一种钛酸钡钙基无铅压电陶瓷及其制备方法与流程

文档序号:17152677发布日期:2019-03-19 23:35阅读:229来源:国知局
一种钛酸钡钙基无铅压电陶瓷及其制备方法与流程

本发明涉及压电陶瓷技术领域,更具体地,涉及一种钛酸钡钙基无铅压电陶瓷及其制备方法。



背景技术:

压电陶瓷能够实现电能和机械能之间的相互转换,已广泛地应用于传感器、驱动器、换能器、频率控制器件以及电声器件等,压电陶瓷应用领域非常广泛,市场规模巨大。锆钛酸铅基压电陶瓷由于具有优异的压电性能,占据了最大的市场份额。在锆钛酸铅基压电陶瓷中,铅的质量分数超过60%,而铅及其化合物均具有剧毒,严重威胁环境以及人体健康。随着人们环保意识的逐渐增强,压电陶瓷无铅化已经成为必然趋势。

另外,锆钛酸铅基压电陶瓷有软性和硬性之分。软性陶瓷具有突出的压电性能,小信号压电系数d33可以达到600pc/n及以上,更多的被应用于驱动器、马达以及扬声器等器件之中。而硬性陶瓷一般压电性能较低,小信号压电系数d33普遍在200-400pc/n之间,但是具有较低的损耗和优异的稳定性,在传感器和换能器中应用广泛。目前,无铅陶瓷压电性能基本与硬性锆钛酸铅基陶瓷相当,很少能够达到软性锆钛酸铅基陶瓷的水平,阻碍了无铅压电陶瓷的进一步推广和应用。

因此,需要提供一种新的技术方案,以解决上述技术问题。



技术实现要素:

本发明的一个目的是提供一种钛酸钡钙基无铅压电陶瓷的新技术方案。

根据本发明的第一方面,提供了一种酸钡钙基无铅压电陶瓷,以下列通式i表示:

(1-x-y)ba0.7ca0.3tio3-x(ba0.95k0.025ga0.025)tio3-y(k0.5ga0.5)zro3,(i)

其中,x和y分别表示(ba0.95k0.025ga0.025)tio3和(k0.5ga0.5)zro3所占化合物(1-x-y)ba0.7ca0.3tio3-x(ba0.95k0.025ga0.025)tio3-y(k0.5ga0.5)zro3,的摩尔百分比,0.01≤x≤0.06,0.01≤y≤0.04。

可选地,0.02≤x≤0.04,0.01≤y≤0.02。

可选地,所述无铅压电陶瓷为三方-四方两相共存结构。

本公开的另一个实施例,提供了一种钛酸钡钙基无铅压电陶瓷的制备方法。该方法包括:

s1、配料:

以baco3、caco3、zro2、tio2、k2co3以及ga2o35为原料,各种原料根据通式:(1-x-y)ba0.7ca0.3tio3-x(ba0.95k0.025ga0.025)tio3—y(k0.5ga0.5)zro3,进行配料。

其中,x和y分别表示(ba0.95k0.025ga0.025)tio3和(k0.5ga0.5)zro3所占化合物(1-x-y)ba0.7ca0.3tio3—x(ba0.95k0.025ga0.025)tio3—y(k0.5ga0.5)zro3,的摩尔百分比,0.01≤x≤0.06,0.01≤y≤0.04。

s2、制备:

第一次粉末化处理:向配置好的上述原料中加入去离子水,以进行第一次粉末化处理并混合均匀。;

第一次预烧:将混合均匀的原料加热到第一温度,以进行固相反应。

第二次粉末化处理:向第一次预烧后原料中加入去离子水,以进行第二次粉末化处理,并制备成粉末态。

第二次预烧;将制备成粉末态的原料加热到第二温度,以生成钙钛矿结构。

第三次粉末化处理:向第二次预烧后的原料中加入去离子水,以进行第三次粉末化处理,并制备成粉末态。

压制:将第三次粉末化处理后的原料装入模具中,并压制成设定形状的粗坯。

烧结:将所述粗坯放置到加热装置中,在第三温度下进行烧结,以获得致密的陶瓷元件。

s3、极化:

将陶瓷元件进行极化,以得到无铅压电陶瓷器件。

可选地,在所述第一次预烧中,所述第一温度为1000-1200℃,保温时间为3-5小时。

可选地,在所述第二次预烧中,所述第二温度为1100-1300℃,保温时间为2-4小时。

可选地,所述第一次粉末化处理、所述第二次粉末化处理和所述第三次粉末化处理均采用球磨。其中,第一次粉末化处理时,球磨时间为18-22小时。其中,第二次粉末化处理时,球磨时间为18-22小时。其中,第三次粉末化处理时,球磨时间为22-26小时。

可选地,所述第三温度为1300-1500℃,保温时间为4-7小时。

可选地,在极化之前,对所述无铅压电陶瓷元件的相背的两面进行被银和烧银,以形成银层,其中,所述烧银的温度为400-600℃,保温时间为20-40分钟,所述银层作为电极层。

本发明实施例的的无铅压电陶瓷具有优异的压电性能,小信号压电系数d33和大信号压电系数d33*分别能够达到487-602pc/n和650-981pm/v,接近软性锆钛酸铅基陶瓷的水平。

通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。

附图说明

被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。

图1是根据本发明的一个实施例的钛酸钡钙基无铅压电陶瓷的制备方法的流程图。

具体实施方式

现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。

以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。

对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。

在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。

根据本公开的一个实施例,提供了一种钛酸钡钙基无铅压电陶瓷。该无铅压电陶瓷以下列通式i表示:

(1-x-y)ba0.7ca0.3tio3—x(ba0.95k0.025ga0.025)tio3—y(k0.5ga0.5)zro3,(i)

其中,x和y分别表示(ba0.95k0.025ga0.025)tio3和(k0.5ga0.5)zro3所占化合物(1-x-y)ba0.7ca0.3tio3—x(ba0.95k0.025ga0.025)tio3—y(k0.5ga0.5)zro3,的摩尔百分比,0.01≤x≤0.06,0.01≤y≤0.04。

例如,x=0.03,y=0.02,即(ba0.95k0.025ga0.025)tio3占化合物(1-x-y)ba0.7ca0.3tio3—x(ba0.95k0.025ga0.025)tio3—y(k0.5ga0.5)zro3,的摩尔百分比数0.03%,

(k0.5ga0.5)zro3占化合物(1-x-y)ba0.7ca0.3tio3—x(ba0.95k0.025ga0.025)tio3—y(k0.5ga0.5)zro3,的摩尔百分数为0.02%。

在本公开实施例中,所述无铅压电陶瓷为三方-四方两相共存结构,尤其在常温下。在多相共存的结构中压电性能优异。(ba0.95k0.025ga0.025)tio3的立方-四方、四方-正交以及正交-三方相变温度分别在120℃、10℃和-75℃附近。加入(k0.5ga0.5)zro3能够使得其正交-三方相变向高温方向移动,从而在室温下完全形成三方相。而ba0.7ca0.3tio3在室温下具有四方相结构,因此,通过调节(1-x-y)ba0.7ca0.3tio3—x(ba0.95k0.025ga0.025)tio3-y(k0.5ga0.5)zro3中(ba0.95k0.025ga0.025)tio3和(k0.5ga0.5)zro3掺入的比例,可以在室温下实现三方-四方相共存。这将有利于极化翻转,并形成纳米电畴结构,从而有效增强压电性能。

在一个例子中,0.02≤x≤0.04,0.01≤y≤0.02。在该比例范围内,无铅压电陶瓷表现出优异的压电性能,接近软性锆钛酸铅基陶瓷的水平。。

根据本公开的另一个实施例,提供了一种钛酸钡钙基无铅压电陶瓷的制备方法,包括以下步骤:

s1、配料:

以baco3、caco3、zro2、tio2、k2co3以及ga2o35为原料,各种原料根据通式:(1-x-y)ba0.7ca0.3tio3-x(ba0.95k0.025ga0.025)tio3-y(k0.5ga0.5)zro3,进行配料,

其中,x和y分别表示(ba0.95k0.025ga0.025)tio3和(k0.5ga0.5)zro3所占化合物(1-x-y)ba0.7ca0.3tio3—x(ba0.95k0.025ga0.025)tio3-y(k0.5ga0.5)zro3,的摩尔百分比,0.01≤x≤0.06,0.01≤y≤0.04。

具体地,上述各种原料为粉料。根据化学式i中各个元素的比例关系进行称量配料。本领域技术人员可以根据实际需要设置各种原料的用量。

s2、制备:

第一次粉末化处理:向配置好的上述原料中加入去离子水,以进行第一次粉末化处理,并混合均匀。

各种原料的粒度通常是不同的,并且粒径大,不利于固相反应、烧结等的进行。在一个例子中,各种原料预先进行第一次粉末化处理,以达到设定的粒度并混合均匀。在原料配料完成后,将上述各种原料装入尼龙球磨罐中,在行星式球磨机上进行球磨。在球磨时采用氧化锆球、玛瑙球中的至少一种。这两种球不易破损,故球磨完成后,粉料混合物的杂质少。相对于金属球磨罐和陶瓷球磨罐,采用尼龙球磨罐不会在粉料混合物中引入其他的金属或者氧化物杂质。

例如,在进行球磨时,向尼龙球磨罐中添加无水乙醇或者去离子水,以增加粉料混合物的粘度,这使得球磨更加充分,得到的粉料混合物更精细、更均匀。其中,钾和钡的化合物难溶于无水乙醇而易溶于水,因此相比于去离子水,在球磨过程中使用无水乙醇可以减少组分偏离。本领域技术人员可以根据实际需要选择添加的助剂、球磨时间等。当然,混磨的方式不限于球磨,本领域技术人员可以根据实际需要进行设置。第一次粉末化处理时,球磨时间为18-22小时。

第一次粉末化处理使得各种原料混合均匀并达到了设定的粒度,原料的比表面积大,活性较高,容易反应形成钙钛矿结构。

第一次预烧:将混合均匀的原料加热到第一温度,以进行固相反应;在设定的温度下各种原料作为反应物在两相共存结构面上发生化学反应。例如,在第一次预烧中,各种原料在第一温度为1000-1200℃,保温时间为3-5小时条件下发生固相反应,初步生成钙钛矿结构。

第二次粉末化处理:向第一次预烧后原料中加入去离子水,以进行第二次粉末化处理,并制备成粉末态;粉末态的物质活性高,容易反应形成钙钛矿结构。

此外,在进行第二次粉末化处理过程中,原料被混合的更加均匀,这使得反应形成的钙钛矿结构的转化率更高,纯度更高。

例如,第二次粉末化处理采用球磨。球磨如前所示。球磨时间为18-22小时。

第二次预烧;将制备成粉末态的原料加热到第二温度,以生成钙钛矿结构;在第二次预烧中,粉末态的原料在第二温度为1100-1300℃,保温时间为2-4小时的条件下进行反应,以形成钙钛矿结构。在该反应条件下形成的钙钛矿结构的纯度高,转化速率快。

在本发明实施例中,通过反复的粉末化处理以及预烧,形成的钙钛矿结构的纯度更高,使得最终形成的无铅压电陶瓷的居里温度得到提升,同时使得最终形成的无铅压电陶瓷的压电性能性能更好。

第三次粉末化处理:向第二次预烧后的原料中加入去离子水,以进行第三次粉末化处理,并制备成粉末态;粉末态的物质活性高,容易反应形成钙钛矿结构。

此外,在进行第三次粉末化处理过程中,原料被混合的更加均匀,这使得反应形成的钙钛矿结构的转化率更高,纯度更高。

例如,第三次粉末化处理采用球磨。球磨如前所示,球磨时间为22-26小时。

压制:将第三次粉末化处理后的原料装入模具中,并压制成设定形状的粗坯。在该步骤中,可以根据压电陶瓷制品的形状制作模具。原料在模具中通过填充、压实等步骤,以形成设定的形状。

烧结:将所述粗坯放置到加热装置中,在第三温度下进行排胶,并在第四温度下进行烧结,以获得致密的陶瓷元件。例如,加热装置包括大气烧结炉、真空烧结炉等,本领域技术人员可以根据实际需要进行选择。

烧结是指把粉末物料转变为致密体。粗坯经过烧结,形成结构致密的陶瓷元件。陶瓷元件以化合物i表示。陶瓷元件的晶体中存在各个方向自发极化,从宏观上对外不呈现极性。自发极化方向相同的区域称为电畴。

例如,将粗坯放置到真空烧结炉中。真空烧结炉升温到第三温度,并进行保温。第三度为1300-1500℃,保温时间为4-7小时。在该条件下,物料进行烧结形成的无铅压电陶瓷制品的质量均一,致密度良好。

s3、极化:

将陶瓷元件进行极化,以得到无铅压电陶瓷器件。通过极化使陶瓷元件的电畴发生转向,即极化迫使电畴的自发极化做定向排列,从而使陶瓷元件呈现极性。

在一个例子中,在极化之前,对所述无铅压电陶瓷元件的相背的两面进行被银和烧银,以形成银层,其中,所述烧银的温度为400-600℃,保温时间为20-40分钟,所述银层作为电极层。

根据本公开的一个实施例,该锆钛酸钡钙基无铅压电陶瓷具有优异的压电性能,接近软性锆钛酸铅基陶瓷的水平。

此外,该制备方法得到的无铅压电陶瓷属于无铅体系,具有环境友好的特性。

此外,所述无铅压电陶瓷具有优异的压电性能,室温下小信号压电系数d33和大信号压电系数d33*分别能够达到487-602pc/n和650-981pm/v(在施加0.5kv/mm电压的条件下测试),介电常数εr和机电耦合系数kp分别可以达到2300-3000和0.43-0.58,接近软性锆钛酸铅基陶瓷的水平,应用前景广阔,另外其居里温度介于75-98℃之间。

此外,本制备方法属于固相反应法,易于实现大规模生产。

虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1