一种高截止频率高导锰锌铁氧体材料及其制备方法与流程

文档序号:12394949阅读:534来源:国知局

本发明涉及一种软磁锰锌软磁铁氧体材料及其制备方法,属于软磁铁氧体材料技术领域,特别涉及一种高截止频率高导锰锌铁氧体材料及其制备方法。



背景技术:

目前,高磁导率锰锌铁氧体材料兼具高磁导率(相对镍锌铁氧体材料)和高电阻率(相对非晶材料)的特性,主要应用在开关电源等数字电路中,起到共模滤波的作用。随着社会的发展,生活水平的提高,公众对电磁污染的危害越来越重视,相关EMC法律法规已建立健全,规范了电子电路及设备抗电磁干扰标准。随着开关电源频率逐渐提高,相应共生的电磁干扰频率向高频方向发展,对高磁导率锰锌铁氧体提出了更高的频率特性要求。对铁氧体磁心而言,截止频率fr是衡量磁心频率特性优劣的物理量,在数值上对应初始磁导率衰减到一半时的频率,在初始磁导率相同或相近时,截止频率越高,其材料的频率特性越优异。

近年来国内外磁业工作者,对宽频高导锰锌铁氧体材料进行了许多研究,取得了可喜的成绩:CN 101121547,一种烧结高截止频率超高锰锌铁氧体的方法、CN 1031021148A,宽频高磁导率锰-锌铁氧体材料的制备方法、CN 103833346A,一种宽频MnZn铁氧体材料及其制备工艺、CN 102360916A,宽频高导锰锌铁氧体磁芯的制造方法、CN 101475366A,具有高磁导率的宽频锰锌铁氧体材料及其制备方法、CN 101475366,具有高磁导率的宽频锰锌铁氧体材料及其制备方法、CN 102231312A,一种低THD宽频高磁导率MnZn铁氧体材料及其制造方法、CN 105367048A,一种锰锌铁氧体材料及其制备工艺等。大量的专利介绍了宽频高导锰锌铁氧体材料的开发成果,特别是专利 CN 1677579A,宽频锰锌系高磁导率软磁铁氧体材料,其成果显示,对初始磁导率μi≥10000的高磁导率锰锌铁氧体材料,其截止频率fr≥400kHz。

宽频高导锰锌铁氧体材料开发尽管取得一些成绩,但是与客户需求仍有较大差距,许多客户对磁导率为10000的材料提出了截止频率fr大于600kHz,甚至达到1MHz的要求,可以说,高导锰锌铁氧体材料宽频特性的提升是无止境的。



技术实现要素:

本发明所要解决的技术问题是提供一种高截止频率高导锰锌铁氧体材料及其制备方法,采用本发明制作的高截止频率高导锰锌铁氧体材料初始磁导率μi>10000,截止频率fr≥700kHz,密度ρ≥4.95g/cm3,且f=100kHz条件下,比损耗因子tanδ/μi<10×10-6

本发明解决技术问题所采用的技术方案是:一种高截止频率高导锰锌铁氧体材料,其主成分配比为51.5 mol%~53.5mol%的Fe2O3,19 mol%~25.5mol%的ZnO,其余为MnO。

作为一种优选,所述的锰锌铁氧体材料还包括辅助成分:CaCO3-SiO2、Bi2O3、Nb2O5、Co2O3、TiO2、B2O3中的三种或三种以上,所述辅助成分的总重量为所述主成分总重量的0.05wt%~0.4wt%。

作为一种优选,基于所述总重量,所述辅助成分添加量范围为CaCO3-SiO2:0.015wt%~0.15wt%,Bi2O3:0.0wt%~0.05wt%,Nb2O5:0.00wt%~0.03wt%,Co2O3:0.00wt%~0.05wt%,TiO2:0.00wt%~0.04wt%,B2O3:0.00wt%~0.02wt%。

作为一种优选,所添加的CaCO3与SiO2重量比范围为4:1~8:1。

作为一种优选,所述的锰锌铁氧体材料以T25*15*7.5标准样品测试,其初始磁导率μi>10000,截止频率fr≥700kHz,密度ρ≥4.95g/cm3,且100kHz条件下,比损耗因子tanδ/μi<10×10-6

一种如上所述高截止频率高导锰锌铁氧体材料的制备方法,包括如下工序:配料混合、预烧、粉碎、喷雾造粒、毛坯压制和烧结,

(1)配料混合:按如下主成分配比 51.5 mo%~53.5mo%的Fe2O3,19 mo%~25.5mol%的ZnO,其余为MnO,称量;取所述主成分重量60wt%~100wt%的去离子水及适量的消泡剂与分散剂,与砂磨机中混合,时间20min,加入适量的PVA水溶液后,喷雾造粒;

(2)预烧:将步骤(1)所得粉料转入回转窑预烧,预烧温度850℃~1050℃,回转窑转速为3~6r/min,出料量400~600kg/h;

(3)粉碎:一、粗粉碎,将步骤(2)所得预烧料置于振磨机粉碎,粉碎时间10min~40min;二、细粉碎,将振磨后的粉料置于砂磨机,添加CaCO3-SiO2、Bi2O3、Nb2O5、Co2O3、TiO2、B2O3中的三种及三种以上的辅助成分及粉料重量70wt%~150wt%的去离子水后进行砂磨,砂磨时间40min~90min,得到砂磨后的料浆;

(4)喷雾造粒:将步骤(3)所得的料浆进行喷雾造粒,添加0.01wt%-0.02wt%硬脂酸锌,整粒;

(5)毛坯成型:用步骤(4)所得的粉料进行压制成型为T25*15*7.5标准样品生坯,压制密度为2.95-3.15g/cm3

(6)烧结:将步骤(5)压制成型的样品生坯按一定的摆放方式排列后放入钟罩炉内,采用平衡氧气氛进行烧结,在700℃~1200℃升温段,控制氧含量<1.0vol%,进行致密化,终烧温度控制在1320℃~1360℃,按平衡氧分压公式LogPO2=-A/T+B(T为绝对温度)确定氧含量:A取值17000~25000,B取值10~15。

作为进一步的改进 ,在所述砂磨后的料浆中添加5wt%-12wt%的PVA水溶液,搅拌均匀,其粒度分布的D50控制在0.7μm ~1.1μm。

本发明的有益效果是: 采用本发明方法制作的材料初始磁导率μi>10000,截止频率fr≥700kHz,密度ρ≥4.95g/cm3,且f=100kHz条件下,比损耗因子tanδ/μi<10×10-6

具体实施方式

以下为本发明的具体实施方式,对本发明的技术特征做进一步的说明,但是本发明并不限于这些实施例。

一种高截止频率高导锰锌铁氧体,所用主原料为Fe2O3(纯度>99.2%)、Mn3O4(锰的纯度>71.0%)、ZnO(纯度>99.5%),辅料为分析纯级的CaCO3、SiO2、Bi2O3、Nb2O5、Co2O3、TiO2、B2O3中的三种或三种以上;其中主成分配比为51.5 mol%~53.5mol%的Fe2O3,19 mol%~25.5mol%的ZnO,其余为MnO;辅助成分的总重量为所述主成分总重量的0.05wt%~0.4wt%。

实施例1:第一种高截止频率高导锰锌铁氧体材料的制备方法,

(1)配料混合:按照表1所示的Fe2O3、ZnO 配比,其余为MnO,计算重量,称量,取所述主成分重量80wt%的去离子水及适量的消泡剂与分散剂,与砂磨机中混合,时间20min,加入适量的PVA水溶液后,喷雾造粒;

(2)预烧:将步骤(1)所得粉料转入回转窑预烧,预烧温度950℃,回转窑转速:3r/min,出料量400kg/h;

(3)粉碎:粗粉碎,将步骤(2)所得预烧料振磨机粉碎20min;二、细粉碎,将振磨后的粉料置于砂磨机,添加辅助成分包括CaCO3-SiO2、Bi2O3、Nb2O5、Co2O3,添加量分别为0.05wt%、0.04wt%、0.01wt%、0.05wt%,其中CaCO3与SiO2添加比例为4:1;加入80wt%的去离子水后进行砂磨,砂磨时间40min,得到砂磨后的料浆,其料浆粒度D50约1.05μm;基于砂磨前总重量,向其中添加7wt%的PVA水溶液,搅拌均匀;

(4)喷雾造粒:将步骤(3)所得的料浆进行喷雾造粒,添加0.02wt%硬脂酸锌,整粒;

(5)毛坯成型:用步骤(4)所得的粉料进行压制成型为T25*15*7.5标准样品生坯,压制密度3.05g/cm3

(6)烧结:将步骤(5)压制成型的样品生坯按一定的摆放方式排列后放入钟罩炉内,在平衡氧气氛下进行烧结:在700℃-1200℃升温段,控制氧含量0.6vol%,终烧温度为1335℃;降温过程采用平衡氧分压方式控制氧含量,按平衡氧分压公式LogPO2=-A/T+B(T为绝对温度)确定氧含量:A取值20000,B取值13.5。

采用Agilent-4284A精密LCR仪测量常温下样品的10kHz、100kHz和700kHz电感量LQ值(B<0.25mT),计算样品的初始磁导率μi和比损耗因子tanδ/μi,测试结果如表1所示。

表1

注:编号带*号的方案为现有技术的比较实施例。

表1所示实例中,编号1-3为本发明实施例,编号4*-7*为比较实施例。编号1-3主成分均在本发明限定范围之内,材料性能指标完全达标。编号4*-7*为Fe2O3或者ZnO含量超出本发明限定范围,导致磁晶各向异性常数补偿点远离常温,二峰温度明显偏离常温,常温初始磁导率显著降低,并且比损耗因子升高。

实施例2:第二种高截止频率高导锰锌铁氧体材料的制备方法,

(1)配料混合:按配比Fe2O352.3 mol%,ZnO20.7 mol%,其余为MnO,计算重量,称量;取所述主成分重量70wt%的去离子水及适量的消泡剂与分散剂,与砂磨机中混合,时间25min,加入适量的PVA水溶液后,喷雾造粒;

(2)预烧:将步骤(1)所得粉料转入回转窑预烧,预烧温度900℃,回转窑转速:4r/min,出料量500kg/h;

(3)粉碎:粗粉碎,将步骤(2)所得预烧料振磨机粉碎10min;二、细粉碎,将振磨后的粉料置于砂磨机,添加辅助成分如表2所示,添加100wt%的去离子水后进行砂磨,砂磨时间60min,得到砂磨后的料浆,其料浆粒度D50约0.95μm;基于砂磨前总重量,向其中添加5wt%的PVA水溶液,搅拌均匀;

(4)喷雾造粒:将步骤(3)所得的料浆进行喷雾造粒,添加0.02wt%硬脂酸锌,整粒;

(5)毛坯成型:用步骤(4)所得的粉料进行压制成型为T25*15*7.5标准样品生坯,压制密度3.0g/cm3

(6)烧结:将步骤(5)压制成型的样品生坯按一定的摆放方式排列后放入钟罩炉内,在平衡氧气氛下进行烧结:在700℃-1200℃升温段,控制氧含量0.8vol%,终烧温度为1355℃;降温过程采用平衡氧分压方式控制氧含量,按平衡氧分压公式LogPO2=-A/T+B(T为绝对温度)确定氧含量:A取值18000,B取值12。

采用Agilent-4284A精密LCR仪测量常温下样品的10kHz、100kHz和700kHz电感量LQ值(B<0.25mT),计算样品的初始磁导率μi和比损耗因子tanδ/μi,测试结果如表2所示。

表2

注:编号带*号的方案为现有技术的比较实施例。

编号8-11中,辅助成分不少于4种且添加量均在本发明限定范围之内,初始磁导率大于10000,截止频率大于700kHz,材料性能指标完全达标。

对比编号12*-14*辅助成分CaCO3-SiO2成分配比及掺杂量失当;CaCO3与SiO2联合掺杂,在烧结过程中会生成高电阻率的CaSiO3,存在于晶界出,提高样品电阻率,改善频率特性,降低损耗。对比实施例12*中CaCO3与SiO2掺杂重量比为3,超出专利本许可范围,表现为SiO2偏多,过量的SiO2起到助熔剂作用,引起晶粒异常长大,粗细不均,导致磁导率偏低,损耗增大。对比编号13* 中CaCO3与SiO2掺杂重量比为9,超出专利许可范围,表现为SiO2偏少,虽有生成少量CaSiO3在晶界析出,但样品电阻率偏低,样品初始磁导率高,但频率特性差,截止频率低于700kHz,比损耗因子偏大。编号14* 中CaCO3与SiO2总掺杂重量为0.36 wt%,超出专利许可范围,磁导率偏低。

编号15*-16*掺杂仅有2种,超出本专利限定范围,其中编号15*的辅助成分仅为CaCO3-SiO2及增大晶粒生长的Bi2O3组合,材料初始磁导率足够高,但其频率特性差,截止频率低于700kHz。而编号16*的辅助成分仅为抑制晶粒生长、细化晶粒CaCO3-SiO2和Nb2O5组合,材料晶粒细化,电阻率高,频率特性优异,但初始磁导率偏低,未达到材料特性要求。

编号17*添加Bi2O3过量,超出本专利限定范围:晶粒异常长大且粗细分布不均匀,导致电阻率低,频率特性恶化,截止频率未达到700kHz,比损耗因子也显著增大。

编号18*添加Nb2O5过量,超出本专利限定范围:Nb2O5细化晶粒作用,样品晶粒尺寸较小,频率特性优异,但磁导率偏低,未达到材料特性要求。

编号19*添加Co2O3过量,超出本专利限定范围:使磁晶各向异性常数补偿编号20*添加TiO2过量,超出本专利限定范围:根据电荷平衡,Ti4+高价离子的存在使Fe3+部分转化成Fe2+,电阻率降低,磁导率较高,但频率特性变差,截止频率未达到700kHz,低于材料特性要求。

编号21*添加B2O3过量,超出本专利限定范围:晶粒异常长大,出现巨晶,样品表面、内部可见明显晶斑,样品电磁性能恶化,低于材料特性要求。

实施例3:第三种高截止频率高导锰锌铁氧体材料的制备方法,

(1)配料混合:按配比Fe2O3含量52 mol%,ZnO含量21mol%,其余为MnO计算重量,称量;,取所述主成分重量100wt%的去离子水及适量的消泡剂与分散剂,与砂磨机中混合,时间30min,加入适量的PVA水溶液后,喷雾造粒;

(2)预烧:将步骤(1)所得粉料转入回转窑预烧,预烧温度850℃,回转窑转速:3r/min,出料量400kg/h;

(3)粉碎:粗粉碎,将步骤(2)所得预烧料振磨机粉碎10min;二、细粉碎,将振磨后的粉料置于砂磨机,添加辅助成分包括CaCO3-SiO2、Bi2O3、TiO2、B2O3,添加量分别为0.012wt%、0.03wt%、0.02wt%、0.01wt%,其中CaCO3与SiO2添加比例为5:1;添加90wt%的去离子水后进行砂磨,砂磨时间80min,得到砂磨后的料浆,其料浆粒度D50范围0.75μm;基于砂磨前总重量,向其中添加12wt%的PVA水溶液,搅拌均匀;

(4)喷雾造粒:将步骤(3)所得的料浆进行喷雾造粒,添加0.02wt%硬脂酸锌,整粒;

(5)毛坯成型:用步骤(4)所得的粉料进行压制成型为T25*15*7.5标准样品生坯,压制密度3.10g/cm3

(6)烧结:将步骤(5)压制成型的样品生坯按一定的摆放方式排列后放入钟罩炉内,在平衡氧气氛下进行烧结:在700℃-1200℃升温段,控制氧含量见表3;终烧温度为见表3,降温过程采用平衡氧分压按平衡氧分压公式LogPO2=-A/T+B(T为绝对温度)确定氧含量:A取值22500,B取值15。

采用Agilent-4284A精密LCR仪测量常温下样品的10kHz、100kHz和700kHz电感量LQ值(B<0.25mT),计算样品的初始磁导率μi和比损耗因子tanδ/μi,测试结果入表3所示。

表3

注:编号带*号的方案为现有技术的比较实施例。

编号22-24中,烧结温度、致密化阶段氧含量均在专利允许范围内,样品初始磁导率大于10000,频率特性优异,截止频率大于700kHz,材料性能指标完全达标;可以发现随着烧结温度升高,样品初始磁导率逐渐升高,密度增大,同时频率特性有恶化趋势;烧结温度升高,晶粒长大,磁导率升高,同时相对晶间高电阻率层变薄,电阻率下降,频率特性变差。编号25*,烧结温度过低,超出本专利限定范围:初始磁导率低,未达到材料特性要求;编号26*,烧结温度过高,超出本专利限定范围:初始磁导率高,但频率特性变差,未达到材料特性要求。

编号27*,700℃-1200℃升温区间,致密化氧含量过高,超出本专利限定范围:样品内部气孔较多,存在于晶粒内部与晶界处,样品密度显著降低,磁导率低,未达到材料特性要求。

虽然此处已经详细描述了本发明的具体实施例,但是,应该理解这些优选的实施例并非用于限定本发明的保护范围。相反,在本发明的主旨和原则之内所作的任何修改、等同替换、改进等,均应包含在由所附权利要求限定的本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1