一种低电阻率抗老化NTC热敏陶瓷材料及其制备方法与流程

文档序号:11170017阅读:1547来源:国知局

本发明属于热敏陶瓷材料技术领域,具体涉及一种低电阻率抗老化ntc热敏陶瓷材料及其制备方法。

技术背景

热敏元器件主要由正温度系数以及负温度系数的热敏陶瓷材料制造而成,其工作原理是利用热敏陶瓷材料的电阻率随温度变化,其中由于非线性ntc(negativetemperaturecoefficient)具备对温度敏感,互换性好,响应快,以及体积小等诸多优点,被广泛应用在温度控制,补偿,测量等方面。

ntc热敏陶瓷材料通常是由3d过渡金属组成的具有ab2o4尖晶石结构的复合氧化物,而此类半导体陶瓷存在以下三种导电机制:(1)非化学计量比电导;(2)原子价控制电导;(3)跳跃电导。目前研究报道中,针对尖晶石结构ntc热敏材料都是使用添加cu来有效地降低ntc热敏材料的电阻率以及b值,但含cu体系稳定性差,不可避免的带来老化问题,老化后电阻率变化率高达20%以上、b值变化率也高达5%以上,这极大地限制了ntc热敏陶瓷在精密控温和测温等高端领域的应用。因此,在制备低电阻率的热敏陶瓷材料时,都必须对其老化性能进行评估,采用的老化条件是在150℃大于50h放置样品,老化后的ntc热敏陶瓷材料出现阻值r增大,b值增加等现象,其变化率通常大于5%,目前,对于老化后r与b值发生漂移的解释主要有以下三点:(1)阳离子在尖晶石结构中a位和b位之间的跳动,引起r与b值的漂移;(2)晶界处的阳离子空位处于亚平衡态,老化过程中会向晶粒内部迁移从而达到平衡;(3)采用ag做电极时,ag会渗透到ntc陶瓷内部发生化学反应,从而影响r与b值。热敏陶瓷领域相关研究人员在老化机理方面进行了深入研究,但目前还未见有关低电阻率抗老化ntc热敏陶瓷材料的报道。

因此,如何制备一种低电阻率抗老化的ntc热敏陶瓷材料,对于热敏元器件行业来讲至关重要,本发明也正是在此背景下,经过相关研究及试验,提出一种低电阻率抗老化的ntc热敏陶瓷的制备方法,有效地解决了热敏陶瓷材料在老化后电阻率与b值增大的问题。



技术实现要素:

对于ntc热敏陶瓷材料来讲,ρ与b值属于最重要的两个参数,本发明针对一般ntc热敏陶瓷材料在获得低电阻率时,稳定性变差,在经过长期高温冲击后出现阻值和b值严重漂移的问题,导致热敏器件失效。本发明提供一种锰钴镍体系陶瓷粉与锰酸镧复合制备低电阻率抗老化ntc热敏陶瓷材料的制备方法,本发明解决了目前ntc陶瓷材料普遍存在的一个关键问题:通过在co1.45mn1.55-xnixo4(x≤0.7)尖晶石结构的ntc陶瓷材料中添加部分钙钛矿结构的lamno3ntc热敏陶瓷材料,制备出一种低电阻率抗老化的ntc热敏陶瓷材料,经过长时间的高温老化,r与b值变化率小于1%。

具体地,本发明提供了一种低电阻率抗老化ntc热敏陶瓷材料,按mol配方ylamno3-(1-y)co1.45mn1.55-xnixo4,x值≤0.7,y≤0.3制得。

进一步地,一种低电阻率抗老化ntc热敏陶瓷材料,按mol配方ylamno3-(1-y)co1.45mn1.55-xnixo4,x值优选0.3~0.6范围之内,y值优选0.2~0.3范围之内制得。

上述所述的低电阻率抗老化ntc热敏陶瓷材料主体功能材料为镍钴锰镧体系ntc陶瓷。

本发明还提供了一种低电阻率抗老化ntc热敏陶瓷材料的制备方法,包括以下步骤:

锰钴镍体系陶瓷粉的制备:

a、将配方niso4、mn(no3)2、co(no3)2三种化合物按以下摩尔组分比进行称量:co1.45mn1.55-xnixo4,x≤0.7;

b、对步骤a称量好的物料加去离子水溶解,再称取与金属离子总量等mol量的k2co3加水溶解并将其置于金属盐溶液中,再将混合液置于50℃水浴中搅拌1h后取出沉淀混合物,水洗5次,经90℃烘干,烘干后的混合物料过100目不锈钢筛网;

c、将烘干后的沉淀混合物料在800~1000℃进行预烧,得到锰钴镍体系热敏陶瓷粉体。

低电阻率抗老化ntc热敏陶瓷材料的制备:

d、将步骤c中的热敏陶瓷粉体与锰酸镧按质量比为:1-y:y,y≤0.3,称量,将称量好的物料、锆球、去离子水按照1:1:1的比例放入球磨罐中,用行星式球磨机以300~500转/分钟速率球磨3~6小时;

e、将步骤d的球磨后将浆料倒出,置入烘箱中以恒温90℃经20小时烘干,烘干后的物料过100目不锈钢筛网;

f、将步骤e中的物料采用常规的轧膜、压制或流延方式成型,经过排胶和高温烧结成得到低电阻率抗老化的ntc热敏陶瓷材料。

上述步骤f成型方式的选择根据最终低电阻率抗老化ntc陶瓷材料的形状、大小而定,对成型后的ntc材料进行烧结得到高性能ntc陶瓷材料,烧结温度1050~1200℃。

上述执行步骤f得到烧结后的ntc陶瓷体,抛光后进行两面涂覆银浆作为电极,烧银制度为室温经40分钟升至120℃后,保温10分钟,再经60分钟升至320℃保温30分钟,然后90分钟升至650℃,保温30分钟,随炉冷却即得到热敏陶瓷材料。

本发明提供的技术方案的有益效果为:采用锰钴镍与锰酸镧复合材料体系,通过改变x与y的数值,可在获得低电阻率的同时调控材料b值,并且在150℃长时间老化情况下,ρ和b值的变化率均可小于1%。本发明提供的材料体系与现有的ntc热敏陶瓷材料相比,具有低ρ以及ρ值与b值稳定性能大大提高的特点,采用该材料制备的热敏元器件具有高稳定、长寿命等优点,对高性能热敏元器件的工业化生产具有重要实用价值。

具体实施方式

原料规格:

表1实验原料及规格

实施例1:低电阻率抗老化ntc热敏陶瓷材料的制备

(1)配料、烘干、预烧

按照co(no3)2:mn(no3)2:niso4=1.45:1.35:0.2的摩尔配比进行配料。将称量好的原料置于烧杯中加水溶解,再称量与金属离子总量等mol量的k2co3加水溶解,然后金属盐溶液置于50℃水浴中加入,将k2co3水溶液滴入到金属盐溶液中,搅拌1h后取出沉淀物,水洗5次,经90℃烘干,烘干后的物料过100目不锈钢筛网,将过筛后的粉体放入刚玉坩埚中,进行预烧。预烧制度为:从室温经过360分钟升温至850℃,保温4小时后随炉冷却。将预烧粉体、锆球、去离子水按照1:1:1的比例放入球磨罐中,用行星式球磨机以450转/分钟速率球磨3小时进行球磨后将浆料倒出,置入烘箱中以恒温90℃经20小时烘干,再过100目筛网,得到预烧粉料。

(2)混料

将上述预烧粉料与锰酸镧按质量比:0.7:0.3称量;将称量好的物料、锆球、去离子水按照1:1:1的比例放入球磨罐中,用行星式球磨机以300~500转/分钟速率球磨3~6小时;球磨后将浆料倒出,置入烘箱中以恒温90℃经20小时烘干,烘干后的物料过100目不锈钢筛网;

(3)造粒

在过筛的粉体中加入浓度为6wt.%的聚乙烯醇(pva)水溶液粘结剂,放在研钵中充分研磨混合进行造粒,再将其过60和100目筛网,选取中间层的团粒。

(4)干压成型

将步骤(3)造好的颗粒装入钢模具中,在液压机上干压成φ10.0mm×1.5mm的圆柱生坯片,压力大小为400mpa·m-2(根据压力柱面积换算的压力)。

(5)排胶和烧结工艺

将步骤(4)成型好的坯体置入箱式电阻炉中,经过228分钟从室温升温至400℃,保温2小时进行排胶处理,然后再经5小时升温到1200℃保温4小时,随炉冷却,制备致密陶瓷体。

(6)涂银

将步骤(5)烧结后的陶瓷体,抛光后进行两面涂覆银浆作为电极,烧银制度:室温经40分钟升至120℃后,保温10分钟,再经60分钟升至320℃保温30分钟,然后90分钟升至650℃,保温30分钟,随炉冷却。

(7)测试

分别测试25℃和125℃温度下的电阻,根据(1)式计算出b值。

对测试样品进行老化处理:150℃保温200小时。分别测试老化后25℃和125℃温度下的电阻,根据(1)式计算出老化后b值。

b=1186.04×ln(r25/r125)(1)

测试性能如表2所示。

表20.7wtco1.45mn1.35ni0.2o4-0.3wtlamno3复合陶瓷材料的性能

从表2结果可知,0.7co1.45mn1.35ni0.2o4-0.3lamno3复合热敏陶瓷材料的3个样品的b值维持在2870k左右,电阻率约为150ω.cm,经过150℃老化200h后,b值与电阻率的变化率整体上小于1%。

实施例2:低电阻率抗老化ntc热敏陶瓷材料的制备

(1)配料、烘干、预烧

按照co(no3)2:mn(no3)2:niso4=1.45:1.15:0.4的摩尔配比进行配料。将称量好的原料置于烧杯中加水溶解,再称量与金属离子总量等mol量的k2co3加水溶解,然后金属盐溶液置于50℃水浴中加入,将k2co3水溶液滴入到金属盐溶液中,搅拌1h后取出沉淀物,水洗5次,经90℃烘干,烘干后的物料过100目不锈钢筛网,将过筛后的粉体放入刚玉坩埚中,进行预烧。预烧制度为:从室温经过360分钟升温至1000℃,保温4小时后随炉冷却。将预烧粉体、锆球、去离子水按照1:1:1的比例放入球磨罐中,用行星式球磨机以500转/分钟速率球磨3小时进行球磨后将浆料倒出,置入烘箱中以恒温90℃经20小时烘干,再过100目筛网,得到预烧粉料。

(2)混料

将上述预烧粉料与锰酸镧按质量比:0.8:0.2称量;将称量好的物料、锆球、去离子水按照1:1:1的比例放入球磨罐中,用行星式球磨机以500转/分钟速率球磨6小时;球磨后将浆料倒出,置入烘箱中以恒温90℃经20小时烘干,烘干后的物料过100目不锈钢筛网;

(3)造粒

在过筛的粉体中加入浓度为6wt.%的聚乙烯醇(pva)水溶液粘结剂,放在研钵中充分研磨混合进行造粒,再将其过60和100目筛网,选取中间层的团粒。

(4)干压成型

将步骤(3)造好的颗粒装入钢模具中,在液压机上干压成φ10.0mm×1.5mm的圆柱生坯片,压力大小为400mpa·m-2(根据压力柱面积换算的压力)。

(5)排胶和烧结工艺

将步骤(4)成型好的坯体置入箱式电阻炉中,经过228分钟从室温升温至400℃,保温2小时进行排胶处理,然后再经5小时升温到1200℃保温4小时,随炉冷却,制备致密陶瓷体。

(6)涂银

将步骤(5)烧结后的陶瓷体,抛光后进行两面涂覆银浆作为电极,烧银制度:室温经40分钟升至120℃后,保温10分钟,再经60分钟升至320℃保温30分钟,然后90分钟升至650℃,保温30分钟,随炉冷却。

(7)测试

分别测试25℃和125℃温度下的电阻,根据(1)式计算出b值。

对测试样品进行老化处理:150℃保温200小时。分别测试老化后25℃和125℃温度下的电阻,根据(1)式计算出老化后b值。

b=1186.04×ln(r25/r125)(1)

测试性能如表3所示。

表3:0.8co1.45mn1.15ni0.4o4-0.2lamno3复合陶瓷材料的性能

从表3结果可知,0.8co1.45mn1.15ni0.4o4-0.2lamno3复合陶瓷材料的3个样品制备样品的b值维持在2750k左右,电阻率约为113ω·cm,经过150℃老化200h后,b值与电阻r值变化率远小于1%。

以上内容是结合最佳实施方案对本发明说做的进一步详细说明,不能认定本发明的具体实施只限于这些说明。本领域的技术人员应该理解,在不脱离由所附权利要求书限定的情况下,可以在细节上进行各种修改,都应当视为属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1