一种氧化锆种植牙基台制备方法与流程

文档序号:11244504阅读:1684来源:国知局
一种氧化锆种植牙基台制备方法与流程

技术领域:

本发明属于新材料种植牙基台制备技术领域,涉及一种氧化锆种植牙基台制备方法,制备具有高可靠性、强度和韧性以及低成本的氧化锆种植牙基台,以替代金属材质的种植牙基台。



背景技术:

牙列缺损、缺失是口腔科常见病多发病,修复方法主要有可摘义齿、固定义齿和牙种植;牙种植的发展既标志着口腔医学的进步,也反映了生物学、化学和材料学等学科的发展,是相关学科相互渗透、融合的结晶;牙种植的产生和发展代表了人们对口腔美学和功能恢复的追求;自20世纪60年代至今,现代牙种植所使用的各种种植系统均为金属钛制成,由于金属基台的不透光性而影响美学效果;中国专利201610641885.2公布的一种新型高稳定性种植牙基台包括义齿连接部、中间连接部、下端连接部,义齿连接部、中间连接部、下端连接部为在竖直方向上从上至下依次分布,义齿连接部内设有用于螺钉插入的通孔,通孔纵向贯穿中间连接部并延伸至下端连接部内,通孔的直径从上至下依次递减,义齿连接部的外周分布有与义齿内表面形状适配的环状凸起,义齿连接部为长圆柱体结构,环状凸起内设有弹簧,中间连接部与下端连接部的连接端呈圆弧槽状,通过在义齿连接部的外周表面设置环状凸起,环状凸起内设置弹簧,内装有弹簧的环状凸起具有一定的弹性形变力;中国专利201510431315.6公开的一种个性化种植牙基台的生产工艺包括以下工艺步骤:a、通过口外扫描仪对石膏模进行三维数据扫描,石膏模中模仿植入病患牙骨内的种植体的部位锁上扫描杆,或者,通过口内扫描仪对病患口腔进行三维数据扫描,种植体锁上扫描杆,b、口外扫描仪或口内扫描仪将三维数据传输至计算机,计算机进行数据配对,c、计算机根据配对结果自动进行义齿设计,d、计算机将设计好的义齿数据传输至3d打印机或者研磨机,3d打印机完成义齿3d打印,研磨机完成义齿研磨,e、3d打印成型的义齿或者研磨处理后的义齿即可与植入病患牙骨内的种植体配合;中国专利201310733686.0公开了一种种植牙基台、种植牙及种植牙基台的制备方法,种植牙基台包括基台本体,基台本体上镀有银离子层,种植牙为种植体安装于基台本体上,种植牙基台的制备方法如下:制备agno3稀溶液、na3c6h5o6稀溶液和nabh4稀溶液备用,将agno3溶液、na3c6h5o6溶液和水在冰水浴中混合,加适量去离子水,在搅拌下加入nabh4溶液,继续搅拌至得到均匀的溶胶,将硅烷化后的种植牙基台浸入制好的溶胶中0.8-1.2小时,取出,清洗干净,即得;近来,研究发现,种植牙基台中的金属材料会渐渐渗透并刺激机体产生免疫反应,表现为血淋巴细胞增高,位于口腔(颌骨外)的金属还会对磁共振、ct检查产生影响(伪影)。因此,研发设计一种氧化锆种植牙基台制备方法,采用氧化锆替代金属制备种植牙基台,既可避免金属材料对机体的不良影响又能提高牙种植的美学修复效果,氧化锆的全瓷材料也不会引起变态反应和异常的新陈代谢,对x线也无阻射,适合国人的牙齿结构。



技术实现要素:

本发明的目的在于克服现有技术存在的缺点,寻求设计一种氧化锆种植牙基台制备方法,采用氧化锆替代金属制备种植牙基台,在避免金属材料对机体不良影响的前提下,降低生产成本,提高牙种植的美学修复效果。

为了实现上述目的,本发明涉及的氧化锆种植牙基台制备方法的工艺过程包括浆料制备、坯体成型和微波烧结共三个步骤:

(一)、浆料制备:将丙烯酰胺单体与n,n’亚甲基双丙烯酰胺按照17∶1的质量比混合制备得到混合体,再将混合体与水按照18∶85的质量比混合制备得到预配液,在预配液中加入0.5%质量份数的分散剂、纯度大于99%和粒度小于20nm的粉状3y-tzp,配制成ph值为9.5和固相体积分数大于55%的悬浮体,悬浮体经球磨机混合10小时后得到粘度小于200mpa.s的水体系陶瓷浆料,混合体在水体系陶瓷浆料中的质量百分比为3%,完成浆料的制备;

(二)、坯体成型:采用凝胶注模成型技术对浆料进行真空处理后,在浆料中加入1%质量百分比引发剂和0.5%体积百分比催化剂形成混合物,将混合物匀速的浇注到模具中进行凝胶化,然后进行脱模并干燥,完成坯体的成型;

(三)、微波烧结:将坯体放入微波烧结装置的微波烧结腔中,按照设定的升温曲线,对坯体进行微波烧结。

本发明涉及的分散剂为质量百分比浓度为5%的聚甲基丙烯酸铵溶液;引发剂为质量百分比浓度为5%的过硫酸铵水溶液;催化剂为质量百分比浓度为5%的四甲基乙二胺水溶液。

本发明制备的氧化锆种植牙基台中的氧化钇含量为3%mol,氧化锆种植牙基台的密度为6.05克/厘米3,硬度为12.22gpa,抗弯强度为936.32mpa,断裂韧性为12.56mpam1/2

本发明涉及的微波烧结装置的主体结构包括磁控管、微波电源、环形器、水负载、四桩调谐器、加热腔、负载、天线阵、转动支架和托盘;设置有磁控管的微波电源与环形器的左端管道式连接,环形器的下端设置有水负载,环形器的右端与四桩调谐器的左端管道式连接,四桩调谐器的右端与内空式矩形结构的加热腔管道式直角连接,设置有负载加热腔的顶端设置有天线阵,加热腔的底端设置有转动支架,转动支架的顶端设置有圆形板状结构的托盘;磁控管发射的微波频率为2.45ghz;微波电源的最大输出功率为5kw;环形器用于将负载的反射波送入水负载,使其不致返回磁控管,以保护磁控管;水负载用于吸收环形器送入的反射波;四桩调谐器用于控制加热腔使负载的反射波最小;加热腔的材质为不锈钢;天线阵用于汇聚微波并使微波顺利进入加热腔;转动支架用于旋转和支撑托盘,使托盘在转动支架的带动下做圆周运动;托盘用于承载被烧结的物品。

本发明涉及的凝胶注模成型技术,适合于规模化生产,能够提高成品率和成品可靠性,显著降低制造成本,消除陶瓷粉体颗粒的团聚体,减少烧结过程中复杂形状部件的变形和开裂,减少最终产品的机加工量,获得高可靠性的陶瓷材料与部件;制备的胚体密度和强度高、均匀性好,外形尺寸不固定;微波烧结装置将微波能通过汇聚天线控制在一定空间范围内,加大加热范围并将均匀分布能量,实现陶瓷材料连续化微波烧结,并能够和常规烧结设备结合使用,微波烧结结合常规烧结能够弥补常规烧结靠热传导加热的加热温度梯度大、材料受热不均匀、加热时间长和耗能大的缺点,同时避免了陶瓷材料在低温时吸收微波能差的问题。

本发明与现有技术相比,采用纳米级化学纯氧化锆为原材料制作牙种植基台,通过氧化锆相变增韧使基台的抗折强度达到1200mpa,断裂韧性达到10mpa*m1/2以上,用cad/cam、冷态等静压成型方法和微波烧结工艺加工制作精度最高和工差最小的全瓷修复体和种植牙基台,符合牙齿生物学要求和接近天然牙齿机械强度,烧结完毕后只需表面抛光即可使用,避免了烧结后的研磨加工工序,具有强度高、耐磨性好,抛光性较好,磨擦系数小,尺寸稳定性好和自润滑性能好的特点,同时,提高了基台和修复体的生物相容性、抗折强度、断裂韧性、透光性、边缘适合性及美学效果,缩短临床修复治疗时间,降低医疗费用,达到国际同类技术的领先水平,在国内、外推广应用,造福于人类。

附图说明:

图1为本发明的工艺流程框图。

图2为本发明涉及的微波烧结装置的主体结构原理示意图。

图3为本发明涉及的氧化锆种植牙基台的主体结构示意图。

图4为本发明涉及的氧化锆种植牙基台的剖面结构示意图。

图5为本发明涉及的氧化锆种植牙基台的仰视结构示意图。

具体实施方式:

下面通过实施例并结合附图对本发明作进一步说明。

实施例1:

本实施例制备的氧化锆种植牙基台制备方法的工艺过程包括浆料制备、坯体成型和微波烧结共三个步骤:

(一)、浆料制备:将丙烯酰胺单体与n,n’亚甲基双丙烯酰胺按照17∶1的质量比混合制备得到混合体,再将混合体与水按照18:85的质量比混合制备得到预配液,在预配液中加入0.5%质量份数的分散剂、纯度大于99%和粒度小于20nm的粉状3y-tzp,配制成ph值为9.5和固相体积分数大于55%的悬浮体,悬浮体经球磨机粉碎10小时后得到粘度小于200mpa.s的水体系陶瓷浆料,混合体在水体系陶瓷浆料中的质量百分比为3%,完成浆料的制备;

(二)、坯体成型:采用凝胶注模成型技术对浆料进行真空处理后,在浆料中加入1%质量百分比引发剂和0.5%体积百分比催化剂形成混合物,将混合物匀速的浇注到模具中进行凝胶化,然后进行脱模并干燥,完成坯体的成型;

(三)、微波烧结:将坯体放入微波烧结装置的微波烧结腔中,按照设定的升温曲线,对坯体进行微波烧结。

本实施例涉及的分散剂为质量百分比浓度为5%的聚甲基丙烯酸铵溶液(pmaa-nh4);引发剂为质量百分比浓度为5%的过硫酸铵水溶液;催化剂为质量百分比浓度为5%的四甲基乙二胺水溶液。

本实施例制备的氧化锆种植牙基台中的氧化钇含量为3%mol,氧化锆种植牙基台的密度为6.05克/厘米3,硬度为12.22gpa,抗弯强度为936.32mpa,断裂韧性为12.56mpam1/2

本实施例涉及的微波烧结装置的主体结构包括磁控管1、微波电源2、环形器3、水负载4、四桩调谐器5、加热腔6、负载7、天线阵8、转动支架9和托盘10;设置有磁控管1的微波电源2与环形器3的左端管道式连接,环形器3的下端设置有水负载4,环形器3的右端与四桩调谐器5的左端管道式连接,四桩调谐器5的右端与内空式矩形结构的加热腔6管道式直角连接,设置有负载7加热腔6的顶端设置有天线阵8,加热腔6的底端设置有转动支架9,转动支架9的顶端设置有圆形板状结构的托盘10;磁控管1发射的微波频率为2.45ghz;微波电源2的最大输出功率为5kw;环形器3用于将负载7的反射波送入水负载4,使其不致返回磁控管1,以保护磁控管1;水负载4用于吸收环形器3送入的反射波;四桩调谐器5用于控制加热腔6使负载7的反射波最小;加热腔6的材质为不锈钢;天线阵8用于汇聚微波并使微波顺利进入加热腔6;转动支架9用于旋转和支撑托盘10,使托盘10在转动支架9的带动下做圆周运动;托盘10用于承载被烧结的物品。

本实施例涉及的凝胶注模成型技术,适合于规模化生产,能够提高成品率和成品可靠性,显著降低制造成本,消除陶瓷粉体颗粒的团聚体,减少烧结过程中复杂形状部件的变形和开裂,减少最终产品的机加工量,获得高可靠性的陶瓷材料与部件;制备的胚体密度和强度高、均匀性好,外形尺寸不固定;微波烧结装置将微波能通过汇聚天线控制在一定空间范围内,加大加热范围并将均匀分布能量,实现陶瓷材料连续化微波烧结,并能够和常规烧结设备结合使用,微波烧结结合常规烧结能够弥补常规烧结靠热传导加热的加热温度梯度大、材料受热不均匀、加热时间长和耗能大的缺点,同时避免了陶瓷材料在低温时吸收微波能差的问题。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1