矢量强磁场下分子束外延及其原位表征装置的制作方法

文档序号:11147609阅读:1036来源:国知局
矢量强磁场下分子束外延及其原位表征装置的制造方法

本发明涉及分子束外延及其原位表征,尤其是涉及一种矢量强磁场下分子束外延及其原位表征装置。



背景技术:

随着信息科学的飞速发展,人们对电子元器件的运行速度、数据存储密度以及功耗等参数提出了更高的要求。现有以集成电路或超大规模集成电路为代表的电子元器件,都仅对电子电荷这一自由度进行操控,而忽视了电子自旋这另一基本量子属性,导致其尺寸大小、集成度等均已基本达到理论所决定的物理极限。对电子自旋的量子调控,有利于数据快速处理、减少功耗、提高集成度等,已成为半导体物理学科的新兴重要分支。

对电子自旋的量子调控,其核心就是如何有效地控制自旋的朝向、自旋输运以及自旋检测。然而在自旋电子材料生长方面,仍然存在半导体异质结欧姆注入阻抗不匹配、界面散射显著,稀磁半导体居里温度低,隧道注入铁磁薄膜质量低、界面不陡峭、隧穿势垒高等难题(1.J.W.A.Robinson,J.D.S.Witt,M.G.Blamire,Science,329(2010),59;2.K.Sato,L.Bergqvist,J.Kudrnovsky,Rev.Mod.Phys.,82(2010),1633;3.G.Schmidt,D.Ferrand,L.W.Molenkamp,Phys.Rev.B,62(2000),R4790),本质上都与材料实际生长过程中的质量控制、磁性能调控密切相关。而在自旋输运方面,目前观测到的自旋弛豫实践、相干长度均较短;对于自旋的检测,通常在样品制备室外进行,样品暴露于空气过程中表面所吸附的各种原子将对自旋特性产生影响。另一方面,由于自旋半导体异质结的磁性材料薄膜其长度、宽度与厚度尺寸差别较大,导致垂直于薄膜方向存在很强的退磁场,使得制备出来的材料磁矩基本与薄膜平面平行,且方向各异,不利于获得高极化率自旋电流。为了改变磁结构,通常在水平数千高斯磁场下退火。虽然这种方式取得了一定的成效,但由于材料的晶格结构主要取决于制备过程的原子排列,生长后引入磁场诱导难以从根本上改变材料的磁结构。因此,在强磁场环境下直接外延生长材料有利于形成较为一致的磁畴结构,从而获得高极化率的自旋电流。此外,通过调节强磁场与薄膜材料生长平面的夹角,或设计制备非对称异质薄膜结构,减小或抵消垂直方向退磁场的作用,有望制备具有垂直磁结构的磁性材料。磁性材料整齐排列的磁矩,在半导体异质表面产生很强的等效磁场,增强自旋电子的Larmor进动,抑制其去相位过程,使自旋弛豫时间变长。

然而,现有强磁体室温腔尺寸较小(通常内径小于10cm),要同时实现磁性薄膜材料的精细生长(需多种蒸发源或和离子体源)与原位表征,需要在腔体中安装多个部件,系统功能多、结构复杂。因此,若能在室温腔体中实现超高真空,可极大增加分子的空间自由程(在10-4Pa真空下,分子平均自由程即可达到几十米),使得多生长束源能够移出强磁场腔体,实现薄膜材料的分子束外延生长;进而在原子尺度范围内精确地控制材料生长速率、组分以及结晶结构,解决目前制备高质量自旋半导体及陡峭界面存在的技术难题。同时,在超高真空强磁场中对样品进行原位输运表征,能够有效地避免了样品生长与表征过程中表面吸附的各种原子对自旋特性产生的影响,并且具有灵敏度高、分辨率好等优点,便于更直观、精确地研究自旋相关的物理机制。有利于更准确了解半导体电子自旋量子特性,发现新现象、掌握新规律、提出新调控方法。



技术实现要素:

本发明的目的在于针对原有生长与表征设备在自旋电子材料生长以及表征方面存在的上述不足,提供一种矢量强磁场下分子束外延及其原位表征装置。

本发明设有强磁体、倒T型超高真空生长与表征腔体、外延生长样品台与联动控制系统、原位表征与控制装置、分子束炉源、抽真空系统;

所述强磁体为具有室温腔的无外加液氦螺线型强磁体;

所述倒T型超高真空生长与表征腔体置于强磁体室温腔内的部分采用厚度为5mm、双层、多通道冷却结构;所述倒T型超高真空生长与表征腔体置于强磁体下方的部分的真空腔体空间大于置于强磁体室温腔内的部分;

所述外延生长样品台与联动控制系统置于强磁体室温腔内,外延生长样品台的旋转经联动控制系统控制,用于生长平面与磁场夹角从0°~90°大角度变化;

所述原位表征与控制装置置于强磁体室温腔内,原位表征与控制装置设有斜面制冷机构、探针探测装置、上下移动与旋转机构和多功能操纵杆,所述斜面制冷机构为与外延生长样品台的结构匹配、可操作独立的制冷装置;所述斜面制冷机构配有液氮池;所述探针探测装置可上下移动及旋转,用于外延生长和测试切换;

所述分子束炉源设有位于强磁体下方并可放置多个蒸发源和射频气体等离子体源的分子束生长源部件;

所述抽真空系统设有机械泵、分子泵、离子泵和钛泵,所述抽真空系统位于强磁体下方,用于提供真空度高于10-8Pa的超高真空。

所述室温腔的内径小于10cm,所述强磁体可提供磁感强度高达15T、均匀性达到0.1%的磁场。

所述外延生长样品台可采用双股反向通电的辐射加热方式,使导线总体洛伦兹力基本为零,避免了通有大电流的导线在强磁场下受到强洛伦兹力导致的部件损坏,可实现从室温升至1300K以上温区的材料外延生长。

所述探针探测装置可安装多于6根探针;所述原位表征主要以原位霍尔效应与磁阻测试为主,采用pA乃至fA量级灵敏度的电流表、nV量级灵敏度的电压表,并采用桥路设计方式进行接线。

所述蒸发源可采用铁磁(Fe、Co、Ni等)、金属(Pt、Pd等),为半导体基底上(MgO、Al2O3、GaN等)多种材料的外延生长提供源材料;所述射频气体等离子体源为氧气、氮气或其它气源;所述蒸发源可从室温加热至1600K高温,由精确程序化的PID(Proportional Integral Differential,PID)温度控制单元操控。

本发明提供超高真空强磁场下,样品生长平面与磁场夹角可调节的分子束外延生长,及以霍尔效应与磁阻测试为主的原位表征装置。该装置主要由结构紧致的倒T型超高真空生长与表征腔体和具有较小室温腔的强磁体构成。其中置于强磁体室温腔内的倒T型真空腔部分,包含紧致的外延生长样品台、可调节磁场与样品台夹角和原位表征装置;置于强磁体下方部分包含蒸发源、等离子体源等分子束源部件以及抽真空系统,利用超高真空中分子束流自由程长的特点,使多束源能移出强磁场腔体。本发明有效克服了强磁场腔体积小与生长测试系统部件多的技术难题,实现强磁场下分子束外延生长及原位表征。

附图说明

图1为本发明实施例的结构示意图。在图1中,各标记为:1表示强磁体,2表示倒T型超高真空生长与表征腔体,3表示外延样品台与联动控制系统和原位表征与控制装置,4表示分子束炉源,5表示不锈钢支架,6表示固定支架,7表示减震空气柱支脚,8表示机械泵与分子泵,9表示离子泵,10表示钛泵。

图2为倒T型超高真空生长与表征腔体结构示意图。在图2中,各标记为:2-1表示腔体上半部分,置于强磁体室温腔内,具有超薄、双层、多冷却水通道结构,2-2表示置于强磁体下半部分腔体,2-3为观察窗口。

图3为外延生长样品台与联动控制系统和原位表征与控制装置示意图。在图3中,各标记为:3-1表示外延生长样品台,3-2表示样品台旋转机构,3-3表示活动挡板,3-4表示斜面制冷机构,3-5表示原位探针台,3-6表示上下移动和旋转机构,3-7表示上密封法兰。

具体实施方式

下面结合附图与实施例对本发明作详细说明,但本发明保护的范围不仅限于下述实施例。

本发明设有强磁体、倒T型超高真空生长与表征腔体、外延生长样品台与联动控制系统、原位表征与控制装置、分子束炉源、抽真空系统、探针探测装置。

所述强磁体为具有室温腔的无外加液氦螺线型强磁体,所述室温腔的内径小于10cm,所述强磁体可提供磁感强度高达15T、均匀性达到0.1%的磁场。

所述倒T型超高真空生长与表征腔体置于强磁体室温腔内的部分采用厚度为5mm、双层、多通道冷却结构,具有较好的隔热和冷却功能,保证磁体的正常工作;所述倒T型超高真空生长与表征腔体置于强磁体下方的部分的真空腔体空间大于置于强磁体室温腔内的部分,便于放置多个生长源。

所述外延生长样品台与联动控制系统置于强磁体室温腔内,外延生长样品台的旋转经联动控制系统控制,用于生长平面与磁场夹角从0°~90°大角度变化,且生长起止可由外延生长样品台前活动挡板控制的分子束外延;所述外延生长样品台采用双股反向通电的辐射加热方式,使导线总体洛伦兹力基本为零,避免了通有大电流的导线在强磁场下受到强洛伦兹力导致的部件损坏,可实现从室温升至1300K以上温区的材料外延生长。

所述原位表征与控制装置置于强磁体室温腔内,原位表征与控制装置设有斜面制冷机构、探针探测装置、上下移动与旋转机构和多功能操纵杆,所述斜面制冷机构为与外延生长样品台的结构匹配、可操作独立的制冷装置;所述斜面制冷机构的热传导系数高、接触面积大,且配有小体积的液氮池,可实现样品从液氮温度到高温的温度变化。

所述探针探测装置可上下移动及旋转,用于外延生长和测试切换,探针探测装置可安装多于6根探针,并可根据样品形状和测试类型排列探针,并最终实现不同温度下的原位自旋电子输运特性表征;所述原位表征主要以原位霍尔效应与磁阻测试为主,采用pA乃至fA量级灵敏度的电流表、nV量级灵敏度的电压表,并采用桥路设计方式进行接线;采用目前工业界常用的图形化编程工具LabVIEW软件,可实现对电流表、电压表、强磁体的控制及数据采集,整套系统可测量高达1GΩ以上的磁阻及高达10-9量级的霍尔测试精度,实现原位下超过铁磁金属、半导体材料及其异质结的磁阻和霍尔测试。

所述分子束炉源设有位于强磁体下方并可小角度放置多个蒸发源和射频气体等离子体源的分子束生长源部件,保证了材料外延生长过程中蒸发源材料能够直射至样品基底;所述蒸发源可采用铁磁(Fe、Co、Ni等)、金属(Pt、Pd等),为半导体基底上(MgO、Al2O3、GaN等)多种材料的外延生长提供源材料;所述射频气体等离子体源为氧气、氮气或其它气源;所述蒸发源可从室温加热至1600K高温,由精确程序化的PID(Proportional Integral Differential,PID)温度控制单元操控。

所述抽真空系统设有机械泵、分子泵、离子泵和钛泵,所述抽真空系统位于强磁体下方,用于提供真空度高于10-8Pa的超高真空;避免了样品生长与表征过程中表面吸附的各种原子对自旋特性产生的影响,以便于更直观、精确地研究自旋相关的物理机制。

以下给出具体实施例,参见图1~3。

本发明所述矢量强磁场下分子束外延及其原位表征装置实施例由强磁体1、倒T型超高真空生长与表征腔体2、外延样品台与联动控制系统和原位表征与控制装置3、分子束炉源4、不锈钢支架5、固定支架6、减震空气柱支脚7、分子泵8、离子泵9、钛泵10构成。强磁体1设置于不锈钢支架5上,倒T型超高真空生长与表征腔体2由固定支架6支撑,其上半部分2-1置于强磁体1之中,下半部分2-2位于强磁体1下方,固定支架通过不锈钢板与减震空气支脚7相连,外延样品台及其联动控制系统与原位表征及其控制装置3置于倒T型超高真空生长与表征腔体的上半部分2-1,通过上密封法兰3-7与外部控制系统相连,分子束炉源、机械泵与分子泵8、离子泵9、钛泵10通过密封法兰与倒T型超高真空生长与表征腔体的下半部分2-2相连。

下面以MgO衬底上外延生长铁磁金属Co薄膜及其原位表征为实施例:

(1)首先将倒T型超高真空生长与表征腔体2与连接外界大气的阀门缓慢打开,保持真空腔体与外界大气压强相同。

(2)操控联动装置将外延生长样品台3-1从倒T型超高真空生长与表征腔体2中取出,然后将MgO衬底(5×12mm2)置于外延生长样品台3-1上,再放回倒T型真空腔2中。

(3)锁紧连接倒T型真空腔2与外界的密封法兰3-7,并关闭如(1)中所述阀门。依次开启机械泵与分子泵8及离子泵9,以进行抽真空操作,间断性地开启钛泵10,使系统的真空度由一个大气压降低至本底超高真空。

(4)开启冷却水和样品台的加热电源,根据实际需要对MgO衬底进行必要的热退火处理,以获得更加平整的衬底表面。在外延生长的过程中,样品台的温度最高可升至1300K。

(5)开启无液氦强磁体1,经过压缩机大约48个小时的不间断工作,将氦气最终压缩至液氦状态(约4.2K),此时通过给超导线圈施加不同的电流,获得不同磁感强度的磁场;本发明系统可实现高达15T的变磁场外延样品生长。

(6)通过PID温度控制单元精确控制金属Co源(纯度为99.9999%)的加热温度,样品生长的起止过程由位于样品台前的活动挡板3-3控制。外延生长开始时,打开位于样品台下方的活动挡板3-3,通过外部联动控制系统及样品台旋转机构3-2,调整样品台的转动角度,从而获得不同生长平面与磁场夹角(0°~90°)的独立调节。整个外延生长过程中磁场强度保持不变;分子束炉源4与倒T型真空腔2由循环水冷却。选择合适的源炉温度可将沉积速度严格控制在0.1~1nm/min的单原子层精度,通过精确控制蒸发源的温度与外延生长时间,则可获得原子量级精度的外延Co薄膜。

(7)生长结束时,关闭样品台前的活动挡板3-3,缓慢降低直至关闭控制生长源加热的电流。结合实际需要,对所外延生长的样品进行必要的热退火处理,以获得更好的晶体质量。此后逐渐减小样品台的加热电流至零,在后续热退火及样品降温过程中,仍保持磁场强度不变;直到外延生长样品的温度降至其居里温度以下,再将磁场强度减小到零,保证了材料外延生长过程中磁结构的稳定性。

(8)对所外延生长的Co薄膜进行原位自旋电子输运表征过程中,通过上下移动和旋转机构3-6,先将斜面制冷装置3-4与外延生长样品台3-1接触,在斜面制冷机构的液氮池中通入液氮,可实现样品从液氮制冷,并通过外部控温装置控制样品台温度。选择合适的温度,通过上下移动和旋转机构3-6控制并移动原位探针台3-5,使原位探针台3-5上的探针与所生长的Co薄膜形成良好的电接触,并与外部控制测量装置相连。通过对所生长Co薄膜分别施加pA量级的电流与nV量级的电压,同时利用LabVIEW软件进行数据采集,则可完成原位霍尔效应与磁阻测试。整个测试过程中,保持腔体处于超高真空状态,可有效避免Co薄膜暴露于空气中表面吸附的各种原子对自旋特性产生的影响,从而便于更精确、深入地表征及研究外延Co薄膜的自旋相关性质。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1