一种C/C‑SiC复合材料零件的制备方法及其产品与流程

文档序号:12813617阅读:275来源:国知局

本发明属于复合材料领域,更具体地,涉及一种c/c-sic复合材料零件的制备方法及其产品。



背景技术:

c/c-sic复合材料是一种以碳纤维为增强体,以碳、碳化硅为基体的复合材料,具有密度低、强度高、耐高温、耐化学腐蚀、摩擦系数高、磨损率低、抗热衰退性能好等诸多优点,可作为高温结构材料、热防护材料、刹车材料而应用于航空航天、能源、交通等领域。如火箭发动机喉衬、喷管和燃烧室,核能制氢用的热交换器,飞机、高速列车刹车盘等。

c/c-sic复合材料中碳纤维增强体的结构形式主要有连续碳纤维和短碳纤维,不同的碳纤维增强体具有不同的网络结构、孔隙结构与分布、成形方式,可以满足不同类型的特殊需求。其中短碳纤维增强的c/c-sic复合材料制备工艺简单,周期短、成本低,应用前景广泛。目前,短碳纤维增强的c/c多孔预制体主要通过模压工艺制得,该工艺受限于模具的复杂程度,因此难以实现具有复杂结构零部件的整体近净成形,如为提高制动性能而设计的内部具有复杂散热通道的刹车盘,模压工艺难以实现成形。

3d打印技术利用逐层加工并叠加的原理,理论上可以实现任意复杂结构的加工,本课题组曾公开了一种采用激光选区烧结(sls)工艺制备碳化硅陶瓷件的方法(申请号201610496893.2),该方法首先制备碳化硅、碳、粘接剂及固化剂的机械混合粉末,然后采用sls技术成形碳化硅素坯,接着对素坯进行固化和炭化处理,最后采用真空溶渗烧结的方式得到碳化硅陶瓷件,但是,该方法由于粉末制备不均匀、碳化硅素坯孔隙率高等原因,导致碳化硅陶瓷中存在大量残硅,严重影响零件性能。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明提供了一种c/c-sic复合材料零件的制备方法及其产品,其中通过采用溶剂蒸发法制备碳纤维复合粉末,3d打印技术和两次增密处理相结合的方式,由此解决粉末制备不均匀,复杂零件近净成形和零件中残余硅的技术问题。

为实现上述目的,按照本发明的一个方面,提供了一种c/c-sic复合材料零件的制备方法,其特征在于,该方法包括下列步骤:

(a)利用溶剂蒸发法制备酚醛树脂均匀覆膜的碳纤维复合粉末;

(b)依据所需零件的三维模型,将所述碳纤维复合粉末利用3d打印技术成形为该所需零件的初始形坯;

(c)将所述形坯依次重复进行第一次增密处理,得到密度为0.7~1.1g/cm3,开口孔隙率为30~50%的c/c多孔体;

(d)将所述c/c多孔体依次进行真空熔融渗硅、除硅和第二次增密处理后得到所需的c/c-sic复合材料零件。

优选地,在步骤(a)中,所述溶剂蒸发法按照下列步骤进行:

(a1)将固化剂质量分数7~10%的热塑性酚醛树脂完全溶解于有机溶剂后再加入碳纤维粉末,得到所述碳纤维均匀分散的溶液,其中,所述碳纤维粉末与所述酚醛树脂的体积比为(2~8):(2~8);

(a2)将所述溶液蒸馏得到粉末聚集体,并依此进行干燥、研磨和筛分后得到所述的碳纤维复合粉末。

优选地,在步骤(a1)中,所述碳纤维粉末的直径为6~10微米,长度为50~200微米。

优选地,在步骤(a)中,所述碳纤维复合粉末的粒径分布在10~150微米。

优选地,在步骤(b)中,所述3d打印技术为基于粉末床的3d打印技术,如激光选区烧结(sls)技术或三维喷印(3dp)技术。

优选地,在步骤(c)中,所述第一次增密处理优选采用依次进行浸渗、固化和炭化处理,其中,所述浸渗在真空或负压条件下进行,选用的浸渗液优选采用粘度小于50mpa·s的热固性酚醛树脂或呋喃树脂液体,或粘度小于20mpa·s的热固性酚醛树脂的酒精溶液中的一种。

优选地,在步骤(d)中,所述第二次增密处理优选采用化学气相渗透法,在除硅形成的孔隙内沉积sic,实现致密化。

按照本发明的另一方面,提供了一种按照所述的制备方法所制得的c/c-sic复合材料零件产品。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:

1、本发明通过采用溶剂蒸发法制备了一种适用于3d打印的酚醛树脂覆膜的碳纤维复合粉末,该碳纤维复合粉末中碳纤维分布均匀,使得在后续固化和炭化等过程中收缩均匀,不易开裂变形,并且覆膜在碳纤维表面的酚醛树脂层经过炭化后,还能阻止后续渗硅工艺对碳纤维的损伤,从而使得最终成形的零件综合性能高;

2、本发明通过采用3d打印技术成形c/c-sic复合材料零件,由于该方法制备过程中无需采用模具,降低了设计和制备的生产成本和时间,同时该方法制备的零件不受结构复杂程度限制;

3、本发明通过向3d打印成形的碳纤维初始形坯中浸渗液态树脂并炭化的方式获得增密的c/c多孔体,其孔隙结构可控,在后续熔融渗硅反应过程中,尺寸变化小,可获得近净成形c/c-sic复合材料零件;

4、本发明通过高温除硅和化学气相渗透的方式可以得到残硅含量低,从而使得最终获得c/c-sic零件致密度高,并且具有良好的高温力学性能。

附图说明

图1是按照本发明的优选实施例所构建的制备方法流程图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

图1是按照本发明的优选实施例所构建的制备方法流程图,如图1所示,一种c/c-sic复合材料零件的制备方法及其产品,包括以下步骤:

(a)利用溶剂蒸发法制备碳纤维/酚醛树脂复合粉末,具体制备步骤如下:

(a1)将含有7~10wt.%乌洛托品的热塑性酚醛树脂完全溶解于丙酮溶剂中形成溶液,其中树脂与溶剂的质量比为1:1;

(a2)向上述溶液中加入碳纤维粉末,并通过超声将碳纤维粉末均匀分散,其中碳纤维粉末与酚醛树脂的体积比为(2~8):(2~8);

(a3)通过加热蒸馏并回收溶剂,得到粉末聚集体;

(a4)经干燥、研磨和筛分后,得到酚醛树脂均匀覆膜的碳纤维复合粉末。

材料的制备对3d打印工艺至关重要。本发明采用溶剂蒸发法制备适用于3d打印工艺的碳纤维/酚醛树脂复合粉末,碳纤维作为强韧相,热塑性酚醛树脂作为粘接剂,乌洛托品为固化剂,后两者均匀包覆在碳纤维粉末的表面。这样有利于防止在储存和运输过程中造成成分偏析;而且在3d打印成形、固化及炭化过程中收缩均匀,不易变形和开裂;同时,覆膜在碳纤维表面的酚醛树脂层经过炭化后,还能阻止后续渗硅工艺对碳纤维的损伤。

本发明中使用的纤维直径为6~10微米,长度优选为50~200微米。一般地,纤维长度越长,增强效果越好,但是当纤维长度超过150微米以后将影响铺粉的质量。因此为了粉床更好的铺设,本发明中碳纤维/酚醛树脂复合粉末的粒径分布优选在10~150微米范围内。

(b)依据设计零件的cad模型,采用3d打印工艺成形出相应的碳纤维初始形坯。

考虑加工过程中零件的收缩比例,对零件的cad模型进行放缩补偿。在3d打印设备上成形出相应的碳纤维初始形坯,步骤2中的优选的3d打印技术为sls或3dp等基于粉末床的3d打印技术。

(c)对上述碳纤维初始形坯依次进行浸渗热固性树脂、固化和炭化处理,重复浸渗、固化和碳化这三个步骤,直到得到密度为0.7~1.1g/cm3,孔隙率为30~50%的c/c多孔体。

通过3d打印成形的碳纤维初始形坯孔隙率较大、强度低,若直接进行炭化和渗硅处理,容易造成残硅含量高,甚至损坏零件。本发明中采用浸渗具有较高残炭率的热固性树脂并炭化,能够对c/c多孔体的强度和孔隙结构进行调控。

为适应于3d打印成形的碳纤维初始形坯的浸渗、固化和炭化,本发明对浸渗、固化和炭化工艺进行了优化。

本发明浸渗工艺条件为:浸渗液是具有较高残炭率的热固性酚醛树脂或呋喃树脂液体,粘度小于50mpa·s,浸渗在真空或负压条件下进行。该浸渗液进一步优选为热固性酚醛树脂的酒精溶液,粘度小于20mpa·s。

本发明优选的固化工艺条件为:将浸渗后的初坯晾置1.5~3h,然后在80℃氛围中烘干。转至炭化炉中,先在110~130℃下保温1~2h,接着在145~165℃保温0.5~1.5h,再升温至180~190℃并保温2~4h,完成固化反应。接着在氩气保护下以2℃/min的速率升至550℃并保温0.5~1h,然后以同样的速度升温至800℃~1000℃,保温1~2h后随炉冷却,完成炭化处理。

本发明中优选的c/c多孔体密度为0.7~1.1g/cm3,优选的开口孔隙率为30~50%。

(d)在真空石墨电阻炉中,对上述c/c多孔体进行熔融渗硅反应和高温除硅工艺,得到初步的c/c-sic复合材料,对该初步的c/c-sic复合材料进行化学气相渗透增密,得到最终的c/c-sic零件。

经过熔融渗硅得到的c/c-sic复合材料内部通常含有未完全参与反应的硅,残硅将影响零件的化学稳定性和高温力学性能,因此需要排除残余的硅。

本发明中优选的熔融渗硅反应和高温除硅的工艺条件为:控制电阻炉内真空度为10~30pa,先升温至1600℃,保温1h后完成渗硅反应,接着升温至2000℃以上排除残硅。

排除残硅后,c/c-sic复合材料内部会存在少量的孔隙,本发明对初步的c/c-sic零件进行化学气相渗透处理,进一步致密化。化学气相渗透法是现有比较成熟的技术,工艺条件可参考现有技术中的参数,具体条件不再赘述。

下面将参照图1的工艺流程,并结合以下多个实施例来进一步具体说明本发明。

实施例1

(a)将1000g含有7wt.%乌洛托品的热塑性酚醛树脂完全溶解于1000g丙酮溶液中;向上述溶液中加入5770g长度为50~200微米的短碳纤维粉末,并通过超声将碳纤维粉末均匀分散;然后通过加热蒸馏并回收溶剂,得到粉末聚集体;经干燥、研磨和筛分后,得到酚醛树脂均匀覆膜的平均粒径在10~80微米的碳纤维复合粉末,其中酚醛树脂的体积百分比为20%。

(b)依据设计零件的cad模型,采用3dp工艺成形出相应的碳纤维初始形坯。所述3dp的工艺参数如下:粘接剂由质量分数70%的无水乙醇、28%的去离子水和2%的聚乙二醇400组成,铺粉层厚0.1mm,扫描次数1次,成形得到碳纤维初始形坯。

(c)配置质量分数为50%的热固性酚醛树脂酒精溶液,粘度20mpa·s,在真空浸渗机中对碳纤维初始形坯进行浸渗;将浸渗后的初坯晾置1.5h,然后在80℃氛围中烘干。转至炭化炉中,先在110℃下保温1h,接着在145℃保温0.5h,再升温至180℃并保温2h,完成固化反应。接着在氩气保护下以2℃/min的速率升至550℃并保温0.5h,然后以同样的速度升温至800℃,保温1h后随炉冷却。重复浸渗、固化和碳化这三个步骤,直到完成炭化处理。c/c多孔体的密度为0.72g/cm3,开口孔隙率为47.6%。

(d)将c/c多孔体装入刷有氮化硼的石墨坩埚,电阻炉内真空度控制在20pa,并在多孔体上面铺放理论需量2倍的si粉末,先升温至400℃,保温1h;再升温至750℃,保温1h;接着升温至1250℃,保温1h;最后升温至1600℃,保温1h,完成熔融渗硅反应。接着升温至2000℃排除残硅,得到初步的c/c-sic复合材料;对该初步的c/c-sic复合材料进行化学气相渗透增密,在1200℃下通入三氯甲烷和氢气,反应1小时,得到最终的c/c-sic零件。

实施例2

(a)将1000g含有8wt.%乌洛托品的热塑性酚醛树脂完全溶解于1000g丙酮溶液中;向上述溶液中加入3366g长度为50~200微米的短碳纤维粉末,并通过超声将碳纤维粉末均匀分散;然后通过加热蒸馏并回收溶剂,得到粉末聚集体;经干燥、研磨和筛分后,得到酚醛树脂均匀覆膜的平均粒径在10~100微米的碳纤维复合粉末,其中酚醛树脂的体积百分比为30%。

(b)依据设计零件的cad模型,采用3dp工艺成形出相应的碳纤维初始形坯。所述3dp的工艺参数如下:粘接剂由质量分数75%的无水乙醇、23%的去离子水和2%的聚乙二醇400组成,铺粉层厚0.1mm,扫描次数1次,成形得到碳纤维初始形坯。

(c)配置质量分数为50%的热固性酚醛树脂酒精溶液,粘度20mpa·s,在真空浸渗机中对碳纤维初始形坯进行浸渗;将浸渗后的初坯晾置2h,然后在80℃氛围中烘干。转至炭化炉中,先在120℃下保温1h,接着在150℃保温0.5h,再升温至190℃并保温2h,完成固化反应。接着在氩气保护下以2℃/min的速率升至550℃并保温0.5h,然后以同样的速度升温至900℃,保温1h后随炉冷却。重复浸渗、固化和碳化这三个步骤,直到,完成炭化处理。c/c多孔体的密度为0.799g/cm3,开口孔隙率为45.1%。

(c)将c/c多孔体装入刷有氮化硼的石墨坩埚,电阻炉内真空度控制在20pa,并在多孔体上面铺放理论需量2倍的si粉末,先升温至450℃,保温1h;再升温至800℃,保温1h;接着升温至1300℃,保温1h;最后升温至1600℃,保温1h,完成熔融渗硅反应。接着升温至2000℃排除残硅,得到初步的c/c-sic复合材料;对该初步的c/c-sic复合材料进行化学气相渗透增密。在1200℃下通入三氯甲烷和氢气,反应1小时,得到最终的c/c-sic零件。

实施例3

(a)将1000g含有7wt.%乌洛托品的热塑性酚醛树脂完全溶解于1000g丙酮溶液中;向上述溶液中加入2164g长度为50~200微米的短碳纤维粉末,并通过超声将碳纤维粉末均匀分散;然后通过加热蒸馏并回收溶剂,得到粉末聚集体;经干燥、研磨和筛分后,得到酚醛树脂均匀覆膜的平均粒径在10~80微米的碳纤维复合粉末,其中酚醛树脂的体积百分比为40%。

(b)依据设计零件的cad模型,采用sls工艺成形出相应的碳纤维初始形坯。所述sls的工艺参数如下:激光功率16w,扫描速率3500mm/s,扫描间距0.15mm,铺粉层厚0.12mm,预热温度60℃,成形得到碳纤维初始形坯。

(c)配置质量分数50%的热固性酚醛树脂酒精溶液,粘度20mpa·s,在真空浸渗机中对碳纤维初始形坯进行浸渗;将浸渗后的初坯晾置3h,然后在80℃氛围中烘干。转至炭化炉中,先在120℃下保温2h,接着在165℃保温1h,再升温至190℃并保温4h,完成固化反应。接着在氩气保护下以2℃/min的速率升至550℃并保温0.5h,然后以同样的速度升温至1000℃,保温1h后随炉冷却。重复浸渗、固化和碳化这三个步骤,直到,完成炭化处理。c/c多孔体的密度为0.82g/cm3,开口孔隙率为43.2%。

(d)将c/c多孔体装入刷有氮化硼的石墨坩埚,电阻炉内真空度控制在20pa,并在多孔体上面铺放理论需量2倍的si粉末,先升温至450℃,保温1h;再升温至800℃,保温1h;接着升温至1300℃,保温1h;最后升温至1600℃,保温1h,完成熔融渗硅反应。接着升温至2000℃排除残硅,得到初步的c/c-sic复合材料;对该初步的c/c-sic复合材料进行化学气相渗透增密。在1200℃下通入三氯甲烷和氢气,反应1小时,得到最终的c/c-sic零件。

实施例4

(a)将1000g含有7wt.%乌洛托品的热塑性酚醛树脂完全溶解于1000g丙酮溶液中;向上述溶液中加入1442g长度为50~200微米的短碳纤维粉末,并通过超声将碳纤维粉末均匀分散;然后通过加热蒸馏并回收溶剂,得到粉末聚集体;经干燥、研磨和筛分后,得到酚醛树脂均匀覆膜的平均粒径在10~150微米的碳纤维复合粉末,其中酚醛树脂的体积百分比为50%。

(b)依据设计零件的cad模型,采用3dp工艺成形出相应的碳纤维初始形坯。所述3dp的工艺参数如下:激光功率16w,扫描速率3500mm/s,扫描间距0.15mm,铺粉层厚0.12mm,预热温度60℃,成形得到碳纤维初始形坯。

(c)配置质量分数为50%的热固性酚醛树脂酒精溶液,粘度20mpa·s,在真空浸渗机中对碳纤维初始形坯进行浸渗;将浸渗后的初坯晾置3h,然后在80℃氛围中烘干。转至炭化炉中,先在120℃下保温2h,接着在165℃保温1h,再升温至190℃并保温4h,完成固化反应。接着在氩气保护下以2℃/min的速率升至550℃并保温0.5h,然后以同样的速度升温至1000℃,保温1h后随炉冷却。重复浸渗、固化和碳化这三个步骤,直到,完成炭化处理。c/c多孔体的密度为0.91g/cm3,开口孔隙率为38.5%。

(d)将c/c多孔体装入刷有氮化硼的石墨坩埚,电阻炉内真空度控制在20pa,并在多孔体上面铺放理论需量2倍的si粉末,先升温至450℃,保温1h;再升温至800℃,保温1h;接着升温至1300℃,保温1h;最后升温至1600℃,保温1h,完成熔融渗硅反应。接着升温至2000℃排除残硅,得到初步的c/c-sic复合材料;对该初步的c/c-sic复合材料进行化学气相渗透增密。在1200℃下通入三氯甲烷和氢气,反应1小时,得到最终的c/c-sic零件。

实施例5

(a)将1000g含有9wt.%乌洛托品的热塑性酚醛树脂完全溶解于1000g丙酮溶液中;向上述溶液中加入962g长度为50~200微米的短碳纤维粉末,并通过超声将碳纤维粉末均匀分散;然后通过加热蒸馏并回收溶剂,得到粉末聚集体;经干燥、研磨和筛分后,得到酚醛树脂均匀覆膜的平均粒径在10~100微米的碳纤维复合粉末,其中酚醛树脂的体积百分比为60%。

(b)依据设计零件的cad模型,采用sls工艺成形出相应的碳纤维初始形坯。所述sls的工艺参数如下:激光功率12w,扫描速率2500mm/s,扫描间距0.12mm,铺粉层厚0.1mm,预热温度60℃,成形得到碳纤维初始形坯。

(c)配置质量分数为50%的呋喃树脂酒精溶液,粘度20mpa·s,在真空浸渗机中对碳纤维初始形坯进行浸渗;将浸渗后的初坯晾置3h,然后在80℃氛围中烘干。转至炭化炉中,先在130℃下保温2h,接着在160℃保温1h,再升温至190℃并保温4h,完成固化反应。接着在氩气保护下以2℃/min的速率升至550℃并保温0.5h,然后以同样的速度升温至950℃,保温1h后随炉冷却。重复浸渗、固化和碳化这三个步骤,直到,完成炭化处理。c/c多孔体的密度为0.99g/cm3,开口孔隙率为36.1%。

(d)将c/c多孔体装入刷有氮化硼的石墨坩埚,电阻炉内真空度控制在20pa,并在多孔体上面铺放理论需量2倍的si粉末,先升温至500℃,保温1h;再升温至850℃,保温1h;接着升温至1350℃,保温1h;最后升温至1600℃,保温1h,完成熔融渗硅反应。接着升温至2000℃排除残硅,得到初步的c/c-sic复合材料;对该初步的c/c-sic复合材料进行化学气相渗透增密。在1200℃下通入三氯甲烷和氢气,反应1小时,得到最终的c/c-sic零件。

实施例6

(a)将1000g含有10wt.%乌洛托品的热塑性酚醛树脂完全溶解于1000g丙酮溶液中;向上述溶液中加入361g长度为50~200微米的短碳纤维粉末,并通过超声将碳纤维粉末均匀分散;然后通过加热蒸馏并回收溶剂,得到粉末聚集体;经干燥、研磨和筛分后,得到酚醛树脂均匀覆膜的平均粒径在10~150微米的碳纤维复合粉末,其中酚醛树脂的体积百分比为80%。

(b)依据设计零件的cad模型,采用3dp工艺成形出相应的碳纤维初始形坯。所述3dp的工艺参数如下:激光功率16w,扫描速率3500mm/s,扫描间距0.15mm,铺粉层厚0.12mm,预热温度60℃,成形得到碳纤维初始形坯。

(c)配置质量分数为50%的热固性酚醛树脂酒精溶液,粘度20mpa·s,在真空浸渗机中对碳纤维初始形坯进行浸渗;将浸渗后的初坯晾置3h,然后在80℃氛围中烘干。转至炭化炉中,先在120℃下保温2h,接着在165℃保温1h,再升温至190℃并保温4h,完成固化反应。接着在氩气保护下以2℃/min的速率升至550℃并保温0.5h,然后以同样的速度升温至1000℃,保温1h后随炉冷却。重复浸渗、固化和碳化这三个步骤,直到,完成炭化处理。c/c多孔体的密度为1.08g/cm3,开口孔隙率为34.6%。

(d)将c/c多孔体装入刷有氮化硼的石墨坩埚,电阻炉内真空度控制在20pa,并在多孔体上面铺放理论需量2倍的si粉末,先升温至450℃,保温1h;再升温至800℃,保温1h;接着升温至1300℃,保温1h;最后升温至1600℃,保温1h,完成熔融渗硅反应。接着升温至2000℃排除残硅,得到初步的c/c-sic复合材料;对该初步的c/c-sic复合材料进行化学气相渗透增密。在1200℃下通入三氯甲烷和氢气,反应1小时,得到最终的c/c-sic零件。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1