇燃料电池、仿生氧化催化剂,超级电容器等方面具有广泛的应用前景。

宏观来讲,合成石墨烯主要分为自下而上和自上而下两大类合成思路,自下而上法主要包含外延生长法和化学气相沉积法(CVD),自上而下法主要包括超声法剥离石墨,石墨氧化还原法等湿化学法。这两大类思路各有利弊,首先,自下而上的方法可以制备高性能的石墨烯,用于光电子器件领域,但是这些方法对设备和条件的要求高,从成本以及大规模生产角度来说并没有很大优势。而虽然自上而下的方法生产的石墨烯结构完整度不高;但是有缺陷的石墨烯可功能化潜力大,制造设备简单,相应的成本也较低。

在2010年左右,朱彦武等人提出了应用微波技术还原氧化石墨烯的方法,由此获得的微波还原氧化石墨烯MEGO具有很高的比表面积(463 m2/g),以MEGO作为电极制备的超级电容器的电容值可以高达191 F/g。相比较普通水热等方法合成的石墨烯,微波辅助还原剥离的方法更加方便,剥离后的产品具有更大的比表面积、更疏松的表面结构。

而普通的未用催化体系的微波辐照氧化石墨的反应存在时间偏长,在空气氛围中剥离效果不理想等问题,基于此的高效催化宏量制备方法更是尚未见诸报道。



技术实现要素:

本发明所要解决的技术问题是:提供一种高效催化宏量制备的微波还原剥离氧化石墨烯(GO)及其复合物的方法。

本发明的目的是通过以下技术方案实现的:

一、制备氧化石墨烯前驱体:

取普通石墨粉,应用改进Hummers法,即取1~5 g(300目左右,如为250-350目)后加入0.5~5 g的硝酸钠粉末和30~120 ml浓硫酸,在冷水浴下缓慢加入1~9 g高锰酸钾,在40~45 ℃之间水浴控温搅拌反应1~4 h,随后加入10~100 ml的水,继续反应10~50 min,再加入100 ml以上的大量水,反应5~20 min,加入适量过氧化氢至溶液变为金黄色;

二、纯化、除杂:

将上述溶液静置沉降后弃去上层清液,加入5%~20%的盐酸适量,分装入离心管中高速(例如8000~12000 r/min)离心,弃去上层清液,随后用去离子水洗至中性,将水洗后产物收集;加入适量的去离子水,超声分散,然后低速(例如2000~5000 r/min)离心,弃去未完全反应的原料,将离心浓缩后的氧化石墨烯产物冻干;

三、制备鳞片石墨粉催化下氧化石墨烯及其复合物的微波还原剥离体系:

取步骤二中制备的氧化石墨烯冻干产物投入烧杯中,在其表面投撒痕量(如1~10 毫克)的鳞片石墨粉,置入微波炉中微波辐照,在鳞片石墨的催化下反应瞬间启动,伴随强烈等离子体弧光,产生局部超高能环境,几秒钟反应即可完成,即获得大量微波辅助还原剥离的石墨烯絮状物(MEGO);

另取氧化石墨烯复合物,如聚苯胺-氧化石墨烯复合体,氧化石墨烯-类普鲁士蓝复合体,5 g以内,在其表面投撒痕量(如1~10 毫克)的鳞片石墨粉,置入微波炉中微波辐照(微波功率可为500~1000 W),在鳞片石墨的催化下反应迅速启动还原剥离,反应持续数秒钟,即获得大量微波辅助还原剥离的复合石墨烯产物。

本发明中,投撒的鳞片石墨粉,颗粒目数大于80目(例如80~120 目)均有效,催化膨化过程中产生了等离子体。

本发明中,在微波炉中微波辐照,微波功率可为500~1000 W。

本发明中,投撒的痕量鳞片石墨粉,重量为1~10 mg均有效。

本发明中,所述微波辐照时间为1~15 s。

本发明中,反应在空气氛围中进行。

本发明中,制备氧化石墨烯复合物的微波还原剥离体系过程中,取的复合物质量5 g以内均有效。

图1-3给出了本发明所设计的高效催化方法在制备过程中的原料,前驱体和最终产品的照片。

本发明提出了鳞片石墨粉在微波诱导下产生等离子体并以此催化氧化石墨烯剥离还原的设计思路:考虑到空气中的氧气对微波这类长波长的波有很好的吸收,因此可以淬灭诸如铝,铜,镍粉在微波下产生等离子体的过程,但是鳞片石墨粉不受氧气存在的影响,在空气氛围下仍然可以经过诱导产生局部等离子高能环境;基于我们之前对此的研究,提出了本发明方法,即将痕量鳞片石墨粉投撒在GO表面,利用微波诱导产生的局部等离子体高能环境催化驱动GO高效率的进行微波剥离还原,由于等离子体的能量巨大,因而可以迅速还原大量GO,又可以通过痕量的廉价鳞片石墨粉经功率仅为500~1000 W的微波诱导产生,因此具有规模化生产的工业应用价值。

本发明具有以下几个优点:

1、在氧化石墨烯制备过程中应用高速离心除杂离子,低速离心除原料残渣,可以获得含杂质极少的纯氧化石墨烯(GO);

2、在微波反应体系中引入痕量鳞片石墨粉,利用其诱导产生的等离子体制造局部高能环境快速还原并剥离GO;

3、鳞片石墨粉作为反应引发物廉价易得,痕量即可引发比自身质量多百倍千倍的大量GO或者GO复合物的微波还原剥离反应高效快速地进行,具有工业化规模化生产的价值;

4、通过仅仅500~1000 W的低功率微波即可实现GO以及GO复合物地良好剥离,石墨烯层数接近单层。

附图说明

图1为改进Hummers法制备的GO分散液(离心清洗以后)。

图2为图1中分散液浓缩冻干的产物。

图3为图2中产品经过鳞片石墨粉催化在500~1000 W微波下剥离还原得到的石墨烯絮状物MEGO。

图4为催化剥离过程中等离子体产生的强光。

图5、图6为经过鳞片石墨粉催化剥离获得的MEGO的扫描电镜图片。

图7为经过鳞片石墨粉催化的微波剥离MEGO(上面的曲线)与同微波功率下传统微波处理获得的石墨烯絮状物(下面的曲线)的拉曼数据比较。

具体实施方式

下面结合实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。实施例主要包括不同粒度的鳞片石墨粉对经改进Hummers法以及离心洗涤纯化冻干的GO进行微波催化还原以及剥离。

实施例1:

取普通石墨粉应用改进Hummers法,即取少许(300目左右)后加入0.5~5 g的硝酸钠粉末和30~120 ml浓硫酸,在冷水浴下缓慢加入1~9 g高锰酸钾,在40~45 ℃之间水浴控温搅拌反应1~4 h,随后加入少量的水,继续反应10~50 min,再加入100 ml以上的大量水,反应5~20 min,加入适量过氧化氢至溶液变为金黄色。

将溶液静置沉降后弃去上层清液,加入5%~20%的盐酸适量,分装入离心管中高速离心(10000~15000 r/min)弃去上层清液,随后离心水洗至中性,将水洗后产物收集,加入适量的去离子水超声分散,之后低转速离心弃去未完全反应的原料,产物离心浓缩后冻干。

取上述氧化石墨烯前驱体投入烧杯中,在其表面投撒痕量(6.52 mg)的鳞片石墨粉(80 目),置入微波炉中微波辐照(500~1000 W),在鳞片石墨的催化下反应在开启微波后3 s左右启动,伴随强烈等离子体弧光,12 s左右反应完成,获得大量微波辅助还原剥离的石墨烯絮状物(MEGO)。拉曼和高分辨透射电镜表征结果证明产物为高质量石墨烯。

实施例2:

按上述实施例1中的方法获得冻干的GO产品,投入烧杯中,在其表面投撒痕量(3.11 mg)的鳞片石墨粉(200目),置入微波炉中微波辐照(500~1000 W),在鳞片石墨的催化下反应在开启微波后2 s左右启动,伴随强烈等离子体弧光,9 s左右反应完成,获得大量微波辅助还原剥离的石墨烯絮状物(MEGO)。拉曼和高分辨透射电镜表征结果证明产物为高质量石墨烯。

实施例3:

按上述实施例1中的方法获得冻干的GO产品,投入烧杯中,在其表面投撒痕量(1.27 mg)的鳞片石墨粉(325目),置入微波炉中微波辐照(500~1000 W),在鳞片石墨的催化下反应在开启微波后瞬间启动(时间间隔小于1 s),伴随强烈等离子体弧光,6 s左右反应完成,获得微波辅助还原剥离的石墨烯絮状物(MEGO),但量相对前面的实例相比偏少,原因是粒度越小,引发等离子体的能力越强,产生的局部高能环境导致了部分生成的石墨烯与氧气反应而损失。拉曼和高分辨透射电镜表征结果证明产物为高质量石墨烯。

实施例4:

通过溶液相原位生长法获得氧化石墨烯-聚苯胺复合物,并获得冻干产物,投入烧杯中,在其表面投撒痕量(3.65 mg)的鳞片石墨粉(325目),置入微波炉中微波辐照(500~1000 W),在鳞片石墨的催化下反应在开启微波后反应迅速启动,伴随强烈等离子体弧光,10 s左右反应完成,获得微波辅助还原剥离的石墨烯聚苯胺复合絮状物。拉曼和高分辨透射电镜表征结果证明产物为石墨烯聚苯胺复合物。

实施例5:

将石墨烯-类普鲁士蓝复合物离心冻干获得冻干产物,投入烧杯中,在其表面投撒痕量(2.84 mg)的鳞片石墨粉(325目),置入微波炉中微波辐照(500~1000 W),在鳞片石墨的催化下反应在开启微波后反应迅速启动,伴随强烈等离子体弧光,8 s左右反应完成,获得微波辅助还原剥离的石墨烯-金属氧化复合物。拉曼和高分辨透射电镜表征结果证明产物为石墨烯与相应金属氧化物的复合物。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1