一种基于自发热固化技术的3D打印陶瓷及其制备方法与流程

文档序号:14946202发布日期:2018-07-17 21:29阅读:176来源:国知局

本发明涉及3d打印技术领域,尤其是涉及一种基于自发热固化技术的3d打印陶瓷及其制备方法。



背景技术:

陶瓷是一种具有悠久历史的制品,其被广泛地应用于世界各国人民的日常生活中。传统陶瓷的成型方法主要是注浆、拉坯和模压等方法,但是这些成型方法对于结构相对较复杂的陶瓷品,就难以实现复杂结构陶瓷的成型,对于结构复杂但体壁更薄的陶瓷品就更难以实现。

3d打印成型技术,即增材制造技术,是一种融合了计算机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自下而上”通过材料累加的制造方法,从无到有,使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。

将3d打印技术应用到陶瓷成型工艺上,可以实现复杂结构陶瓷制品的成型,特别是可以获得一系列结构复杂的陶瓷艺术品;但是由于陶瓷制品的原料是无机原料,如果在打印阶段直接烧结,无机原料的烧结反应温度过高,3d打印过程中虽然可以采用激光进行烧结,但是其成本较高,而且激光烧结后难以对成型后的产品进行表面修饰,产品质量相对较低;如果在打印阶段采用向陶瓷原料中添加粘结剂的方法,坯体在烧结过程中需要预先排出粘结剂,在高温下粘结剂分解产生气体,容易对坯体的强度和坯体本身产生不良影响,甚至损坏坯体;因此需要一套能够使得陶瓷材料3d打印后能够快速获得一定强度的陶瓷3d打印方法,并在成坯后在采用传统的烧结工艺进行进一步的烧结成型。



技术实现要素:

为解决上述问题,本发明提供了一种由3d打印技术快速成型且在成型后利用其自发热固化特性快速获得强度并经烧结后具有较高致密度的3d打印陶瓷;

本发明还提供了一种一种基于自发热固化技术的3d打印陶瓷的制备方法。

为实现上述目的,本发明采用的技术方案如下:

一种基于自发热固化技术的3d打印陶瓷,由以下重量份的原料制得:

木岱瓷土35~40份,高岭土10~15份,氧化铝20~24份,氧化锆13~18份,氧化硅10~15份,碱剂7~12份,硅酸钠2~4份,表面活性剂5~8份,有机溶剂50~80份。

本发明中陶瓷浆料是基于现有青瓷原料的改进,改进的目的是为了陶瓷浆料在3d打印成型后能够快速获得强度,使粗坯具有能够自承重的强度不至于发生成型后坍塌等问题。本发明中实现浆料3d打印后快速获得强度的方法是采用碱激发快速增强的方法,碱激发是利用陶瓷原料中的硅酸盐矿物、氧化铝、氧化硅等在碱剂的作用下快速胶凝的方法,碱激发过程中产生大量热,在促进碱激发过程的同时还能是原浆料中的溶剂/分散剂挥发,同时碱激发工艺中不会引入有机高聚物,也就无需进行排胶等除去易热分解有机物的过程,能够增进烧结的效率,也能使制得的陶瓷制品具有更高的致密度,更高的品质。由于碱激发过程需要采用碱溶液进行激发,但是如果在陶瓷原料中直接添加碱液,则由于碱激发反应速度过快,难以实现浆料的储存运输,甚至会将3d打印喷头堵塞,因此在本发明中采用将碱液拆分为碱和水分分别添加的方式实现可控碱激发,将碱均匀混合在陶瓷原料中,制得带碱的陶瓷原料,然后制得陶瓷浆料,再将陶瓷浆料打印在一个高湿度的环境中,利用环境中的水分引发碱激发过程,当然除了在高湿度环境中进行3d打印这一方案外,也可以采用将浆料打印的同时向其喷水的方式实现。为了将陶瓷原料制成一种具有较好流动性并能够用于3d打印的打印墨水并避免水的参与,因此将陶瓷原料分散在不含水的有机溶剂中,为更好的分散,添加表面活性剂对陶瓷原料进行改性。

作为优选,碱剂由氢氧化钠和氧化钙按重量比10:2~3组成。

由碱剂(即碱)和硅酸钠组成碱激发剂,硅酸钠是一种与水能够胶凝的材料,可以辅助碱激发反应过程的进行,不添加硅酸钠也能在碱激发的作用下实现坯体的快速增强,但是在碱激发过程的初段,坯体的强度还是较差,不添加硅酸钠可能会是坯体发生一微小程度的坍塌,即使这种坍塌是极其微小的,但也会对后期的加工产生不良影响,对陶瓷的形状也会有一定影响,对于高品质的陶瓷产品,这些都会影响其品质,因此需要添加少量硅酸钠,使在碱激发过程的初段,陶瓷坯体也具有不致使其发生轻微坍塌的强度。碱剂,选用氢氧化钾和氢氧化钠,钾、钠离子的加入不会对陶瓷产品产生不良影响,即使是在高温阶段钾、钠发生挥发,其含量较小也不会对陶瓷的致密度影响过大;此外,氢氧化钠和氢氧化钾还具有较强的吸水性,能够促进碱激发过程的尽快进行。

作为优选,表面活性剂为二甲基硅氧烷表面活性剂、三聚硅氧烷聚醚表面活性剂或聚硅氧烷磷酸酯甜菜碱表面活性剂中的一种。

作为优选,有机溶剂为异己烷、乙醇、乙二醇、正丙醇、丙二醇、异丙醇或正丁醇中的一种。

有机溶剂的选择依据是,无毒无害,并具有较低的沸点,能够在碱激发作用下尽快挥发。

一种基于自发热固化技术的3d打印陶瓷的制备方法,包括以下步骤:

a)粉料制备:将木岱瓷土、高岭土、氧化铝、氧化锆和氧化硅混合后粉碎并过1500~2000目筛制得粉料,将粉料加入到粉料重量1~1.5倍的水中,然后再加入表面活性剂,接着以400~800rpm的转速球磨1~3小时,之后烘干并粉碎,过1300~1800目筛后制得改性粉料;

b)浆料制备:将改性粉料和碱剂、硅酸钠混合均匀,然后将获得的混合物加入到有机溶剂中,以100~200rpm的转速搅拌6~8小时制得用于3d打印的自发热固化陶瓷浆料;

c)3d打印成型:按要求设计3d打印模型和3d打印参数,并用于3d打印的自发热固化陶瓷浆料注入3d打印机在高湿度环境下打印形成坯体;

d)坯体烧结:将坯体烧结炉中进行烧结,首先以2~3℃/min的升温速率升温到500~600℃并保温1~2小时,接着以2~3℃/min的升温速率升温至600~800℃并保温30~50分钟,然后以3~5℃/min的升温速率升温至1100~1200℃并保温2~3小时,最后自然冷却至室温,制得基于自发热固化技术的3d打印陶瓷。

浆料的制备,在传统陶瓷原料制备的基础上,添加了原料表面改性、分散处理等步骤。碱激发剂在添加时需要进行预先粉碎,由于碱激发剂中都是水溶性原料,因此粉碎需要在干燥环境下进行;此外碱激发剂的粒度略粗与陶瓷原料,这样可以使陶瓷原料更好的分布在碱激发剂的周围,能够更快更好的进行碱激发反应。步骤b在干燥环境下进行,这一点无需多谈。

此外,在坯体烧结阶段需要在多个温度区间进行保温处理,这样可以是原料中的不同组分充分的烧结融合获得致密的烧结体。在500~600℃保温阶段是为了排尽由硅酸钠反应形成的结晶水/结合水,在600~800℃保温阶段是为了预先让细组分向进行组分的聚合和晶粒生长;了;另外有一点需要说明,虽然前两阶段的温度区间存在重合点600℃,但是在实际的生产中第一阶段的温度一定是低于第二阶段的温度的,这一点本领域普通技术人员一眼就能明了,不会对此产生疑惑;最后一个阶段是陶瓷组分中晶粒的继续生长过程,这个阶段温度较高,组分颗粒之间的融合更加的彻底,坯体中晶粒间的气体也不断的被排出出坯体中,晶粒不断长大,最终形成致密的烧结体。

作为优选,碱剂和硅酸钠在使用前先粉碎并过1000~1500目筛。

作为优选,步骤b在干燥环境下进行。

作为优选,步骤c中的高湿度环境为流通的高湿度环境,并且其湿度大于75%。

作为优选,步骤c中3d打印参数包括打印厚度、打印速度和打印喷头压力。

作为优选,打印厚度为0.2~0.5mm,所述的打印速度为40~60mm/s,所述的打印喷头压力为1~1.5atm。

因此,本发明具有以下有益效果:

(1)本发明中的3d打印陶瓷在打印成型阶段后能够在较短的时间内快速获得相应的强度;

(2)本发明中的3d打印陶瓷的浆料中不含有聚合物及高温分解成分,在后续烧结过程中无需进行排胶等处理,也不会产生高聚物分解形成气体影响坯体强度的情况,能够提高烧结效率,改善烧结品质;

(3)本发明中的3d打印陶瓷具有极高的致密度。

具体实施方式

下面结合具体实施方式对本发明的技术方案作进一步的说明。

显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

在本发明中,若非特指,所有的设备和原料均可从市场上购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。

实施例1

一种基于自发热固化技术的3d打印陶瓷,由以下重量份的原料制得:

木岱瓷土35份,高岭土10份,氧化铝20份,氧化锆13份,氧化硅10份,碱剂7份,硅酸钠2份,二甲基硅氧烷表面活性剂5份,异己烷50份;碱剂由氢氧化钠和氧化钙按重量比10:2组成。

一种基于自发热固化技术的3d打印陶瓷的制备方法,包括以下步骤:

a)粉料制备:将木岱瓷土、高岭土、氧化铝、氧化锆和氧化硅混合后粉碎并过1500目筛制得粉料,将粉料加入到粉料重量1倍的水中,然后再加入表面活性剂,接着以400rpm的转速球磨1小时,之后烘干并粉碎,过1300目筛后制得改性粉料;

b)浆料制备:将改性粉料和碱剂、硅酸钠混合均匀,然后将获得的混合物加入到有机溶剂中,以100rpm的转速搅拌6小时制得用于3d打印的自发热固化陶瓷浆料;碱剂和硅酸钠在使用前先粉碎并过1000目筛;步骤b在干燥环境下进行

c)3d打印成型:按要求设计3d打印模型和3d打印参数,并用于3d打印的自发热固化陶瓷浆料注入3d打印机在高湿度环境下打印形成坯体;高湿度环境为流通的高湿度环境,并且其湿度大于75%;3d打印参数包括打印厚度、打印速度和打印喷头压力,打印厚度为0.2mm,所述的打印速度为40mm/s,所述的打印喷头压力为1atm;

d)坯体烧结:将坯体烧结炉中进行烧结,首先以2℃/min的升温速率升温到500℃并保温1小时,接着以2℃/min的升温速率升温至600℃并保温30分钟,然后以3℃/min的升温速率升温至1100℃并保温2小时,最后自然冷却至室温,制得基于自发热固化技术的3d打印陶瓷。

实施例2

一种基于自发热固化技术的3d打印陶瓷,由以下重量份的原料制得:

木岱瓷土37份,高岭土12份,氧化铝21份,氧化锆15份,氧化硅12份,碱剂8份,硅酸钠2.5份,三聚硅氧烷聚醚表面活性剂5.5份,乙醇60份;碱剂由氢氧化钠和氧化钙按重量比10:2.5组成。

一种基于自发热固化技术的3d打印陶瓷的制备方法,包括以下步骤:

a)粉料制备:将木岱瓷土、高岭土、氧化铝、氧化锆和氧化硅混合后粉碎并过1700目筛制得粉料,将粉料加入到粉料重量1.2倍的水中,然后再加入表面活性剂,接着以500rpm的转速球磨1.5小时,之后烘干并粉碎,过1400目筛后制得改性粉料;

b)浆料制备:将改性粉料和碱剂、硅酸钠混合均匀,然后将获得的混合物加入到有机溶剂中,以150rpm的转速搅拌7小时制得用于3d打印的自发热固化陶瓷浆料;碱剂和硅酸钠在使用前先粉碎并过1200目筛;步骤b在干燥环境下进行

c)3d打印成型:按要求设计3d打印模型和3d打印参数,并用于3d打印的自发热固化陶瓷浆料注入3d打印机在高湿度环境下打印形成坯体;高湿度环境为流通的高湿度环境,并且其湿度大于75%;3d打印参数包括打印厚度、打印速度和打印喷头压力,打印厚度为0.3mm,所述的打印速度为45mm/s,所述的打印喷头压力为1.2atm;

d)坯体烧结:将坯体烧结炉中进行烧结,首先以2.5℃/min的升温速率升温到550℃并保温1.5小时,接着以2.5℃/min的升温速率升温至650℃并保温35分钟,然后以3.5℃/min的升温速率升温至1150℃并保温2.5小时,最后自然冷却至室温,制得基于自发热固化技术的3d打印陶瓷。

实施例3

一种基于自发热固化技术的3d打印陶瓷,由以下重量份的原料制得:

木岱瓷土38份,高岭土13份,氧化铝23份,氧化锆17份,氧化硅14份,碱剂10份,硅酸钠3.5份,三聚硅氧烷聚醚表面活性剂7份,乙二醇70份;碱剂由氢氧化钠和氧化钙按重量比10:2.5组成。

一种基于自发热固化技术的3d打印陶瓷的制备方法,包括以下步骤:

a)粉料制备:将木岱瓷土、高岭土、氧化铝、氧化锆和氧化硅混合后粉碎并过1800目筛制得粉料,将粉料加入到粉料重量1.3倍的水中,然后再加入表面活性剂,接着以600rpm的转速球磨2.5小时,之后烘干并粉碎,过1600目筛后制得改性粉料;

b)浆料制备:将改性粉料和碱剂、硅酸钠混合均匀,然后将获得的混合物加入到有机溶剂中,以150rpm的转速搅拌7小时制得用于3d打印的自发热固化陶瓷浆料;碱剂和硅酸钠在使用前先粉碎并过1300目筛;步骤b在干燥环境下进行

c)3d打印成型:按要求设计3d打印模型和3d打印参数,并用于3d打印的自发热固化陶瓷浆料注入3d打印机在高湿度环境下打印形成坯体;高湿度环境为流通的高湿度环境,并且其湿度大于75%;3d打印参数包括打印厚度、打印速度和打印喷头压力,打印厚度为0.4mm,所述的打印速度为55mm/s,所述的打印喷头压力为1.3atm;

d)坯体烧结:将坯体烧结炉中进行烧结,首先以2.5℃/min的升温速率升温到550℃并保温1.5小时,接着以2.5℃/min的升温速率升温至750℃并保温45分钟,然后以4.5℃/min的升温速率升温至1150℃并保温2.5小时,最后自然冷却至室温,制得基于自发热固化技术的3d打印陶瓷。

实施例4

一种基于自发热固化技术的3d打印陶瓷,由以下重量份的原料制得:

木岱瓷土40份,高岭土15份,氧化铝24份,氧化锆18份,氧化硅15份,碱剂12份,硅酸钠4份,聚硅氧烷磷酸酯甜菜碱表面活性剂8份,正丙醇80份;碱剂由氢氧化钠和氧化钙按重量比10:3组成。

一种基于自发热固化技术的3d打印陶瓷的制备方法,包括以下步骤:

a)粉料制备:将木岱瓷土、高岭土、氧化铝、氧化锆和氧化硅混合后粉碎并过2000目筛制得粉料,将粉料加入到粉料重量1.5倍的水中,然后再加入表面活性剂,接着以800rpm的转速球磨3小时,之后烘干并粉碎,过1800目筛后制得改性粉料;

b)浆料制备:将改性粉料和碱剂、硅酸钠混合均匀,然后将获得的混合物加入到有机溶剂中,以200rpm的转速搅拌8小时制得用于3d打印的自发热固化陶瓷浆料;碱剂和硅酸钠在使用前先粉碎并过1500目筛;步骤b在干燥环境下进行

c)3d打印成型:按要求设计3d打印模型和3d打印参数,并用于3d打印的自发热固化陶瓷浆料注入3d打印机在高湿度环境下打印形成坯体;高湿度环境为流通的高湿度环境,并且其湿度大于75%;3d打印参数包括打印厚度、打印速度和打印喷头压力,打印厚度为0.5mm,所述的打印速度为60mm/s,所述的打印喷头压力为1.5atm;

d)坯体烧结:将坯体烧结炉中进行烧结,首先以3℃/min的升温速率升温到600℃并保温2小时,接着以3℃/min的升温速率升温至800℃并保温50分钟,然后以5℃/min的升温速率升温至1200℃并保温3小时,最后自然冷却至室温,制得基于自发热固化技术的3d打印陶瓷。

实施例5

实施例5中,除了有机溶剂采用丙二醇外技术方案与实施例2相同。

实施例6

实施例6中,除了有机溶剂采用异丙醇外技术方案与实施例2相同。

实施例7

实施例7中,除了有机溶剂采用正丁醇外技术方案与实施例3相同。

技术指标

1.测试3d打印后制得坯体的抗折系数:

不同时间点,陶瓷坯体抗折系数如下,浆料3d打印10秒后坯体的抗折系数不小于1.0n/mm2,20秒后坯体的抗折系数不小于1.5n/mm2,30秒后抗折系数不小于2.5n/mm2,1分钟后抗折系数不小于7.5n/mm2

2.烧结陶瓷成品的吸水率:

经上述原料和步骤制得的陶瓷的吸水率≤0.4wt%,具有很好的致密度。

应当理解的是,对于本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1