基于平版印刷制造的金刚石复合材料的制作方法

文档序号:14254218阅读:201来源:国知局
基于平版印刷制造的金刚石复合材料的制作方法
本公开内容涉及由基于分层的建造方法制造的金刚石复合材料并且涉及与这种方法相关的方面。
背景技术
:已经开发了各种不同的金刚石材料用于诸如磨耗部件的应用或用于切割、车削、钻削和加工包括岩石以及特别是金属合金(诸如钢)的硬质材料的物件(object)。金刚石密度以及周围基质特性是其适用于耐磨工具的重要特征。切割工具中使用的最常见金刚石材料是pcd(多晶金刚石体),其展现相当大的耐磨性和硬度,但含有催化金属,诸如钴、铁和/或镍。因此,这些材料展现低的热稳定性。由于制造工艺在极高压力(高于5500mpa)下操作,所以仅能近净制造具有简单几何形状的pcd。因此,备受关注的其它类型的金刚石材料包括硅胶结的金刚石和碳化硅金刚石复合材料,其尽管相对于pcd具有较低的金刚石含量,但不含钴、镍和铁,此外甚至在大大高于1000℃的温度下也是热稳定的。存在使用碳化硅基质制造这种材料的各种不同方法。实例包括热等静压加工(hip),其中如wo2014/161816中所公开使粉末状起始材料批料经受热和压力循环。最近,已经使用快速原型技术制备高强度陶瓷,所述技术基于计算机辅助设计数据从含有可固化单体树脂的液体浆料层叠制造三维制品。us2012/0010066和us7,927,538描述了陶瓷成形部件的立体平版印刷制备。最初,通过逐层逐步建造工艺通过光辐射固化自由流动的陶瓷浆料来制备陶瓷前体压实体(或者称为生坯体)。接着使所得生坯体经受脱粘来去除初始的生坯体粘合剂,其通常涉及加热到约90℃至600℃的温度。接着在高烧制温度下烧结所得白(或者称为褐色)体,以在显著体积减小期间压实并且固化,从而提供展现低孔隙率和高强度的致密化陶瓷。然而,用于产生高硬度复合体的常规压实制造方法存在问题,因为其难以获得均匀的表面和边缘,并且因为其难以获得无缺陷的表面。此外,在常规压实技术中,特别是与粒化的粉末组合时,边缘的压实通常较差,从而产生更多的缺陷,导致这些区域的烧结金刚石密度较低。常规压实技术的另一个问题是压制工具的磨耗,除了成本之外,磨耗还在生坯体上引入杂质,这将保留在最终产品中。在例如医学或食品行业和使用中,杂质的量很关键。技术实现要素:本公开内容的目的是解决或至少减少上文所提及的问题。因此,本公开内容的一个目的在于提供一种超硬组件,诸如工具或工具刀片,其可以在组件工作寿命期间用作耐断裂、剥落、碎裂和一般磨耗的磨耗部件或切割元件。特别地,一个特定目的为提供一种金刚石复合加工工具,诸如切割元件或磨耗部件或工具刀片,其展现最优化/最大化的平均工作寿命。另一个目的为提供一种耐磨工具组件,其在三维尺寸上展现均匀的磨耗行为。另一个目的为提供一种制造超硬耐磨复合体的方法,其通过有效使用最小化或消除制造工艺中所用工具的劣化或磨耗的材料来进行。这些目的通过首先从包含金刚石粒子的自由流动浆料利用平版印刷逐层构建料体,接着进行脱粘、渗透和烧结工艺而从金刚石粒子形成超硬材料(即金刚石复合材料)来实现。术语‘基于平版印刷制造’涵盖立体平版印刷术、3-d建造、增材制造(am)或3d‘印刷’,其中固体或半固体层由含有可固化单体或聚合物树脂的液体浆料(即可聚合粘合剂)基于计算机辅助设计(cad)数据构建。本文所用的术语‘金刚石复合材料’(也被称为胶结金刚石)涵盖在基质或粘合剂相中并入金刚石粒子的超硬材料,金刚石含量可以在30至85体积%范围内。所述术语涵盖如下材料,其形成用粘合剂(诸如碳化硅)互相粘结的金刚石颗粒(也称为金刚石粒子)的团块,或其中金刚石颗粒被包埋在金属基质中或金属与碳化物粘合剂相的混合物中。因此,通过烧结使金刚石粒子与基质粘结。本文所用的术语“层状结构”是指料体和烧结后制品在垂直于逐步分层的平版印刷建造期间进行浆料照射的平面延伸穿过所述料体的平面中的轮廓。应了解,层状结构包含超过一个金刚石粒子和粘合剂的层。根据本公开内容的平版印刷制造优于通常用于金刚石复合材料的常规压实技术。特别地,平版印刷法可以便利地进行,而仅因金刚石粒子磨蚀模壁、模制工具、掺合和粒化设备另外引入少量的杂质(<2重量%),并且不需要在常规压制工艺中使用并且经受快速磨耗并需要以高成本定期更换的模具。通过可聚合粘合剂进行的本发明的分层构建能够产生具有复杂3d几何结构(特别包括复杂的内部和外部形状轮廓)的生坯体(生坯)和预烧结的脱粘体(称为白体或褐色体)。本发明方法也有利于提供均匀密度的生坯体和所得的烧结金刚石复合体。这与使用粒化粉末的常规压制技术形成对比,在所述常规压制技术中,生坯体通常含有未压碎的颗粒,接着用渗透剂(通常为硅)填充所述未压碎的颗粒产生不期望的渗透剂(si)色淀,因此在表面区域并且特别是切割边缘中产生不连续性,从而因碎裂、分裂或断裂造成过早的组件磨耗。根据本公开内容的所得烧结结构包含可容易鉴定的层,其中根据平版印刷装置和方法的操作条件,每个层包含均匀厚度或至少预定的厚度。可鉴定层含有金刚石粒子和粘合剂基质。层状结构由富金刚石粒子层组成,其厚度范围为25-200微米,诸如25-50微米或诸如50-100微米,所述层之间具有富粘合剂基质层。所述富粘合剂基质层的厚度在1-15微米(诸如1-4微米或2-8微米或5-10或6-15微米)范围内。通过改变富金刚石和富粘合剂基质的层的厚度和浓度可以更容易地调整磨耗、裂纹扩展和导热特性。富金刚石粒子层是指所述层含有超过30体积%的金刚石粒子,并且富粘合剂基质层是指所述层含有少于30体积%的金刚石粒子。金刚石粒子在烧结体内的均匀分布提供了在使用时展现均匀磨损行为的加工元件(诸如磨耗部件或切割工具或切割工具刀片)。这种在烧结金刚石复合体内的均匀分布通过如本文所述的sem成像来确认。此外,可以认为本发明的烧结体包含优化的表面粗糙度,其中粗糙度部分地由自由流动浆料批料中以及生坯体和白体中的金刚石粒子的粒度分布确定。所获得的烧结白体的表面区域粗糙度(sa)可以<4微米,诸如<3微米,表面粗糙度可以通过使用常规表面测量仪器测量。金刚石粒子在所得复合材料中的均匀分布部分地由于通过分层平版印刷构建制造生坯体,接着将聚合的粘合剂脱粘。已经观察到,脱粘褐色体中的渗透剂粘合剂(例如硅)的渗透被优化,这是由于通过聚合物的损失/脱粘产生的开放孔道的内部网络导致的。本发明方法的另一个特别优点为选择性调节褐色体内的渗透通道的大小、密度和布局的配置,其通过在产生均匀的自由流动浆料期间选择性调节粒度分布并且特别是通过掺合不同平均尺寸的粒子来实现。并入不同尺寸分布的粒子也有利于优化生坯体和白体的填充来在最终的烧结制品内实现均匀的粒子分布。如从本文所述的ct分析可见,通过脱粘步骤产生的白体没有展现裂缝。这种初始加工灵活性以及渗透/烧结阶段的可行调整提供了如下工艺,其关于超硬金刚石粒子在粘合剂基质内的分布进行优化来获得最终复合体的期望密度。根据本公开内容的第一方面,提供一种制备金刚石复合材料的方法,所述方法包括:-制备含有可聚合粘合剂、引发剂和金刚石粒子的浆料;-通过对含有金刚石粒子、暂时粘合剂和引发剂的浆料进行逐步照射固化来形成层状结构生坯体;-通过将层状结构生坯体脱粘而形成包含至少30体积%金刚石粒子的白体;-将渗透剂引入白体中,且通过在第一压力下以10至60℃/分钟的速率进行温度的增量提高而将白体加热到最大烧结温度作为初始阶段来烧结白体。本发明方法使得在引入渗透剂和烧结工艺期间保持脱粘生坯体的尺寸和形状,并且最终获得的金刚石复合材料的尺寸在与生坯体的尺寸(诸如高度、长度和/或直径)比较时改变小于1.5%。此外,金刚石粒度保持或减小,因此本公开内容的金刚石粒子不会发生任何颗粒生长。脱粘步骤可以在氮气、氢气、氩气或其混合物氛围中或在空气中,依据氛围和存在的可聚合粘合剂,通过缓慢地,通常以0.1-2℃/分钟,将生坯体加热到200-600℃的温度来进行。根据本发明方法,最大烧结温度高于渗透剂的熔融温度以便使渗透剂处于熔融阶段。本发明方法可以包括预烧结步骤,所述步骤可以通过如下方式进行:在惰性氛围或在真空中将脱粘步骤后获得的白体加热到600℃至1500℃的温度,并在最大温度下保持数分钟到一小时的时间。任选地,金刚石粒子可以包含小于200μm、150μm、100μm和/或80μm的粒度。任选地,金刚石粒子可以包含在0.5μm至100μm;1μm至100μm和/或2μm至80μm范围内的粒度。特别地,金刚石粒子可以包含双峰或多峰粒度分布。任选地,包含小于30、20或10μm的粒度的至少一部分金刚石粒子和包含小于100、80、70、60或50μm的粒度的至少一部分金刚石粒子。这样的布置有利于优化所得生坯体和白体以及最终的烧结制品内的金刚石的填充。富金刚石粒子层和富粘合剂基质层的厚度通过建造工艺来确定,即,其取决于所使用的装置和照明技术以及浆料中的最大粒度,例如浆料中的最大金刚石粒度不可以超过建造层的厚度。在分层建造工艺期间,不同层的厚度可以变化,因此使得能够在不那么关键的区域中进行较快的建造,并且在诸如边缘的关键区域进行较慢的建造。根据一个实施方式,在建造层状结构期间还可以通过改变或混合具有不同金刚石粒度分布的浆料来改变粒度和分布,因此沿建造方向产生连续的粒度梯度。任选地,金刚石粒子包含至少一个粒度小于10μm的部分和至少一个粒度小于50μm的部分。任选地,金刚石粒子包含10至30重量%第一部分和70至90重量%第二部分。任选地,金刚石粒子包含20重量%平均粒度为4至8μm的金刚石粒子和80重量%平均粒度为20至30μm的金刚石粒子。任选地,金刚石可以包含平均粒度为4至90μm或6至80μm的金刚石粒子的第三部分。任选地,金刚石粒子含量包含平均粒度在2至200μm(诸如2至100μm)范围内的粒子。根据一个实施方式,金刚石粒子包含双峰或多峰尺寸分布来实现高密度,其中进料中最大金刚石的重量分数(ld)/较小金刚石的重量分数的和(σsd)通常在1.2至19范围内。根据本公开内容的一个实施方式,金刚石粒子包含低(<5000ppm)的催化金属杂质,所述催化金属杂质特别包括ni、fe和co。任选地,以料体的材料的总体积计,脱粘白体(或者褐色体)中的金刚石粒子含量为至少30体积%,诸如至少40体积%以及诸如至少50体积%。因此,本发明方法还可以被称为一种基于平版印刷的方法,其中制备金刚石复合材料包括如下步骤:制备包含可聚合粘合剂、聚合引发剂和金刚石粒子的浆料;通过对浆料进行逐步照射固化来形成具有层状结构的生坯体;将生坯体脱粘而从金刚石粒子至少部分地去除粘合剂,形成白体;和烧结白体,形成具有层状结构的金刚石复合材料。浆料展现低的聚合收缩,因此能够制备展现低变形应力的尺寸稳定且柔性的生坯体。通过平版印刷分层构建获得的生坯体是无缺陷的,即生坯体含有低水平的裂缝和其它缺陷并且甚至可以没有缺陷,其中在各平版印刷制造的层之间获得了优良的粘附性。根据如上文或下文所定义的方法,脱粘步骤可以包括:通过温度的增量提高将生坯体加热到第一最大温度。任选地,脱粘在选自氮气、氩气、氢气和其混合物的环境中进行。还可以使用空气作为环境。任选地,最大脱粘温度在200℃至600℃范围内,脱粘温度取决于进行脱粘步骤的环境(所用气体)。任选地,温度的增量提高包含0.1至2℃/分钟的增量。根据一个实施方式,最大脱粘温度为在空气中在200℃至340℃的范围内,并且温度的增量提高包含0.1至2℃/分钟的增量。根据如上文或下文所定义的本发明方法的一个实施方式,脱粘包括一个、两个或三个加热循环,其中以被一个或多个保持时间隔开的增量提高温度,在所述保持时间中温度被保持作为中间阶段,接着继续通过增量改变提高温度。任选地,最大脱粘温度可以为220℃和/或320℃。任选地,初始阶段脱粘包括以0.3℃/分钟的增量加热到220℃的最大加热温度。任选地,脱粘包括第二脱粘阶段,其包括将料体以0.5至2℃/分钟的温度增量加热到300至600℃的最大温度。根据如上文或下文所定义的方法,脱粘步骤可代替热处理而包括使生坯体接触超临界流体。任选地,超临界流体为临界温度为31℃并且临界压力为7.38mpa的二氧化碳。或者,其它超临界流体可以为单组分流体、二元或三元体系,其各自基于烷烃、烯烃、氟化和/或氢氟化烷烃。任选地,脱粘步骤还可以包括加热与超临界溶剂萃取的组合。根据如上文或下文所定义的方法,在脱粘步骤期间去除粘合剂。粘合剂的去除可以是部分的,并且第一步骤期间生坯体中可聚合粘合剂的脱粘度可以在35至75重量%或40至80重量%范围内。其余粘合剂可以用作“碳源”,即在渗透步骤期间当使用碳化物形成物作为渗透剂时,将使用粘合剂的碳代替金刚石粒子,这使得使用较少的金刚石粒子。根据如上文或下文所定义的方法的一个实施方式,烧结步骤包括:将渗透剂引入白体中;通过在第一压力下进行温度的增量提高将这种料体(body)加热到最大烧结温度作为初始阶段,所述温度高于渗透剂的熔点。作为任选的步骤,接着可以在另一阶段中在大于第一压力的第二压力下继续加热料体。烧结阶段可以包括使脱粘白体接触渗透剂(诸如硅)。可以用渗透剂涂布白体/褐色体或使白体/褐色体与渗透剂接触。渗透剂可以包含纯度大于99%的硅,并且可以大量过量(大于200重量%过量)存在。渗透剂可以包含si作为主要成分。根据如上文或下文所定义的方法的一个实施方式,si渗透阶段包括将白体/褐色体加热到超过1500℃、1600℃、1650℃或1700℃的温度。任选地,可以将白体/生坯体在大于5、7或9mpa的压力下浸入氩气环境中任选地5、10、15或20分钟的时段来辅助致密化并且降低最终的烧结后复合制品中的孔隙率。任选地,初始状态期间的最大烧结温度在1500至1750℃范围内,并且温度的增量提高包括以10至60℃/分钟、10至40℃/分钟、10至30℃/分钟或10至20℃/分钟的速率提高温度。根据如上文或下文所定义的方法的一个实施方式,初始脱粘阶段在大气压力下在空气或流动的氢气中进行。任选地,烧结/si渗透致密化步骤的第二阶段的第二压力比第一压力高至少50%或80%。任选地,渗透剂可以选自硅、硅组合物、铜、铜合金、铝和铝合金。任选地,初始状态期间的最大烧结温度在850至1750℃范围内,即高于渗透剂的熔融温度。根据本公开内容的另一方面,提供一种用于基于平版印刷制造金刚石复合材料的浆料,所述浆料包含:可聚合粘合剂;引发剂;和金刚石粒子。粘合剂为可聚合粘合剂并且可以包含至少一种酸性单体。任选地,粘合剂可以包含具有至少一个径向可聚合基团的单官能单体或单官能聚合物。这些单体可以包含-cooh、-o-po(oh)2或-so3h基团。任选地,浆料包含70至90重量%金刚石粒子,相对于浆料的总体积,其对应于约40至70体积%。任选地,浆料包含10至30重量%的可聚合粘合剂含量,相对于浆料的总体积,其对应于约30至60体积%。此外,所得烧结复合材料内的金刚石粒子含量可以在20至60体积%范围内。根据本公开内容的另一方面,提供一种通过基于平版印刷的制造方法形成的金刚石复合制品,其包含:通过对含有金刚石粒子的浆料进行逐步照射固化,接着脱粘和烧结产生的层状结构。根据本公开内容的另一方面,提供金刚石粒子在基于平版印刷的制造方法中用于形成金刚石复合制品的用途,所述金刚石复合制品包含通过如下方式产生的层状结构:i)对含有金刚石粒子的浆料进行逐步照射固化,接着ii)脱粘和iii)烧结。根据本公开内容的另一方面,提供一种通过基于平版印刷的制造方法形成的金刚石复合制品,其包含通过如下方式产生的层状微结构:i)对含有金刚石粒子的浆料进行逐步照射固化,接着ii)脱粘和iii)在真空下进行si渗透并且在<150巴下烧结。根据本公开内容的另一方面,提供一种金刚石粒子含量为30至65体积%的金刚石复合制品,其包含:具有富金刚石层的层状微结构,所述富金刚石层之间具有富粘合剂基质层,其中富金刚石层在25至200微米(诸如25至100微米)范围内,并且富粘合剂基质层在1至15微米范围内。根据一个实施方式,粘合剂为sic。根据另一实施方式,均匀的表面区域粗糙度<4微米,诸如<3微米。此外,由于使用的方法,与cad绘图相比,外部特征的偏差<1.5,例如<1%。根据本公开内容,还公开了一种金刚石含量为30至55体积%并且均匀的表面区域粗糙度<4微米(诸如<3微米)的金刚石碳化硅复合材料,其具有由在25至100微米范围内的金刚石-sic层组成的层状微结构,其中所述金刚石-sic层之间具有在1至15微米范围内的富sic层。根据本公开内容制备的复合制品特别适用作磨耗部件,特别是在腐蚀性和热环境中以及特别应用要求低或非常低的杂质含量的情况下更是如此。本发明的金刚石复合体(诸如金刚石粒子和碳化硅复合体)展现优化的热稳定性、对磨蚀劣化和液体腐蚀(诸如接触酸和碱)的耐受性以及极好的导热性。磨耗部件可以特别应用于金属和岩石切割。本发明复合材料还可以适用于医疗植入物和食品行业中的无钴应用。此外,本发明的烧结体具有优化的复合组件均匀分布,这对于珠宝应用来说可能是期望的。包含粘结在碳化物基质内的金刚石粒子的本公开内容的三维元件也展现良好的导热性。注意到含有催化金属(诸如co、fe和ni)的多晶金刚石(pcd)是热不稳定的。此外,根据常规加工的这些材料不能被便利并有效地成形,这限制了所得组件的三维几何结构。与现有的常规制造方法相比,本发明组件的表面粗糙度也得到了优化,这对于碾磨/研磨费时并且低效的金刚石复合材料特别重要。本发明的分层构建有利于产生无裂缝的生坯体,其在渗透期间不会明显收缩。因此,本发明方法通过关于粒度分布、浓度,脱粘和烧结阶段的加工参数和选择起始材料来提供优化的尺寸控制。附图说明现在将仅以举例的方式并参考附图来描述本公开内容的特定实施方案,其中:图1是根据本公开内容的一个方面的用于产生生坯体的平版印刷加工装置的示意图;图2是根据本公开内容的一个方面的立方体金刚石/碳化硅复合材料在60×放大率下的sem图像;图3是根据本公开内容的一个方面的立方体金刚石/碳化硅复合材料在100×放大率下的sem图像;图4是根据本公开内容的一个方面的平版印刷建造的成型体的ct图像;图5是根据本公开内容的一个方面的平版印刷建造的超临界脱粘并烧结的立方体的ct图像;图6是根据本公开内容的一个方面的平版印刷建造的成型体的ct图像;图7是采矿刀片的示意图;并且图8是根据现有技术制备方法的图7的采矿刀片的部分抛光切割边缘的烧结结构在95×下的反向散射sem图像。具体实施方式使用平版印刷术,并且特别是立体平版印刷术来制造金刚石复合材料。所述工艺通常在第一阶段包括对自由流动的浆料进行照射(诸如led辐射)固化,产生压实体形式的几何三维制品,或者称为生坯体。在第二阶段中,使生坯体经受脱粘工艺来去除粘合剂,获得白体(或褐色体)。作为最后阶段,将白体渗透并且烧结,产生致密的金刚石复合材料。接着可以通过喷砂和/或酸蚀刻来修整烧结体,产生适用于各种应用(诸如用作用于加工硬质材料(诸如合金和岩石)的高耐磨体)的最终超硬金刚石复合材料。为了获得具有低孔隙率、高密度和金刚石颗粒均匀分布在烧结复合材料内的超硬金刚石复合材料,制备了双峰和多峰金刚石进料。使用平版印刷工艺,并且特别是立体平版印刷工艺时,需要使初始浆料中的深色原材料(诸如硅和/或深色碳化物)达最少或从初始浆料中去除所述深色原材料。特别地,浆料需要是透明或半透明的来使得能够在逐层逐步建造期间传输光辐射。通过参考选择性包括以下制备阶段的非限制性实施例1至5来示例本公开内容。金刚石粉末制备将金刚石粉末干式掺合在一起,形成均匀混合物。最终的金刚石混合物为从diamondinnovationsinc.(金刚石创新公司)获得的80重量%20至30μm和20重量%4至8μmmbm-ulc和mbm-lc等级的金刚石的混合物,因此重量分数ld/σsd为4。这种金刚石混合物在本文中称为psd1进料。此外,使用来自diamondinnovationsinc.的mbm-ulc和mbm-lc等级如上所述制备psd2进料,但多峰金刚石粒度分布在2-80μm范围内,重量分数ld/σsd为1.6。浆料制备通过混合如下物质来制备多晶金刚石浆料:i)70%的ps-m-flea(1mol邻苯二甲酸酐与1mol丙烯酸2-羟基乙酯的反应产物);nk-酯cbx-ln(季戊四醇三丙烯酸酯单邻苯二甲酸酯),ii)分别为溶剂peg-400和ppg-400。引入分散剂并且将所得组合物均匀混合。接着添加光引发剂k-69(双(4-甲氧基苯甲酰基)二乙基锗,ivoclarvivadentag)或irgacure819(氧化双(2,4,6-三甲基苯甲酰基)苯基膦,cibasc),并且通过简单的搅拌溶解。作为最后阶段,添加金刚石进料psd1并且分散,产生自由流动的均匀浆料。psd1进料的金刚石负载为80重量%,其对应于约54体积%,并且粘合剂含量为约20重量%,其对应于46体积%。平版印刷工艺和装置-生坯建造通常参考图1描述平版印刷工艺和装置,并且其包含用于浆料101的容器100(或聚合罐)。容器100具有透明窗102,通过该透明窗102从下方对浆料101进行选择性照射并且固化。微镜阵列103被可移动地置于容器100下方并且用计算机控制。辐射源104将照射能量(以led产生的光的形式)引导到镜103上。因此,使用光学器件(未显示)通过窗102将镜103的图像投影到浆料101上。在容器100上方布置有具有载板109的衬底载体106,所述衬底载体106可沿z方向移动,其承载在上面逐层构建生坯体108的建造平台109。将载板109浸入浆料101中,直到载板109与容器100的内表面之间的距离对应于待制造的所要层厚度为止。接着通过镜103穿过透明窗102对载板109与容器100的内表面之间的浆料层进行选择性照射和固化。浆料101的固化区域粘附到载板109上,接着沿z方向从容器100中升起。接着,使用刮片110将更多的浆料涂抹在窗102上,并且重复选择性照射固化工艺来构建所要的三维制品。根据以下立体平版印刷参数设定建造生坯:横向分辨率40μm(635dpi);像素数值(x,y)1920×1080;建造外层(x,y,z)76mm×43mm×150mm;数据格式.stl(二进制);切片厚度25-100μm;建造速度高达每小时100片,每小时2.5-10mm;光源led。建造工艺后,用有机溶液(洗涤剂)洗涤生坯来去除过量的浆料并且产生精细的表面光洁度。脱粘(热处理)在空气中进行脱粘,并且包括以0.3℃/分钟的间隔缓慢变温到220℃和/或320℃。适中的温度增量有利于避免在脱粘期间生坯开裂,特别是因为洗涤剂在脱粘期间倾向于引起开裂。脱粘期间的质量损失依据建造后生坯是否已经清洁而不同,并且为8-11重量%。以(m(建造)-m(脱粘))/m(建造))×100计算质量损失(重量%)。脱粘(超临界溶剂)还在30mpa(300巴)的压力和55-65℃的温度下使用振动的超临界co2压力进行脱粘试验4.5h至28.5h。所得的生坯没有裂缝。另外,所得的烧结复合材料没有展现外部裂缝,没有检测到大的缺陷。根据表1中详述的参数配置进行超临界溶剂加工。表1-使用超临界溶剂萃取进行的脱粘加工参数烧结、si渗透和致密化在流动的氢气下以约1℃/分钟的温度变化升温到500℃来施加第二脱粘步骤。在真空下使用快速温度变化(约50℃/分钟)升温到1650℃(1700℃)的温度来进行si渗透。10分钟后,当料体被完全渗透时,施加9.5mpa(95巴)的ar压力,这有助于致密化,即提高了最终密度并且降低了孔隙率。将金刚石褐色体放置在具有大量过量硅块(200重量%,放置在坩埚底部)的涂有hbn的石墨坩埚中。所用硅为来自elkem的硅99精制的si30015,通过leco分析,其硅含量为99.4重量%并且氧含量为0.004%,并且粒度为10-100mm。在氩气下,在1650℃9.5mpa(95巴)下再经10分钟后,使样品自由冷却。使用zr囊进行烧结和hip渗透可以任选地通过热等静气体压力(hip)加工和/或高压高温(hpht)加工而向金刚石粉末施加高压和高温来提供熔融和si渗透来实现si渗透。接着可以将褐色体放置在zr囊中,该zr囊具有密封的底部并且具有完全包围褐色体的致密填充硅粉末掺合物。锆囊可以由具有商品级zr,纯度≥92.2重量%并且hf含量≤4.5重量%的管制造。si粉末掺合物可以为如下物质的混合物:86重量%来自elkem的粗晶,其纯度为99.5重量%,通过leco分析,氧含量为0.119重量%,并且晶粒度为0.2-0.8mm;和来自elkem的silgrainhq,其纯度为98%,通过leco分析,氧含量为0.059重量%,并且晶粒度为20-300微米。si掺合物的振实密度可以为约1.36g/cm3,其通过以下方法测量:用si粉末掺合物填充校准体积(福特杯),在该杯的后续手动振实期间以与填充囊期间所进行的相同的方式进行,接着测量重量,该振实密度对应于硅的理论烧结密度的约58%。填充囊后,可以通过焊接将其密封。接着可将密封囊布置在hip炉中,并且在真空下将温度提高到400℃。在400℃下保持30分钟的时间后,可将氩气压力快速升高到4.0mpa(40巴),接着可以以16°/分钟将温度提高到1300℃。在1300℃下,可以在恒定温度下在约55分钟期间将压力提高到100mpa(1000巴),接着同时提高温度和压力,直到20分钟后达到最大烧结温度1570℃和11.25mpa(1125巴)的最大压力。接着可以使囊在压力释放期间自由冷却。喷砂和蚀刻接着加工si渗透后获得的生坯体来从表面和内部去除过量的硅。通过将生坯体引入含有2%hf和20%hno3水溶液的浴液中约24小时而去除包围刀片的si残余物来实现内部过量si去除。使用具有sic砂砾的喷砂机来实现外部过量si去除。sic砂砾从烧结体去除si,但不会磨蚀料体本身,指示料体被充分烧结,并且具有非常高的硬度和耐磨性。质量控制对于所有样品,使用密度、ct和视觉控制,并且目标密度为≥3.23g/cm3,32重量%金刚石,64重量%sic和6重量%si,其对应于约30体积%金刚石,62体积%sic和8体积%si,这被认为是所要的最小金刚石含量和最大允许残余si含量。应了解,si具有最低密度,并且游离si的减少对于提高密度具有优选的作用。在hip工艺期间,发生特定的体积收缩,即百分之几的线性收缩。与纯si渗透部分相比,烧结体还含有锆,这将显著提高烧结密度。料体的密度通常为约3.5g/cm3。对烧结体进行ct扫描来检测缺陷。所用ct系统为来自gesensingandinspectiontechnologies(通用电气传感与检测技术公司)的v|tome|xs240,其具有以下设定:放大率9.1;体素尺寸(分辨率)22μm;x射线电压80kv;x射线电流270μa;x射线过滤器(cu)0.1mm;检测器定时200ms;检测器平均3;检测器跳过1;检测器灵敏度4;投影数1200。烧结的金刚石复合材料实施例1(lcm建造的立方体)根据参考图1所述的平版印刷工艺并且根据浆料制备和生坯建造的程序,从含有psd1金刚石进料的浆料建造三维立方体生坯体。使用50μm的层建造厚度。所得生坯体的金刚石密度为约54%,并且以如下方式计算:生坯体中的金刚石质量(不包括可聚合粘合剂和其他添加剂)除以所得生坯体的体积除以金刚石的x射线密度(3.52g/cm3)乘以100。在空气中使用0.3℃/分钟的缓慢温度变化升温到220℃的最大脱粘温度来将所得生坯体小心地脱粘。有目的地未完成脱粘工艺,因为需要保留褐色体中的残余碳来获得(脱粘生坯的)强度。当用形成碳化物的渗透剂(硅)渗透时,残余碳会反应并且形成碳化物而减少了耗用的金刚石的量。根据加工参数对脱粘工艺进行优化,因为褐色体中过量的残余碳将阻碍渗透,导致大孔隙率/石墨化,特别是在褐色体的内部区域更是如此。接着将褐色体放置在石墨隔间中,并且如上所详述,使用99.4%来自elkem的粒度为10-100mm的纯硅99精制的si30015进行烧结/si渗透。如上所详述,在烧结之后,通过喷sic砂砾处理立方体来去除表面上的残余si。称量该立方体,并且使用阿基米德法测定密度,结果如表2所示。表2-lcm建造的金刚石复合材料立方体(实施例1)的物理特征通过小心地机械抛光刀片尖端到顶部下方~2mm的深度来制备烧结刀片,并且使用1μm金刚石糊料来进行最终抛光步骤。图2和图3是立方体金刚石-碳化硅复合材料的sem图像(放大率不同)。注意到,金刚石颗粒是黑色的,并且碳化硅相是淡灰色的,残余硅以白色区域显示。可见金刚石分布是均匀的,没有“大”面积的残余硅存在。图像还清楚地说明了所得烧结复合体内的印刷层,其中每个层由窄明线/带分隔,这对应于50μm层厚度。实施例2lcm建造的喷嘴如实施例1中详述,由含有80重量%psd1金刚石进料和20重量%有机添加剂的浆料构建三维喷嘴生坯体。将生坯体喷嘴分层构建来包含12mm的总高度,所述喷嘴具有由直径为7.75mm和高度为2.1mm的环形凹槽分隔的两个直径为9.85mm的负部件(negativepart)。所述喷嘴包含孔径为1.3mm至3mm的内孔。在空气中使用0.5℃/分钟的缓慢温度变化,并在150℃和190℃下保持60分钟的时间,接着通过0.3℃/分钟的温度变化继续加热到240℃的最大脱粘温度来将所得生坯体小心地脱粘。接着将褐色体放置在石墨隔间中,并且如上在‘烧结-si渗透和致密化’中所详述,使用99.4%来自elkem的粒度为10-100mm的纯硅99精制的si30015进行烧结/si渗透。在烧结之后,将喷嘴酸处理,接着如上所详述喷sic砂砾来去除内部和表面上的残余si。称量所述喷嘴,并且使用阿基米德法测定密度,结果如表3所示。表3-lcm建造的金刚石复合材料喷嘴(实施例2)的物理特征使用wykont9100在470.3×627.1μm2的表面上进行表面粗糙度分析。放大率为10.1,并且视场为1.0倍。结果如表4所示。测量位置sa(μm)sz(μm)stylusxra(μm)od(9.88mm)2.1520.621.05od(7.75mm)1.9916.260.76表4-金刚石复合材料喷嘴(实施例2)的表面粗糙度在喷嘴的不同部件上测量与cad图有关的烧结体的外部尺寸,并且通过使用配备有nikon激光头的mitutoyocmm(cordenat测量机)并且使用fokus软件扫描整个料体的外表面来进行。与od为9.88mm的负部件的烧结部件的cad模型的偏差为-0.076mm至-0.040mm,并且与od为7.75mm的生坯部件的cad模型的偏差为-0.031至-0.016mm。在本发明的渗透和烧结工艺期间,保持了脱粘生坯体的尺寸和形状,并且在与建造的生坯比较时,烧结体的尺寸在至少1.5%内。实施例3lcm建造的成型体如实施例1中详述,由含有80重量%psd1金刚石进料和20重量%有机添加剂的浆料建造通常具有弯曲的外表面的三维成型体。在空气中使用0.5℃/分钟的缓慢温度变化,并在预定温度下保持一段时间以避免裂缝来将所得生坯小心地脱粘。当通过lom和x射线ct检查时,褐色体中未发现裂缝。接着将褐色体放置在石墨隔间中,并且如上所述使用99.4%来自elkem的粒度为10-100mm的纯硅99精制的si30015进行烧结/si渗透。如上所详述,在烧结之后,通过喷sic砂砾处理成型体来去除表面上的残余si。称量料体,并且使用阿基米德法测定密度,结果如表5所示。表5-lcm建造的金刚石成型体(实施例3)的物理特征使用wykont9100在470.3×627.1μm2的表面上进行表面粗糙度分析。放大率为10.1,并且视场为1.0倍。测量位置sa(μm)sz(μm)stylusxra(μm)切割边缘1.7614.721.01平面11.8415.930.92平面21.8619.730.87表6-金刚石复合材料成型体(实施例3)的表面粗糙度在成型体的不同部件上测量与cad图有关的烧结体的外部尺寸,并且通过使用配备有nikon激光头的mitutoyocmm(cordenat测量机)并且使用fokus软件扫描整个料体的外表面来进行。当比较建造的生坯的尺寸与烧结体的尺寸时,在观察径向部分的外部尺寸时,与最终获得的料体相比,与生坯体的cad模型的偏差是-0.023mm至-0.014mm。图4是根据实施例3的lcm建造的成型体的ct图像,所述图像显示烧结体没有如裂缝和大孔隙的内部缺陷。实施例4lcm建造的立方体在超临界溶剂中脱粘根据实施例1,由含有psd1金刚石进料的浆料建造三维立方体生坯体。与实施例1不同,根据表1和脱粘(超临界溶剂)中的脱粘工艺,通过在60℃的温度和30mpa(300巴)的压力下使用超临界co224小时萃取lcm粘合剂来进行脱粘。在通过lom和x射线ct检查时,褐色体中或烧结部件中没有发现裂缝或内部缺陷。称量料体,并且使用阿基米德法测定密度,结果如表7所示。表7-lcm建造的金刚石复合材料(实施例4)的物理特征图5为根据实施例4的lcm建造的超临界脱粘并烧结的立方体的ct图像实施例5lcm建造的成型体如实施例1中详述,由含有80重量%psd2金刚石进料和20重量%有机添加剂的浆料建造通常具有弯曲的外表面的三维成型体。与实施例1不同,根据表1和脱粘(超临界溶剂)中的脱粘工艺,通过在60℃的温度和30mpa(300巴)的压力下使用超临界co224小时萃取lcm粘合剂来进行脱粘。当通过lom和x射线ct检查时,褐色体中未发现裂缝或内部缺陷。接着将褐色体放置在石墨隔间中,并且使用来自okmetic的>99%纯cz-硅晶片如上所述进行烧结/si渗透。如上所详述,在烧结之后,通过喷sic砂砾处理成型体来去除表面上的残余si。称量料体,并且使用阿基米德法测定密度,结果如表8所示。表8-lcm建造的金刚石成型体(实施例5)的物理特征图6是根据实施例5的lcm建造的超临界脱粘并烧结的成型体的ct图像,其显示烧结体没有诸如裂缝和大孔隙的内部缺陷。低压烧结-在真空中在1650℃下渗透(比较研究)实施例6现有技术制造的部件的表面粗糙度使用金刚石粉末制备所述的psd1金刚石混合物,接着添加peg1500和peg4000作为暂时有机粘合剂,并用去离子水作为流体来制备均匀浆料。将该浆料喷雾粒化,得到用于压制的颗粒,并且粉末中有机粘合剂的量为9.26重量%,所述量对应于23体积%。使用所用的压实技术将颗粒用于以采矿操作(岩石钻削)中通常使用的工具尖端的形状(纽扣)将生坯体单轴压制到尽可能高的生坯密度。施加来压实生坯体的力通常为30-50kn,并且压制工具由高耐磨性胶结碳化物等级制成。生坯体中的相对金刚石密度为约60%。百分比形式的相对金刚石密度以如下方式计算:生坯体中的金刚石质量(不包括暂时有机粘合剂和其他添加剂)除以由压制工具图获得的生坯体体积除以金刚石的x射线密度(3.52g/cm3)乘以100。依据压实技术和料体的形状,密度可以在生坯体的不同部分之间稍微变化。如脱粘(热处理)所述将生坯体脱粘,产生具有足以用于进一步处理的强度的褐色体(白体)。将金刚石褐色体放置在具有大量过量硅块(200重量%,放置在坩埚底部)的涂有hbn的石墨坩埚中。所用硅为来自elkem的硅99精制的si30015,通过leco分析,其硅含量为99.4重量%并且氧含量为0.004%,并且粒度为10-100mm。接着将褐色体放置在石墨隔间中,并且如上所详述,使用99.4%来自elkem的粒度为10-100mm的纯硅99精制的si30015进行烧结/si渗透。如上所详述,在烧结之后,通过喷sic砂砾处理立方体来去除表面上的残余si。称量料体,并且使用阿基米德法测定密度,结果如表9所示。进行表面粗糙度分析并且见于表10中。接着通过金刚石砂砾抛光刀片圆顶的顶部,并且使用sem研究显微结构。表9-单轴压制的金刚石成型体(实施例6)的物理特征表10-金刚石复合材料采矿刀片(实施例6)的表面粗糙度图7是如实施例6中所描述的采矿刀片的图,其中指示了切割边缘(圆顶的顶部)(td)、外径(od)和高度(h)。图8是实施例6中采矿刀片的部分抛光切割边缘(圆顶的顶部)的烧结结构在95×下的反向散射sem图像。在所述图像中,大的白色si色淀以及未压碎的颗粒清晰可见。(金刚石=黑色,sic=淡灰色,残余si=白色)。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1