与镍电极一起使用的COG介电组合物的制作方法

文档序号:14028486阅读:240来源:国知局
发明背景1.发明领域本发明涉及基于锆酸盐钛酸盐的介电组合物,并且更具体地涉及基于掺杂的钡-锶-锆酸盐的介电组合物,其可以用于形成具有由镍或镍合金形成的贱金属内电极的多层陶瓷片式电容器。2.相关领域的说明多层陶瓷片式电容器已经广泛用作小型化、高电容量和高可靠性的电子元件。随着对高性能电子器件的日益增长的需求,多层陶瓷片式电容器还面临对更小尺寸、更高电容量、更低成本和更高可靠性的市场需求。多层陶瓷片式电容器通常是通过形成内电极形成膏和介电层形成膏的交替层来制造的。这样的层通常是通过形成薄片(sheeting)、印刷或者类似技术,随后同时烧成来形成的。通常,内电极由导体(例如,钯、金、银或者前述金属的合金)形成。虽然钯、金和银是昂贵的,但是可以通过使用相对廉价的贱金属例如镍及其合金来部分地替代它们。“贱金属”是除了金、银、钯和铂之外的任何金属。如果在环境空气中烧成,则贱金属内电极会被氧化,因此必须在还原性气氛中共烧成介电层和内电极层。但是,在还原性气氛中烧成导致介电层被还原,这降低了电阻率。已经提出使用不可还原的介电材料的多层陶瓷片式电容器,但是,这种器件通常具有较短的绝缘阻抗(ir)寿命和低的可靠性。电子工业协会(eia)规定了电容温度系数(tcc)的标准,称为cog特性。cog特性要求在-55℃到+125℃的温度范围内,电容的变化不大于每摄氏度30ppm(±30ppm/℃)。cog组件不表现出电容老化。技术实现要素:本发明提供一种介电组合物,其可用于制造可与含有贱金属(例如镍或者镍合金)的内电极兼容的陶瓷多层电容器。电容器可以由本发明的介电组合物形成,从而在高加速寿命测试条件下表现出稳定的介电常数和小的介电损耗以及优异的可靠性。本发明的介电组合物包含均匀致密的晶粒微观结构,其平均直径为约0.5至约3微米。均匀致密的晶粒微观结构对于获得具有厚度小于5微米的介电层的高可靠性多层电容器是至关重要的。在一个实施方案中,本发明的可为膏形式的介电组合物在烧成之前包含钡、锶和锆的氧化物的混合物。可以加入诸如cao和tio2的氧化物以调节tcc值。因此,本发明的一个实施方案是一种包含前体混合物的组合物,其在烧成时形成了包含掺杂有少量钙和钛的钡-锶-锆酸盐基质的介电材料。少量表示3重量%以下。可以加入有助于烧结的氧化物,例如mgo和b2o3。一种包含前体混合物的组合物,其在烧成时形成了包含掺杂有少量钙和钛的钡-锶-锆酸盐基质的介电材料。一种包含前体混合物的组合物,其在烧成时形成了介电材料,该介电材料包含:约26.5重量%至约34.0重量%的bao;约18.0重量%至约24.5重量%的sro;约41.0重量%至约50.0重量%的zro2;约0.50重量%至约1.50重量%的cao;和约0.70重量%至约2.50重量%的tio2。在这个实施方案中,介电材料可以进一步包含这样的前体,使得在烧成时,介电材料进一步包含约0.10重量%至约1.0重量%的b2o3;和约0.31重量%至约1.47重量%的mgo。本发明的一个实施方案是一种形成电子元件的方法,其包括:将本文其他地方公开的任何介电膏、介电材料或者前体的任何混合物施加至基底上;和将基底在足以烧结介电膏、介电材料或者前体的任何混合物的温度下进行烧成。本发明的一个实施方案是一种多层陶瓷片式电容器,其包含交替层叠的以下层的烧成集合体:本文其他地方公开的任何介电膏、介电材料或者前体的任何混合物的层;和内电极材料的层,其包含除了ag、au、pd或者pt之外的过渡金属。本发明的一个实施方案是一种形成电子元件的方法,其包括将以下层交替施加至基底上以形成层叠体:本文其他地方公开的任何介电膏、介电材料或者前体的任何混合物,和含金属的电极膏;将层叠体切割成预定形状;将切割的层叠体与基底分离;和将层叠体进行烧成,以使电极膏中的金属致密化并使介电膏烧结,其中内电极层和介电层各自具有一定的层厚度。该方法可以进一步包括将含有导电金属的膏施加到介电层和电极层的端部,并进行烧成以形成多层电容器。导电金属优选是铜。本发明的一个实施方案是一种无铅无镉的介电膏,其包含固体部分,其中所述固体部分包含:约34.1重量%至约43.8重量%的baco3;约25.6重量%至约34.9重量%的srco3;约41.0重量%至约50.0重量%的zro2;约0.70重量%至约2.50重量%的tio2;和约0.89重量%至约2.70重量%的caco3。本发明的一个实施方案是一种无铅无镉的介电膏,其包含固体部分,其中所述固体部分包含:约47.8重量%至约61.3重量%的bazro3;约1.6重量%至约5.7重量%的srtio3;约39.4重量%至约53.6重量%的srzro3;约1.2重量%至约3.6重量%的catio3;和约1.6重量%至约4.8重量%的cazro3。本发明的一个实施方案是一种无铅无镉的介电膏,其包含固体部分,其中所述固体部分包含:约47.8重量%至约61.3重量%的bazro3;约39.4重量%至约53.6重量%的srzro3;约1.2重量%至约3.6重量%的catio3;约0.1重量%至约2.14重量%的mg(oh)2;和约0.1重量%至约1.78重量%的h3bo3。本发明的一个实施方案是一种无铅无镉的介电组合物,其包含:约47.8重量%至约61.3重量%的bazro3;约39.4重量%至约53.6重量%的srzro3;约1.2重量%至约3.6重量%的catio3;约0.1重量%至约2.14重量%的mg(oh)2;和约0.1重量%至约1.78重量%的h3bo3。本发明的另一个实施方案是一种包括含介电层的多层基片的电子元件,所述介电层包含掺杂有钛酸钙混合物和氧化镁-氧化硼混合物的锆酸钡锶混合物。在另一个实施方案中,本发明提供一种形成电子元件的方法,其包括将介电材料的颗粒施加到基底上,并将基底在足以烧结介电材料的温度下进行烧成,其中该介电材料在烧成前包含表1中的成分的混合物(重量百分比)。应理解,本文的每个数值(百分比、温度等)被认为是其前面有“约”。表1:介电组合物的氧化物配方baosrozro2caotio2b2o3mgo重量%26.5-34.018.0-24.541.0-50.00.50-1.500.70-2.500.10-1.00.31-1.47另一路线是由碳酸钡、碳酸锶、氧化锆、二氧化钛和碳酸钙开始的。就此而言,表2的配方将产生与表1的配方所制备的大致相同的介电材料。表2:介电组合物的替代配方baco3srco3zro2tio2caco3b2o3mgo重量%34.1-43.825.6-34.941.0-50.00.70-2.500.89-2.700.10-1.00.31-1.47还可以通过烧成一种或多种预反应的氧化物的混合物来制备组合物,所述预反应的氧化物为例如钛酸钡(batio3)、锆酸钡(bazro3)、钛酸锶(srtio3)、锆酸锶(srzro3)、钛酸钙(catio3)、锆酸钙(cazro3)。就此而言,表3的配方将产生与表1的配方所制备的大致相同的介电材料。表3:介电组合物的替代配方batio3bazro3srtio3srzro3cazro3catio3b2o3mgo重量%0.0-7.347.8-61.31.6-5.739.4-53.61.6-4.81.2-3.60.10-1.00.31-1.47本发明的前述和其他特征在下文中更充分地描述,并且在权利要求中特别指出,下面的说明详细阐述了本发明的某些示例性实施方案,但是,这些仅表示其中可以采用本发明的原则的几种不同的方式。附图说明图1是根据本发明的一个实施方案的多层陶瓷片式电容器的截面图。具体实施方式多层片式电容器是通过交替层叠介电层和内电极以形成粗基片来制造的。本文所关注的内电极包括含镍或者镍合金的贱金属。形成介电层的介电组合物是通过用有机载体系统对介电组分进行湿磨来生产的。将介电组合物沉积在载体膜(例如聚酯或者聚丙烯)、或者带状物(例如不锈钢)、纸或者基板(例如氧化铝或者玻璃)上,涂覆所述膜,并形成薄片,其与电极交替层叠以形成粗基片。在形成粗基片后,通过在空气气氛中加热到小于约350℃的温度来去除有机载体。一旦去除载体,则在氧分压为约10-12至约10-8大气压的湿的氮气和氢气的还原性气氛中,在约1100℃至约1400℃、优选约1200℃至约1350℃、更优选约1225℃至约1325℃的温度下烧成粗基片。可使用各种加热路线来去除粘结剂并烧成基片。多层陶瓷电容器的构造是本领域公知的。参见图1,示出了一种多层陶瓷片式电容器1的示例性结构。电容器1的外电极4位于电容器基片1的侧面上,并且与内电极层3电连接。电容器基片1具有多个交替层叠的介电层2。电容器基片1的形状不是至关重要的,尽管它通常是矩形。此外,尺寸也不是至关重要的,并且所述基片可以具有适于具体应用的尺寸,通常在1.0至5.6mmx0.5至5.0mmx0.5至1.9mm的范围内。层叠内电极层3,使得在相对的两端,它们交替露出于基片1的相对侧面上。即,一组内电极层3露出于基片1的一个侧面上,而另一组内电极层3露出于基片1的相对侧面上。将一个外电极4施加至电容器基片1的一个侧面上,其与一组内电极层3电接触,而将另一个外电极4施加至基片1的相对侧面上,其与另一组内电极层3电接触。本发明提供一种包含前体混合物的组合物,其在烧成时形成了包含掺杂有至少钙和钛的钡-锶-锆酸盐基质的介电材料。在一些实施方案中,该混合物进一步包含这样的前体,使得在烧成时,该介电材料进一步包含选自硼和镁的一种或多种掺杂剂。由本发明的组合物形成的介电材料表现出的介电常数大于35,优选大于40,更优选大于45。介电层是由介电材料形成的,所述介电材料是通过烧结包含钡、钙、锶、钛和锆的氧化物的混合物而形成的,如表1或者2所示。包括b2o3和mgo的烧结助剂可以是有用的。另一路线是由钛酸钡、锆酸钡、钛酸锶、锆酸锶、锆酸钙、钛酸钙来开始的,如表3所示。对本领域技术人员来说显而易见地是上述氧化物以它们的氢氧化物或者其他形式例如碳酸盐、乙酸盐、硝酸盐和有机金属化合物例如金属甲酸盐、金属草酸盐等具有相同的效果,条件是以期望的量提供期望的金属离子。其他化合物可以存在于介电材料中,条件是该其他化合物不对介电性能产生不利影响。这样的化合物通常作为杂质存在于原料中。本文的介电组合物具有细晶粒,其通常具有约0.5至约3微米的平均尺寸,并且晶粒尺寸优选小于约0.7微米。每个介电层的厚度最高达约50微米。优选地,每个介电层的厚度为约0.5微米至约50微米。更优选地,每个介电层的厚度为约2微米至约10微米。本文的组合物可以用于制备具有薄的介电层的多层陶瓷片式电容器,以确保在使用寿命期间的电容量降低最小化。在片式电容器中层叠的介电层的数目通常为约2至约800,优选约3至约400。本发明的多层陶瓷片式电容器通常是通过常规的印刷法和形成薄片法使用膏形成粗基片,并烧成该粗基片来制备的。在烧成后,将所述基片在诸如氧化铝或者二氧化硅的介质中转笼干燥以磨掉边角。接着,将含有例如铜的导电膏施加到两端,以将露出的内电极连接在一起来制备端电极。然后,在约800℃下在氮气气氛中烧成端电极,以在两端将导体(例如铜)烧结成坚固的导电垫片,从而形成多层电容器。端电极是图1所示的外电极4。介电膏。用于形成介电层的膏可以通过将有机载体与如本文所公开的介电材料原料(包括各种氧化物)混合来获得。还有用的是如上文所述的在烧成时转化成所述氧化物和复合氧化物的前体化合物。通过选择含有这些氧化物的化合物或这些氧化物的前体,并将它们以适当的比例混合来获得介电材料。测定这样的化合物在介电材料原料中的比例,使得在烧成后,可以获得期望的介电层组合物。介电材料原料通常是以平均粒度为约0.1至约3微米、更优选约1微米以下的粉末形式来使用的。有机载体。有机载体是有机溶剂中的粘结剂或者水中的粘结剂。本文所用的粘结剂的选择不是至关重要的;适于与溶剂一起使用的常规粘结剂为例如乙基纤维素、聚乙烯丁醇、乙基纤维素和羟丙基纤维素及其组合。有机溶剂也不是至关重要的,并且可以根据具体施用方法(即,印刷或者形成薄片)选自常规有机溶剂:例如,丁基卡必醇、丙酮、甲苯、乙醇、二甘醇丁基醚;2,2,4-三甲基戊二醇单异丁酸酯α-松油醇;β-松油醇;γ-松油醇;十三烷醇;二甘醇乙醚二甘醇丁基醚(butyl)和丙二醇;及其混合物。以商标名销售的产品购自eastmanchemicalcompany,kingsport,tn;以和商标名销售的那些产品购自dowchemicalco.,midland,mi。对各个膏(介电膏或者电极膏)的有机载体的含量没有特别的限制。通常所述膏包含约1至5重量%的粘结剂和约10至50重量%的有机溶剂,余量为金属组分(用于电极)或者介电组分(用于介电层)。视需要,各个膏可以包含最多约10重量%的其他添加剂,例如分散剂、增塑剂、介电化合物和绝缘化合物。内电极。用于形成内电极层的膏是通过将导电材料与有机载体混合而获得的。本文所用的导电材料包括导体例如本文提及的导电金属和合金,以及在烧成时转化为所述导体的各种化合物,例如氧化物、有机金属化合物和树脂酸盐。参见图1,用于形成内电极层3的导体不是至关重要的,尽管优选使用贱金属,因为介电层2的介电材料具有抗还原性。典型的贱金属包括镍及其合金。优选的镍合金包含至少一种选自mn、cr、co、cu和al的其他金属。含有至少约95重量%的镍的合金是优选的。应指出,镍和镍合金可以包含最多约0.1重量%的磷和其他痕量组分(即,杂质)。可以控制内电极层的厚度以适于具体应用,但是所述层的厚度通常为至多约5微米。优选地,内电极层的厚度为约0.5至约5微米,更优选约1至约5微米。外电极。形成外电极4的导体不是至关重要的,尽管优选廉价的金属,例如铜、镍,以及任一种金属或两种金属的合金,其任选地包含mn、cr、co或者al。可以控制外电极层的厚度来适于具体应用,但是所述层通常为至多约10至约50微米厚,优选约20至约40微米厚。用于形成外电极的膏是通过与用于形成内电极的相同方法来制备的。然后可以由介电层形成膏和内电极层形成膏来制备粗基片。在印刷法的情况中,粗基片是如下制备的:将所述膏以层叠的形式交替印刷到聚酯膜(例如,聚对苯二甲酸乙二醇酯(pet))基底上;将层叠体切割成预定形状;并将它与基底分离。还有用的是形成薄片法,其中粗基片是如下制备的:由介电层形成膏来形成粗基片;将内电极层形成膏印刷到各个粗基片上;并层叠所印刷的粗基片。在从粗基片上去除有机载体后,将它烧成。可在常规条件下去除有机载体:即,在空气气氛中以0.01℃-20℃/h,更优选约0.03-0.1℃/h的速率加热,并且保持温度为约150℃至约350℃,优选约200℃至约300℃,更优选约250℃,保持时间为约30-700分钟,优选约200-300分钟。烧成。然后在根据内电极层形成膏中的导体类型来确定的气氛中对粗基片进行烧成。在内电极层是由贱金属导体(例如镍和镍合金)形成的情况下,烧成气氛中的氧分压可以为约10-12至约10-8大气压。应避免在低于约10-12大气压的分压下烧结,这是因为在这样的低压下,导体会被不正常地烧结,并且会与介电层断开。在氧分压高于约10-8大气压时,内电极层会被氧化。约10-11-约10-9大气压的氧分压是最优选的。对于烧成,温度从室温升高到约1200℃-约1300℃、更优选约1225℃的峰值温度。将该温度保持约2小时来增强致密化。较低的保持温度提供不足的致密化,而较高的保持温度会导致非常大的颗粒。优选在还原性气氛中进行烧成。示例性的烧成气氛包括湿n2,或者n2和h2气体的增湿混合物。烧结升温速率为约50℃至约500℃/h,优选约200℃至300℃/h;保持温度为约1225℃。保持时间为约0.5至约8小时,优选约1至3小时,更优选2小时,且冷却速率为约50℃至500℃/h,优选约200℃至300℃/h。可以连续或者单独地进行有机载体去除和烧成。如果是连续地,则所述方法包括:有机载体去除;在不冷却的情况下改变气氛;加热至烧成温度;在烧成温度下保持规定的时间以及随后冷却。如果是单独地,则在有机载体去除和冷却后,将基片的温度升高到烧结温度,然后将气氛改变成还原性气氛。所得到的基片可以例如通过转鼓抛光和/或喷砂来抛光两端面,之后印刷或转印外电极形成膏并对其进行烧成以形成外电极(端电极)。外电极形成膏的烧成可以在干燥的氮气气氛(约10-6大气压的氧分压)中,在约600℃-800℃下进行约10分钟至约1小时。视需要,通过电镀或者本领域已知的其他方法在外电极上形成焊垫。本发明的多层陶瓷片式电容器可以例如通过焊接安装在印刷电路板上。实施例提供下面的实施例来说明本发明的优选方面,而不意图限制本发明的范围。概述。制备多层陶瓷电容器,其具有纯镍电极,10个活性层,并且每个层为10-13微米厚,并且在还原性气氛(po2为~10-10大气压)中在1225℃下烧结。进行了物理和电学测量。实施例1标记为样品1的介电组合物是通过在水中研磨如表4所示的适量的氧化物来形成的。在装有1%的c(一种聚合物抗絮凝剂,购自rtvanderbiltco.,inc.,norwalk,ct)的1l聚丙烯罐中,使用2mmytz(氧化钇稳定的氧化锆)将粉末研磨到d50为约0.65微米的颗粒。表4:在烧成前样品1的配方bazro3srzro3catio3mg(oh)2h3bo3重量%53.77144.1141.4970.3000.318将干燥的粉末通过常规手段粉碎以提供实施例1的介电粉末。最终粉末的平均粒度为0.3-1微米。然后,将100g上述粉末加入28.8g的包含聚乙烯丁醇、甲苯和乙醇的有机载体中,并且湿磨24小时以制备用于流延成型的浆料。将湿浆料涂覆到聚酯膜上以形成介电体粗带。该介电体粗带的厚度为约15微米。通过常规丝网印刷方法使用常规的镍膏将镍电极印刷到干燥的介电体粗带上。在5100psi的压力和130°f(54℃)的温度下,将总共10个薄片层叠并粘结以形成粗基片。在切割至合适的尺寸之后,使得在烧结和收缩(其通常在x和y方向上均为15%-20%)之后,基片尺寸为约0.12”(l)x0.06”(w)(eia1206尺寸)或者0.08”(l)x0.05”(w)(eia0805尺寸),根据表5的烧尽周期加热粗基片以去除有机载体。表5:粘合剂去除条件实施例1,首先在约265℃的温度下使基片去除其粘合剂,然后在1225℃的温度下在po2为~10-10大气压的n2/h2/h2o气体混合物中烧结。该气体混合物是通过用水温为23℃的润湿器对n2/h2气体进行增湿来获得的。由此获得的基片通过转笼来磨掉边角。将形成外电极的铜膏(作为tm50-081购自cleveland,ohio的ferrocorporation)施加至端面上,并且在干燥的氮气气氛中在775℃下烧成约70分钟以形成外电极。这样处理的多层电容器的尺寸为约3.2mmx1.6mm(eia1206尺寸),且具有可变的厚度。介电层的厚度为9.7微米,且内部镍电极层的厚度为约1.5微米。多层片式电容器是由实施例1的粉末制备的,并且对其进行测试。烧成条件以及电性能汇总在表6中。表6:用于实施例1的mlcc的烧成条件和电性能在下面的项目中获得其他实施方案。项目1.一种组合物,其包含前体混合物,并在烧成时形成了包含掺杂有少量钙和钛的钡-锶-锆酸盐基质的介电材料。项目2.根据项目1所述的组合物,其中该混合物进一步包含这样的前体,使得在烧成时,该介电材料进一步包含一种或多种选自硼和镁的掺杂剂。项目3.根据项目2所述的组合物,其中该介电材料表现出大于35的介电常数。项目4.根据项目1所述的组合物,其包含前体混合物,并在烧成时形成了包含下列组分的介电材料:约26.5重量%至约34.0重量%的bao;约18.0重量%至约24.5重量%的sro;约41.0重量%至约50.0重量%的zro2;约0.50重量%至约1.50重量%的cao;和约0.70重量%至约2.50重量%的tio2。项目5.根据项目4所述的组合物,其中前体混合物进一步包含:约0.01至约1.0重量%的b2o3;和约0.01至约1.47重量%的mgo。项目6.根据项目2所述的组合物,其包含前体混合物,并在烧成时形成了包含下列组分的介电材料:约26.5重量%至约34.0重量%的bao;约18.0重量%至约24.5重量%的sro;约41.0重量%至约50.0重量%的zro2;约0.50重量%至约1.50重量%的cao;约0.70重量%至约2.50重量%的tio2;约0.10重量%至约1.0重量%的b2o3;和约0.31重量%至约1.47重量%的mgo。项目7.一种无铅无镉的介电膏,其包含固体部分,其中所述固体部分包含:约26.5重量%至约34.0重量%的bao;约18.0重量%至约24.5重量%的sro;约41.0重量%至约50.0重量%的zro2;约0.50重量%至约1.50重量%的cao;和约0.70重量%至约2.50重量%的tio2。项目8.项目7的无铅无镉的介电膏,其进一步包含选自以下的至少一种:约0.01至约1.0重量%的b2o3;约0.01至约1.47重量%的mgo;约0.01至约1.78重量%的h3bo3;和约0.01至约2.14重量%的mg(oh)2。项目9.一种形成电子元件的方法,其包括:将项目7或者项目8的介电膏施加至基底上;和将基底在足以烧结介电膏的温度下进行烧成。项目10.项目9的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目11.项目9的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目12.一种多层陶瓷片式电容器,其包括交替层叠的以下层的烧成集合体:项目7或者项目8的介电膏的层;和内电极材料的层,其包含除了ag、au、pd或者pt之外的过渡金属。项目13.项目12的多层陶瓷片式电容器,其中内电极材料包含镍。项目14.一种形成电子元件的方法,其包括:将以下层交替施加至基底上以形成层叠体:项目7或者项目8的介电膏,和含金属的电极膏;将层叠体切割成预定形状;将切割的层叠体与基底分离;和将层叠体进行烧成,以使电极膏中的金属致密化并使介电膏烧结,其中内电极层和介电层各自具有一定的层厚度。项目15.项目14的方法,其中介电层在烧成后的厚度为约1微米至约50微米。项目16.项目14的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目17.项目14的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目18.项目14的方法,其中含金属的电极膏包含镍。项目19.一种无铅无镉的介电膏,其包含固体部分,其中所述固体部分包含:约34.1重量%至约43.8重量%baco3;约25.6重量%至约34.9重量%srco3;约41.0重量%至约50.0重量%zro2;约0.70重量%至约2.50重量%tio2;和约0.89重量%至约2.70重量%caco3。项目20.项目19的无铅无镉的介电膏,其进一步包含选自以下的至少一种:约0.01至约1.0重量%的b2o3;约0.01至约1.47重量%的mgo;约0.01至约1.78重量%的h3bo3;和约0.01至约2.14重量%的mg(oh)2。项目21.一种形成电子元件的方法,其包括:将项目19或者项目20的介电膏施加至基底上;和将基底在足以烧结介电膏的温度下进行烧成。项目22.项目21的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目23.项目21的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目24.一种多层陶瓷片式电容器,其包含交替层叠的以下层的烧成集合体:项目19或者项目20的介电膏的层;和内电极材料的层,其包含除了ag、au、pd或者pt之外的过渡金属。项目25.项目24的多层陶瓷片式电容器,其中内电极材料包含镍。项目26.一种形成电子元件的方法,其包括:将以下层交替施加至基底上以形成层叠体:项目19或者项目20的介电膏的层,和含金属的电极膏的层;将层叠体切割成预定形状;将切割的层叠体与基底分离;和将层叠体进行烧成,以使电极膏中的金属致密化并使介电膏烧结,其中内电极层和介电层各自具有一定的层厚度。项目27.项目26的方法,其中介电层在烧成后的厚度为约1微米至约50微米。项目28.项目26的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目29.项目26的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目30.项目26的方法,其中含金属的电极膏包含镍。项目31.一种无铅无镉的介电膏,其包含固体部分,其中所述固体部分包含:约47.8重量%至约61.3重量%的bazro3;约1.6重量%至约5.7重量%的srtio3;约39.4重量%至约53.6重量%的srzro3;约1.2重量%至约3.6重量%的catio3;和约1.6重量%至约4.8重量%的cazro3。项目32.项目31的介电膏,其中所述固体部分进一步包含选自以下的至少一种:约0.01重量%至约7.3重量%的batio3;约0.01重量%至约1.0重量%的b2o3;约0.01重量%至约1.47重量%的mgo;约0.01重量%至约1.78重量%的h3bo3;和约0.01重量%至约2.14重量%的mg(oh)2。项目33.一种形成电子元件的方法,其包括:将项目31或者项目32的介电膏施加至基底上;和将基底在足以烧结介电材料的温度下进行烧成。项目34.项目33的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目35.项目33的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目36.一种多层陶瓷片式电容器,其包含交替层叠的以下层的烧成集合体:项目31或者项目32的介电材料的层;和内电极材料的层,其包含除了ag、au、pd或者pt之外的过渡金属。项目37.项目36的多层陶瓷片式电容器,其中内电极材料包含镍。项目38.一种形成电子元件的方法,其包括:将以下层交替施加至基底上以形成层叠体:项目31或者项目32的介电膏的层,和含金属的电极膏的层;将层叠体切割成预定形状;将切割的层叠体与基底分离;和将层叠体进行烧成,以使电极膏中的金属致密化并使介电膏烧结,其中内电极层和介电层各自具有一定的层厚度。项目39.项目38的方法,其中介电层在烧成后的厚度为约1微米至约50微米。项目40.项目38的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目41.项目38的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目42.项目38的方法,其中含金属的电极膏包含镍。项目43.一种无铅无镉的介电膏,其包含固体部分,其中所述固体部分包含:约47.8重量%至约61.3重量%的bazro3;约39.4重量%至约53.6重量%的srzro3;约1.2重量%至约3.6重量%的catio3;约0.1重量%至约2.14重量%的mg(oh)2;和约0.1重量%至约1.78重量%的h3bo3。项目44.一种形成电子元件的方法,其包括:将项目43的介电膏施加至基底上;和将基底在足以烧结介电膏的温度下进行烧成。项目45.项目44的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目46.项目44的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目47.一种多层陶瓷片式电容器,其包含交替层叠的以下层的烧成集合体:项目43的介电膏的层;和内电极材料的层,其包含除了ag、au、pd或者pt之外的过渡金属。项目48.项目47的多层陶瓷片式电容器,其中内电极材料包含镍。项目49.一种形成电子元件的方法,其包含:将以下层交替施加至基底上以形成层叠体:项目43的包含介电材料的膏,和含金属的电极膏;将层叠体切割成预定形状;将切割的层叠体与基底分离;和将层叠体进行烧成,以使电极膏中的金属致密化并使介电膏烧结,其中内电极层和介电层各自具有一定的层厚度。项目50.项目49的方法,其中介电层在烧成后的厚度为约1微米至约50微米。项目51.项目49的方法,其中烧成是在约1200℃至约1350℃的温度下进行的。项目52.项目49的方法,其中烧成是在氧分压为约10-12大气压至约10-8大气压的气氛中进行的。项目53.项目49的方法,其中含金属的电极膏包含镍。项目54.项目14、26、38或者49任一项的方法,其进一步包括将含铜的膏施加至介电层和电极层的端部,并进行烧成以形成多层电容器。另外的优点和修改是本领域技术人员容易想到的。因此,本发明在其更宽泛的方面不限于本文所示和所述的具体细节和示例性实例。因此,在不偏离由所附权利要求及其等同物所限定的总体发明构思的主旨或者范围的情况下,可以作出各种修改。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1