耐高温陶瓷基复合材料螺钉的制备方法与流程

文档序号:11580169阅读:948来源:国知局

本发明涉及一种螺钉的制备方法,具体涉及一种耐高温陶瓷基复合材料螺钉的制备方法。



背景技术:

随着世界各国对发展高超声速飞行器重视程度的不断增加,飞行器飞行速度也在逐渐增加。其高速飞行过程中与大气层摩擦产生大量的热,使其头锥、前缘等部位温度高达1800℃。因此,其热防护系统至关重要。而用于热防护系统结构件连接用的螺钉、螺母则需要具备优异的性能,尤其是螺钉应用在防热结构的外部,承受高温高压及振动等因素影响,需要其本身具备足够的强度、耐高温、抗氧化等性能。

航天用标准螺钉螺母的材料有石墨、c/c复合材料及c/sic复合材料。石墨具有耐高温、低密度及耐磨性号等一系列优点,但是高温抗氧化性差、强度低。c/c复合材料具有耐高温、低密度、高比强、抗磨损、抗疲劳性能好等一系列优点,但是高温抗氧化性差,在400℃以上及开始氧化。c/sic复合材料具有比强度高、比模量和断裂韧性高、抗烧蚀性好等优点,但是耐温只能达到1650℃。

发明专利cn101265935a公开了一种c/sic螺栓的制备方法。该方法由1k碳纤维0/90°正铺层和±θ斜铺层交替叠层后利用石墨板定型制备纤维预制体,在该预制体上沉积热解碳界面层,然后沉积碳化硅基体制成半成品陶瓷基复合材料板材。在板材上切割形成螺栓毛坯并用金刚石磨轮攻丝,最后对半成品螺栓多次浸渍裂解聚碳硅烷并继续cvi沉积sic防氧化涂层,得到成品c/sic复合材料螺栓。该方法通过cvi+pip工艺制备复合材料螺栓,降低了加工成本,但是其耐温性只能达到1650℃,且螺钉加工螺纹后采用pip方式引入的碳化硅,多次浸渍后碳化硅颗粒填充在空隙及螺纹表面,使得螺纹的精度下降。

如何研制开发一种适于飞行器外防热使用的,耐高温,并且精度高的螺钉,成为现有技术亟待解决的技术问题。



技术实现要素:

针对现有技术的不足,本发明的目的是提供一种耐高温陶瓷基复合材料螺钉的制备方法,制得的螺钉耐高温,能够满足飞行器外防热的使用需求,并且具有非常高的精度。

本发明所述的耐高温陶瓷基复合材料螺钉的制备方法,包括如下步骤:

(1)制备纤维预制体;

(2)在纤维预制体中沉积热解碳;

(3)根据螺钉尺寸进行一次加工,留取加工余量后加工为连续的螺钉;

(4)在螺钉杆中沉积sic基体;

(5)根据螺钉尺寸进行二次加工,精加工到位;

(6)以超高温陶瓷前驱体为原料,引入超高温陶瓷基体;

(7)将连续螺钉杆加工为单个螺钉,在表面制备sic涂层;

(8)根据螺钉要求进行螺纹的加工,得螺钉产品。

其中:

步骤(1)中,所述的纤维预制体为纤维无纺布与网胎连续针刺得到的预制体、2.5d编织结构预制体或纤维布叠层整体穿刺的细边穿刺预制体。

所述的纤维预制体的制备工艺为本领域技术人员公知技术,本领域技术人员能够根据所需的螺钉的规格进行制备。

步骤(1)中,所述的制备纤维预制体采用的纤维为碳纤维或碳化硅纤维。制备纤维预制体采用的纤维包括纤维无纺布纤维、网胎采用的纤维、2.5d编织结构预制体采用的纤维、纤维布叠层整体穿刺的细边穿刺预制体采用的纤维等一切制备纤维预制体过程中采用的纤维。

步骤(2)中,所述的沉积热解碳采用化学气相沉积工艺,以丙烷和氩气为前驱体,沉积温度950-1100℃,沉积时间24-100h,丙烷和氩气流量比为1:2-1:3,沉积完成后,材料密度为1.0-1.30g/cm3。这里所述的材料密度为步骤(2)制品沉积热解碳后的密度。

步骤(4)中,所述的沉积sic基体采用化学气相沉积工艺,以三氯甲基硅烷(mts)为前驱体,通过氢气鼓泡方式带入炉体,h2/ar流量比为1:1.5-1:4,mts流量150-250g/h,沉积温度1000-1500℃,沉积时间60-120小时,沉积完成后,材料密度1.50-1.7g/cm3。这里所述的材料密度为步骤(4)制品的沉积sic的密度。

步骤(6)中,所述的超高温陶瓷前驱体为sic、zrc、zrb2、hfc或hfb2前驱体中的一种或几种的混合物。

步骤(6)中,所述的引入超高温陶瓷基体采用浸渍-裂解工艺,浸渍温度为40-55℃,浸渍压力为3-8mpa,裂解温度为1300℃-1550℃,裂解时间为5-8h,反复该过程至密度达1.9g/cm3以上。

步骤(7)中,所述的制备sic涂层采用cvd工艺。

步骤(8)中,所述的螺纹的加工采用金刚石刀具,以磨削的方式进行,按照金属螺钉的国家标准进行粗牙螺纹加工。

所述的一次加工和二次加工均采用金刚石刀具进行加工。

步骤(8)中,所述的螺钉产品的直径为4mm-15mm。

综上所述,本发明的有益效果如下:

1、本发明以液相前驱体形式引入纳米超高温陶瓷组分,使螺钉的耐温性从1600℃提高到2000℃,同时提高了其力学性能和抗氧化性能。

2、本发明所述的制备方法将螺钉的材料制备与加工相结合,制备的螺钉螺牙完整、精度高、成品率高。

3、本发明采用的碳纤维或碳化硅纤维陶瓷基复合材料综合了纤维复合材料低密度、良好力学性能及超高温陶瓷抗烧蚀的优点,适合航空航天对螺钉的使用要求。

附图说明

图1是本发明螺钉的制备工艺路线图;

图2是本发明螺钉加工示意图;

其中,a为沉积热解碳后的预制体,b为一次加工后所得的连续的螺钉,c为由连续的螺钉加工成的单个螺钉,d为螺钉产品;

图3是实施例1制备的螺钉的图纸;

图4是实施例2制备的螺钉的图纸;

图5是实施例3制备的螺钉的图纸。

具体实施方式

下面结合实施例对本发明做进一步说明。

实施例中采用的所有原料,除特殊说明外均为市购。

实施例1

m10公制粗牙圆头标准螺栓。螺栓总长度24mm,沉头高度4mm,螺杆长度20mm,螺纹总长度18mm,沉头角度100°。

采用t7006k碳纤维无纬布与t70012k网胎交替铺层针刺成碳纤维预制体,其中无纬布0/90°铺层,与网胎1.x+1.y连续针刺成碳纤维预制体平板,密度控制在0.45-0.5g/cm3

将预制体平板置于cvi炉内,以丙烷、氩气为原料,控制二者流量比为1:3,在950℃下沉积48小时,密度达到1.0g/cm3,取出加工为连续的螺钉。杆直径为12mm,螺钉头部直径为25mm,高度为10mm。

将一次加工后的连续螺钉放入cvi炉内,h2/ar流量比为1:3,mts流量150g/h,沉积温度1100℃,沉积时间为120小时,密度达到1.50g/cm3

利用金刚石刀具,将沉积sic后的连续螺钉杆精加工到位,加工后杆直径为10mm,螺钉头部直径为19.06mm,高度为4mm。以sic、zrb2前驱体为原料,按照比例混合搅拌均匀。将螺钉杆置于混合后的前驱体中在4mpa、40℃下进行浸渍,保压1小时后取出固化。以10℃/min的升温速率,在1300℃下裂解6小时。重复该浸渍-裂解过程,使其密度达到1.9g/cm3

将连续的螺钉杆加工为单个螺钉,螺栓总长度24mm,螺钉头部10mm一分为二,得到单个螺钉沉头高度4mm,螺杆长度20mm,沉头角度100°,直径为10mm。在加工后的单个螺钉表面通过cvd工艺制备sic涂层后采用磨削方式进行螺纹加工,螺纹总长度18mm,最终得到螺牙完整、精度高的耐高温m10圆头陶瓷基复合材料螺钉,见图3。

采用该方法制备的碳纤维增强碳化锆超高温陶瓷螺钉,在2026℃下考核了800s,螺钉几乎没有变化,实现了耐高温抗氧化性。

实施例2

m12公制粗牙六角标准螺栓。螺栓总长度25mm,螺栓头5mm,螺杆长度20mm,螺纹总长度18mm。

在x、y方向以t7006kpancf连续长纤维软编铺层,长纤维层为0/90°铺层,z向由t7006kpancf双向穿刺制成细边穿刺碳纤维预制体,密度控制在0.6-0.75g/cm3

将预制体置于cvi炉内,以丙烷、氩气为原料,控制二者流量比为1:2.5,在1000℃下沉积36小时,密度达到1.20g/cm3,取出加工为连续的螺钉。杆直径为15mm,螺钉头部高度为12mm。

将一次加工后的连续螺钉放入cvi炉内,h2/ar流量比为1:2,mts流量200g/h,沉积温度1300℃,沉积时间100小时,密度达到1.7g/cm3

利用金刚石刀具,将沉积sic后的连续螺钉杆精加工到位,加工后杆直径为12mm,螺钉头部高度12mm。以sic、zrc的混合前驱体为原料,将螺钉杆置于前驱体中在6mpa、45℃下进行浸渍、,保压1.5小时后取出固化。以10℃/min的升温速率,在1400℃下裂解8小时。重复该浸渍-裂解过程,使其密度达到2.0g/cm3

将连续的螺钉杆按照图纸加工为单个六角螺钉,螺栓总长度25mm,螺栓头5mm,螺杆长度20mm。在加工后的单个螺钉表面通过cvd工艺制备sic涂层后采用磨削方式进行螺纹加工,螺纹总长度18mm,最终得到螺牙完整、精度高的耐2000℃的m12六角陶瓷基复合材料螺钉,见图4。

实施例3

m8公制粗牙六角标准螺栓。螺栓总长度25mm,螺栓头5mm,螺杆长度20mm,螺纹总长度18mm。

采用碳化硅纤维布交替铺层针刺成碳化硅纤维预制体,其中布0/90°铺层,连续针刺成纤维预制体平板,密度控制在0.75g/cm3

将预制体置于cvi炉内,以丙烷、氩气为原料,控制二者流量比为1:2.5,在1100℃下沉积24小时,密度达到1.30g/cm3,取出加工为连续的螺钉。杆直径为10mm,螺钉头部高度为12mm。

将一次加工后的连续螺钉放入cvi炉内,h2/ar流量比为1:2,mts流量250g/h,沉积温度1500℃,沉积时间80小时,密度达到1.75g/cm3

利用金刚石刀具,将沉积sic后的连续螺钉杆精加工到位,加工后杆直径为8mm,螺钉头部高度12mm。以sic、zrc的混合前驱体为原料,将螺钉杆置于前驱体中在8mpa、50℃下进行浸渍,保压1.5小时后取出固化。以10℃/min的升温速率,在1500℃下裂解8小时。重复该浸渍-裂解过程,使其密度达到2.0g/cm3

将连续的螺钉杆按照图纸加工为单个六角螺钉,螺栓总长度25mm,螺栓头5mm,螺杆长度20mm。在加工后的单个螺钉表面通过cvd工艺制备sic涂层后采用磨削方式进行螺纹加工,螺纹总长度18mm,最终得到螺牙完整、精度高的耐2000℃的m8六角陶瓷基复合材料螺钉,见图5。

对通过本发明制备的针刺、细边穿刺碳纤维增强陶瓷基复合材料m10圆头及m12六角型螺钉进行了拉伸试验,实验结果见表1。

表1螺钉拉伸测试

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1