具有内部热交换的防腐蚀重整器管的制作方法

文档序号:14916288发布日期:2018-07-11 01:03

本实用新型涉及用于将含烃进料、优选天然气和轻质液态烃例如石脑油转化为包含碳氧化物和氢气的合成气产物的重整器管。本实用新型的重整器管使所述进气和所述部分转化为合成气产物的产物气体之间能够内部热交换,从而在生产合成气以及有价值的氢气和一氧化碳产物期间产生能量消耗方面的优势。本申请还描述了利用本实用新型的重整器管通过蒸汽重整含烃进料生产合成气的方法,以及装备所述重整器管的重整炉。



背景技术:

烃可以与蒸汽催化反应来提供合成气,即氢气(H2)和一氧化碳(CO)的混合物。按Ullmann工业化学百科全书(Ullmann′s Encyclopedia of Industrial Chemistry)第六版,1998Electronic Release,关键字“气体生产”中的解释,这种所谓的蒸汽重整是最普遍使用的合成气生产方法,合成气然后可以转化为更为重要的商用化学品例如甲醇或氨。虽然可以转化不同的烃,例如石脑油、液化气或炼油气,但以蒸汽重整含甲烷的天然气为主。

天然气的蒸汽重整是高度吸热的。因此在重整炉中进行,所述重整炉中平行排列了很多含有催化剂并在其中发生蒸汽重整反应的重整器管。所述重整炉的外壁以及它的顶和底用多个经得起高达1200℃温度的耐火材料层饰面(faced)或内衬(lined)。所述重整器管通常用安装在所述重整炉的顶部或底部上或所述侧壁上的燃烧器点燃并直接加热所述重整器管之间的空间。向所述重整器管的传热通过热烟道气的热辐射和对流传热实行。

通过热交换器或火焰加热器预加热到约500℃之后,所述烃-蒸汽混合物在最终加热到约500℃至800℃后进入所述重整器管并在其中经所述重整催化剂转化为一氧化碳和氢气。镍基重整催化剂是普遍的。虽然较高级的烃完全转化为一氧化碳和氢气,但在甲烷的情况下,通常是部分转化。产物气体的组成由反应平衡决定;所述产物气体因此不仅包含一氧化碳和氢气,而且包含二氧化碳、未转化的甲烷和水蒸气。为了能量优化或对于包含较高级烃的进料而言,可以在所述预加热器的下游使用用于预裂化所述进料的所谓预重整器。所述预裂化的进料然后在另一个加热器中加热到期望的重整器管进入温度。

所述热合成气产物气体在离开所述重整炉后在一个或多个热交换器中部分冷却。所述部分冷却的合成气产物气体然后取决于目标产物的类型或下游过程的类型,经历其他调节步骤。

天然气的蒸汽重整因其能量需求高而著名。因此现有技术已经包含旨在通过优化工艺设计、例如通过能量回收来最小化外来能量需求的提议。例如,Higman在1990年6月在特隆赫姆(Trondheim)的EUROGAS-90大会上演示了有内部热交换的所谓HCT重整器管,它也公开在http://www.higman.de/gasification/papers/eurogas.pdf(2011年9月27日检索)。这种管包含催化剂填充的和外加热的外部重整器管,其中所述进气从上至下流过催化剂床。所述催化剂床内部是两个由合适的材料制成的双螺旋热交换器盘管,所述部分重整的气体在离开所述催化剂床后流过所述盘管,从而将其一部分显热传递给经所述催化剂发生的蒸汽重整过程。然而,这里的缺点是由于所述气体通过所述热交换器盘管的路径较长,所以压降较高。此外,因为所述热交换器管的较长区段遭受金属尘化腐蚀相关的温度范围,所以在下文阐述并被称为“金属尘化”的腐蚀类型变得更明显地清晰可见。

如论文“金属尘化防护涂层.文献综述(Metal Dusting Protective Coatings.A Literature Review)”中的教导,A.Agüero等,Oxid Met(2011)76:23–42,金属尘化是金属和合金腐蚀性崩解成细粒的类型。容易受到这种形式的腐蚀性侵害的材料特别包括铁、镍、钴及其合金。金属尘化在大约400至800℃的高温和在包含特别是一氧化碳(CO)或烃的气体气氛中发生。事实上,低于400℃,金属尘化反应的热力学势高但反应速率低。高于800℃,金属尘化的热力学势如此低,以致它不会发生到任何明显的程度。因此蒸汽重整过程中,经常观察到金属尘化影响所有设施部件,特别是在废热区段中的设备部件,它们在所引述的温度范围内与所产生的合成气相接触。

在高温下,CO和烃具有在金属上解离并由此在所述金属表面上沉积碳的倾向。所述碳然后转化到所述固相中并从它们的均匀固体基质提取易感金属,从而导致凹坑形成并最终导致所述材料的机械崩溃。这导致维修成本高并可造成严重的安全问题,例如通过加压管道和设备的爆裂和/或通过毒性一氧化碳的逸出。

通过下列措施,可以防止或至少阻碍金属尘化的发生:

a)改变所述基本过程的操作条件,尤其是温度和压力,

b)用例如硫化合物有意使所述金属表面中毒,

c)改变合金组成和/或利用耐腐蚀材料,

d)通过化学、热或机械处理修改表面性质,

e)在所述合金表面上施加腐蚀抑制涂层。

a)下的措施经常失败,因为考虑中的基本过程需要这些特有的温度和压力。测量c)同样如此,因为所述基本过程的工艺条件需要特殊的材料选择并因此有特殊的合金组成。此外,b)和d)下的措施的效力经常是有时间限制的。

关于措施e),通常使用扩散涂层或覆盖层或外层,它们基于形成基于元素铝、铬或硅的薄、稳定、保护性和粘附的氧化皮层。目前化学工业中在高温下最经常用于防护氧化和腐蚀的是铝扩散涂层。

扩散涂层是当在高得足以使金属或金属混合物能够扩散到基底中的温度下用所述金属或金属混合物涂布合金时形成的。结果是与基底材料冶金结合,所述涂层于是变成所述基底材料的整合部分。这里产生的缺点是生产成本和复杂度高以及由于例如保护性金属挥发或磨损,扩散涂层的寿命有限。

还有,赋予金属尘化腐蚀的防护是由例如陶瓷材料制造设施例如管线的全段。然而,在这种情况下的缺点是与金属材料相比,耐压性较低,和/或通常,成形性和弹性降低。



技术实现要素:

因此本实用新型的目的是详述在通过内部热交换的能量回收方面具有有利的性质而同时对金属尘化腐蚀的易感性最小化的重整器管。

这个目的通过具有如下所述特征的重整器管实现。本实用新型的其他实施方式从相应的从属权利要求中显而易见。

本实用新型的重整器管:

重整器管,其用于在蒸汽重整条件下将含烃进料、优选天然气转化为包含碳氧化物和氢气的合成气产物,其包含

(a)外部的加压壳管,其中所述壳管依靠分隔盘被分成反应室和出口室,以便有可能在所述出口室中设定与所述反应室中相比不同、优选较低的压力,并且其中所述反应室是外加热的,

(b)蒸汽重整活性固体催化剂的散堆(dumped)床,其布置在所述反应室中,

(c)包含进料的进气流的入口,其布置在所述反应室的区域内,其中所述进气流的入口与散堆催化剂床流体连通,

(d)至少一个热交换器管,其布置在所述反应室内部和所述散堆催化剂床内部,其入口端与所述散堆催化剂床流体连通并且其出口端与所述出口室流体连通,其中所述进气流在进入所述反应室中后起初流过所述散堆催化剂床并随后逆流流过所述热交换器管,并且其中所述热交换器管与所述散堆催化剂床和从中流过的进气流有热交换关系,

(e)合成气产物的收集管道,其与所述出口室流体连通,

所述重整器管的特征在于,在所述出口室的区域内,

所述热交换器管的出口端穿过所述分隔盘并在布置在所述壳管内部的内管中开口并与所述收集管道流体连通,以便所述合成气产物能够从所述反应室经由所述出口室通行到所述收集管道中,

所述内管配备有防腐蚀层或由耐腐蚀材料组成,

可透气的绝热层设置在所述壳管的内壁和所述内管的外壁之间。

本申请还涉及配备本实用新型的重整器管的重整炉,以及在本实用新型的重整器管中通过催化蒸汽重整含烃进料生产合成气的方法。

所述重整器管的两个区域之间的流体连通应理解为是指任何类型的连接,只要它使得有可能流体、例如所述进气流或所述合成气产物流能从所述两个区域中的一个流向另一个即可,忽略任何居间的区域或组件。

热交换关系是指所述重整器管的两个区域之间热交换或热传递的可能性,其中热交换或热传递例如热传导、热辐射或对流热传输的所有机制均可以生效。

蒸汽重整条件应理解为是指本身对本领域技术人员而言已知的工艺条件,特别是温度、压力和停留时间,如上文举例列举的和在相关文献中详细论述的,并且在所述条件下实行所述反应物至少部分转化但优选工业相关地转化为合成气产物例如CO和氢气。

所述热交换器管的出口端借以通向布置在所述壳管内部的内管中的特征不应该被更狭义地解释为是指所述热交换器管的管末端必须被引入所述内管中。相反,热交换器管和内管也可以稍有隔开的距离。至关重要的是出自所述热交换器管的气流基本上完全流入所述内管中并因此通向该管中。

本实用新型是基于以下发现:如果当从所述反应室引出在金属尘化腐蚀相关温度范围内的温度的所述热合成气产物时,它经过配备防腐蚀层或由耐腐蚀材料组成的不加压内管,可避免或至少显著降低所述金属尘化腐蚀,特别是所述加压壳管的金属尘化腐蚀。因此所述重整器管只有一小部分按成本和不便而言必须抵御金属尘化腐蚀,并且此外,这个部分可相对容易地替换。相比之下,替换所述壳管将是成本高得多并且麻烦得多的。

所述出口室配备不加压的防腐蚀内管与所述加压壳管的内壁和所述内管的外壁之间布置的可透气绝热层有利地相互作用。所述可透气绝缘层的作用是允许所述出口室中的静压传递到所述壳管,然而因为所述绝热层意味着所述壳管内壁的表面温度低于所述金属尘化腐蚀相关的温度范围,所以所述壳管是防金属尘化腐蚀的,并因此所述壳管的内壁和所述合成气产物之间的接触不要紧。

此外,所述耐腐蚀内管保护设置在所述壳管内壁和所述内管外壁之间的可透气绝热层以免被在所述出口室中发生的高气体速度侵蚀或磨损。因为,由于所需的透气性,所述绝缘层具有相当松散的性质或充填密度以及与之相伴的低机械稳定性,因此这种附加的保护性功能是重要的。

附图说明

图1显示了根据本实用新型优选实施方式的重整器管。

具体实施方式

优选的是,在本实用新型的重整器管中,所述热交换器管的出口端在它的内部、并且也在其穿过所述分隔盘的部分的外部上配备防腐蚀层。以这种方式,不仅所述出口室而且所述热交换器管在临界温度范围内的部分都被保护免于金属尘化腐蚀。

此外,优选所述内管被安置在所述分隔盘上,但不与其气密连接。以这种方式,可通过所述可透气绝热层发生向所述壳管内壁的压力补偿和/或压力传递。所述壳管的内壁与所述合成气产物的接触不要紧,因为由于所述绝缘,所述壁的表面温度低于金属尘化腐蚀相关的温度范围。因此,因为所述内管是不加压的,它也可以由不太耐压的材料、例如陶瓷材料制造。

特别优选本实用新型的重整器管配备螺旋盘绕的热交换器管并优选有两个热交换器管存在,在所述散堆催化剂床中以双螺旋的形式布置。所述重整器管的这种实施方式表现了设备的成本和复杂度与有利的传热性质之间的有利折衷。

在本实用新型的重整器管的一种有利的实施方式中,选择所述至少一个热交换器管的内径,使得基于所述进气流的标准值,在所述出口室中造成小于所述反应室中压力的目标压力。以这种方式,因为金属尘化腐蚀的平衡位置和反应速率受CO分压影响,并因此——鉴于所述合成气产物中特定的CO含量——受总压力影响,从而进一步降低了所述金属尘化腐蚀的可能性。此外,以这种方式,在所述收集管道中建立了期望的压力。

本实用新型还包括包含经过耐火内衬或耐火饰面的壁、顶和底以及由此形成的内部的重整炉,其特征在于如上所述的至少一个重整器管和至少一个用于加热所述重整器管的燃烧器被布置在所述内部中或就所述燃烧器烟道气而言与所述内部流体连通的第二空间中。

在本实用新型的重整炉的一种具体实施方式中,所述至少一个重整器管以自由悬挂或自由站立的方式布置在所述内部中,其中所述壳管的包含所述反应室的部分被布置在所述内部中,而所述壳管的包含所述出口室的部分至少部分穿过所述顶或所述底。以自由悬挂或自由站立的方式应理解为是指就此而言只有所述重整器管的包含所述出口室的末端与所述重整炉的顶或底机械接触。

这是特别有利的,因为以这种方式,避免了现有技术已知的在所述重整器管中由于可观的温差而产生的所述进气流的入口和所述合成气产物流的出口之间的热机械应力。因此在现有技术的情况下,使用昂贵和复杂的措施,例如使用应力补偿器(所谓的尾线(pigtails))或电缆(cable),来补偿应力发生和它们的负面效应,例如所述重整器管的变形。对所述重整器管的自由悬挂或自由站立布置而言,这不再是必需的。

在本实用新型的重整炉的另一种优选实施方式中,在所述内部布置多个重整器管和燃烧器,致使由所述燃烧器产生的火焰的纵轴与所述重整器管的纵轴平行取向。这使得有可能确保燃烧器实现均匀加热布置在它周围的重整器管。此外,所述平行的火焰轴在较长的距离上对所述重整器管提供辐射热,避免了所述重整器管的外部局部过热。

本申请还包括通过在蒸汽重整条件下和在蒸汽重整活性固体催化剂存在下催化蒸汽重整含烃进料、优选天然气来生产合成气的方法,所述方法包括以下步骤:

(a)提供包含所述进料的进气流并添加重整蒸汽,

(b)在蒸汽重整条件下将所述进料催化转化为包含碳氧化物和氢气的合成气产物,

(c)排出并任选后处理所述合成气产物,

其特征在于步骤(b)的催化转化在根据本实用新型的重整器管中实行。

在本申请的方法的一种具体实施方式中,所述出口室中的压力低于所述反应室中,并且基于所述进气流的标准值,该压力与预先指定的目标压力相对应。以这种方式,因为金属尘化腐蚀的平衡位置和反应速率受CO分压影响,并因此——鉴于所述合成气产物中特定的CO含量——受总压力影响,从而进一步降低了所述金属尘化腐蚀的可能性。此外,以这种方式,在所述收集管道中建立了期望的压力。

示例性实施方式

本实用新型的发展、优势和可能的应用从下面示例性实施方式和图的描述中显而易见。所有描述和/或描绘的特征独立地或以任何期望的组合构成本实用新型的主题,与它们在权利要求中组合的方式和所述权利要求互相引用的方式无关。

图1中描绘的本实用新型重整器管1被分成区段A(反应室)、B(出口室)和C(收集管道)。

经由进入管道2,脱硫的天然气与重整蒸汽一起进入布置在壳管3的上部中的反应室A。所述壳管由镍-铬钢、例如G-X45NiCrNbTi3525类型的镍-铬钢组成。所述进气的进入温度是600℃,基于催化剂体积的空间速度通常是4000至5000mN3/(m3h)。

在本示例性实施方式中,所述重整器管竖直排列,所述壳管3的开放管端在上部位置并依靠燃烧器(图1中未显示)从外部加热。在所述重整器管运转期间,所述壳管的开放管端用密封设备4、例如有凸缘的盖密封,所述盖可以为了检修而打开并用于装载和排出所述催化剂。

进入所述壳管中后,所述天然气和所述重整蒸汽进入由固体镍基重整催化剂粒子形成的散堆催化剂床5。所述进料然后按流向箭头的指示,向上流过所述催化剂床。所述散堆催化剂床依靠分隔盘6固定在所述壳管中。位于所述分隔盘和所述散堆催化剂床之间的是作为所述催化剂的支撑体的惰性体散堆床7。

经过所述重整催化剂发生吸热的蒸汽重整反应。离开所述散堆催化剂床后,不仅包含碳氧化物和氢气而且包含未转化的甲烷的部分转化天然气进入布置在所述壳管的密封管端4处的开放空间8。所述部分转化的进气流随后进入布置在所述散堆催化剂床内部的所述热交换器盘管9的入口端。流过热交换器管9的气流逆流将它的一部分显热交给所述散堆催化剂床及流过所述床的进气流。所述热交换器管由具有良好的抗金属尘化腐蚀耐受性的材料制成,所述材料例如合金601、602CA、617、690、692、693、HR 160、HR 214、含铜合金或其中所述管包被锡-镍或铝-镍合金的所谓多层材料。附加或替代地,所述热交换器管的出口端在它们的内部、以及还有穿过所述分隔盘的部分在外部,设有防腐蚀层。在本例中,这是铝扩散层。

流过所述热交换器管后,所述合成气产物流进入出口室B。为此目的,两个热交换器管9的出口端都穿过分隔盘6并由此固定。它们然后以它们的出口端开放到内管10中,内管10提供热交换器管9和收集管道11之间的连接。所述内管同样由上述金属构造材料之一制造,并且它的内壁及优选还有它的外壁设有铝扩散层作为防腐蚀层。或者,使用由陶瓷材料制成的内管也是可能的。

内管10依靠未描绘的紧固件将它的位置固定在分隔盘6的下侧和收集管道11之间。在内管和所述分隔盘的下侧之间没有固定的气密连接;相反,所述内管离后者有一定距离或仅仅端对端坐落于所述分隔盘的下侧。以这种方式,有可能通过所述可透气绝热层12向壳管3的内壁发生补偿和/或传递静压。所述壳管的内壁与静止的或只是温和流动的合成气产物的接触不要紧,因为由于所述绝缘,所述壁的表面温度低于金属尘化腐蚀相关的温度范围。因此,因为所述内管是不加压的,它也可以由不太耐压的材料、例如陶瓷材料制成。

安装在所述内管的外壁和所述壳管的内壁之间的是可透气绝缘材料12。为此目的,有可能使用纤维基绝缘材料,以及具有固有尺寸稳定性的陶瓷模制品。这样的模制品特别有利,因为它们特别易于安装和拆卸。由于它们的尺寸稳定性,它们在安装期间能容易地插入壳管和内管之间的环形空间,而不需要任何专门的固定机构。

同样在所述出口侧,内管10与收集管道11不是固定地或不是气密地连接,而代之以仅仅导入或插入所述管道。除了以上论述的优点以外,倘若设施检修,则所述内管能以这种方式容易地替换。此外,避免了压拉应力,否则由于壳管和内管使用的材料的热膨胀系数差异,在所述重整器管的运转中原本可能出现压拉应力。

收集管道11在它的内部设有绝缘材料13和/或耐腐蚀的例如陶瓷的涂层14,其对于金属尘化腐蚀的耐受性增加。所述合成气产物流经由所述收集管道从重整器管1排出并被送去进一步加工。取决于所述合成气产物的计划用途,这种加工可以包含一氧化碳转化、用于除去二氧化碳的涤气操作、用于除去氢气的变压吸附、和其他加工阶段。

工业适用性

本实用新型提出了能够在进气和部分转化为合成气产物的产物气之间内部热交换的重整器管,由此在所述重整器管的使用期间产生了能量消耗方面的优点。本实用新型的重整器管实施方式,特别是在所述出口室区域中,使得有可能有效对抗金属尘化腐蚀。

附图标记列表

[1]重整器管

[2]进入管道

[3]壳管

[4]密封设备

[5]散堆催化剂床

[6]分隔盘

[7]惰性体散堆床

[8]开放空间

[9]热交换器管

[10]内管

[11]收集管道

[12]绝缘层

[13]绝缘层

[14]涂层

[A]反应室

[B]出口室

[C]收集管道。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1