一种气固反应结合液相烧结法制备多孔纳米氮化硅陶瓷的方法与流程

文档序号:17132139发布日期:2019-03-16 01:25阅读:629来源:国知局
一种气固反应结合液相烧结法制备多孔纳米氮化硅陶瓷的方法与流程

本发明涉及一种气固反应结合液相烧结法制备多孔纳米氮化硅陶瓷的方法,适用于各种高温过滤分离器、催化剂载体、吸声材料及透波材料等。



背景技术:

多孔氮化硅陶瓷由于其优异的室温及高温强度被广泛应用于高温金属过滤器,辐射燃烧器,热交换器,催化剂载体,雷达及导弹天线罩等。由β氮化硅棒状晶粒相互搭接构成的多孔氮化硅,具有优越的力学性能,良好的抗热震,及耐损伤性能。然而由于α到β氮化硅的转变过程,往往伴随着致密化,因此直接采用液相烧结法制备气孔率高于50%的多孔氮化硅非常困难。目前,制备高气孔率(>50%)多孔氮化硅的方法及技术有许多种,常用的有部分烧结法,冷冻干燥法,添加造孔剂法,模板法,发泡法、自蔓延燃烧合成法,凝胶注模法等。其中部分烧结法制备的多孔氮化硅气孔率很难高于60%,虽然通过冷冻干燥法、添加造孔剂的方法可以进一步提高气孔率,但是其微观结构中通常存在大孔等缺陷,且孔的结构以及孔径尺寸分布不均匀,导致强度较低。中国专利201110366340.2以有一定细度的硅粉、氮化硅粉、与烧结助剂的混合物模压成型为具有一定形状的成型体,然后将成型体置于自蔓延反应腔体内,经氮化处理而制得到的多孔氮化硅陶瓷气孔率最高仅可达65%,晶粒长径比为5~10,其抗弯强度达到75mpa。中国专利201610278153.1给出了一种注浆成型制备多孔氮化硅陶瓷的方法,该方法制备得到的多孔氮化硅,气孔率最高可达65.9%,强度仅为32.1mpa。

降低β-si3n4晶粒的直径,提高其长径比是提高多孔氮化硅材料的有效途径。当β-si3n4晶粒的直径降低至纳米尺度时,高气孔率条件下,多孔材料可保持较高的强度。利用sio气体和碳材料的原位气固反应可以制备低维纳米氮化硅材料。本发明结合气固反应和液相烧结工艺制备多孔纳米si3n4材料,一方面可以大幅度调控其气孔率;另一方面,可以获得纳米尺度的β-si3n4晶粒,从而获得高的强韧性。



技术实现要素:

本发明的目的是提供一种气固反应结合液相烧结法制备多孔纳米氮化硅陶瓷的方法。该方法制备的多孔纳米氮化硅陶瓷的气孔率可大范围调控,β-si3n4晶粒的直径为纳米尺度,且拥有高的长径比,从而具有高的强韧性。

本发明采取如下技术方案予以实现:

一种气固反应结合液相烧结法制备多孔纳米氮化硅陶瓷的方法,包括以下步骤:

1)按照质量百分比将20~85wt%的碳纳米管,0~70wt%的α-si3n4,以及8.7~15wt%的稀土氧化物混合粉末模压成型后形成生坯,将sio粉末置于坩埚底部,将生坯置于坩埚中部,再将坩埚放在多功能烧结炉中,通入氮气,在1500℃~1700℃保温1~6小时,进行碳热还原氮化反应生成氮化硅坯体,其中sio和碳纳米管的质量比为10:1;

2)继续升温至1750℃~1850℃进行液相烧结0.5~2小时,此过程中发生相转变,即获得多孔纳米氮化硅陶瓷。

本发明进一步的改进在于,步骤1)中,选用氮化硅晶种型号为ube-10,平均粒径为0.2~0.5μm。

本发明进一步的改进在于,步骤1)中,选用的稀土氧化物为y2o3、lu2o3、yb2o3或la2o3。

本发明进一步的改进在于,步骤1)中,模压成型的压力为10~80mpa。

本发明进一步的改进在于,步骤1)中,氮气气氛压力为1~20atm。

本发明进一步的改进在于,步骤1)中,多功能烧结炉中从室温升至1100℃的升温速度为500~700℃/h,从1100℃升温至烧结温度的升温速度为100~300℃/h。

本发明进一步的改进在于,步骤2)中,碳热氮化温度升至液相烧结温度的升温速度为50~100℃/h。

本发明具有如下有益的技术效果:

本发明提供的一种气固反应结合液相烧结法制备多孔纳米氮化硅陶瓷的方法,该方法首先使碳纳米管(cnts)经过气固反应原位生成纳米级氮化硅,后在高温下进行液相烧结,获得多孔纳米si3n4材料。高温烧结后试样有~1%的线膨胀,实现了试样的净尺寸成型,因此保留了较高的气孔率,气孔率最高可达到78%,且多孔材料的气孔率可通过调控成形圧力和烧结温度进行大范围调控,制备得到的多孔氮化硅具有高的气孔率,同时兼具高的强韧性,当气孔率为72%,仍具有73mpa的抗弯强度材料的微观组织主要由直径为100~400nm、长径比为20~40的β氮化硅晶粒构成,另外得到的多孔氮化硅还表现出一定的压缩回复性能。

附图说明

图1为实施例5先气固反应后液相烧结后试样的sem图。

图2为实施例2先气固反应后液相烧结后试样的xrd图。

图3为气固反应示意图。

具体实施方式

以下结合附图和实施例对本发明作进一步的详细说明。

本发明提供的一种气固反应结合液相烧结法制备多孔纳米氮化硅陶瓷的方法,其实施例组成如表1所示,在表1所示的实施例1~13中,在碳纳米管中添加一定比例的纳米氮化硅晶种,经过一定的成型压力压制成生坯后,与一氧化硅蒸汽发生碳热氮化反应,转变为氮化硅。

表1.本发明氮化硅多孔陶瓷的原料组成

表2.本发明氮化硅多孔陶瓷的烧结工艺参数

表1实施例是氮化硅多孔陶瓷的制备方法,先将碳纳米管和氮化硅粉按表1所述不同组成分别称量,用无水乙醇作为溶剂湿混制备成均匀的混合粉末,然后将混合粉末旋蒸干燥,再放入70℃的烘箱中彻底干燥,干燥后过200目筛,放入金属模具压制成型得到实施例1~10的生坯试样,成型压力控制在10~80mpa。将sio粉末置于坩埚底部,将生坯置于坩埚中部,再将坩埚放在多功能烧结炉中,在氮气气氛下先以500~700℃/h的升温速度升至1100℃,再以100~300℃/h的升温速度升温至1500℃~1700℃保温2~5小时进行气固碳热氮化反应,获得氮化硅坯体;然后以50~100℃/h的速度升温到1700-1850℃,在氮气气氛下部分烧结并完成相转变,得到多孔氮化硅陶瓷。

工艺的制定是出于以下考虑:通过改变氮化硅晶种的掺量,可以改变晶粒尺寸,调节粗细棒状晶的比例,得到不同粗细棒状晶比例的试样,进而实现晶粒分布的调控,生坯成型的压力应控制在10~80mpa,在配料成分确定的情况下,坯体气孔率由预制体成型压力决定,它直接影响最终陶瓷的气孔率。由上述方法获得的氮化硅多孔陶瓷,用三点弯曲法测定室温下的抗弯强度;用阿基米德排水法测定开气孔率;用扫描电子显微镜在试样断面上观察显微组织;用x射线衍射仪分析烧结体的物相组成。这些气孔率和弯曲强度的性能结果如表2所示。

表3.本发明氮化硅多孔陶瓷烧结体的性能

由表3可以看出实施例1采用85.0wt%的碳纳米管作为原料,15.0wt%的氧化钇为烧结助剂,成型压力为10mpa,经过1700℃保温2h气固反应,再在1800℃下保温2h进行液相烧结,所得多孔si3n4陶瓷材料的气孔率为78%,抗弯强度可达29.8mpa。从附图1可以看出,高长径比的直径尺寸为纳米级少量微米的氮化硅棒状晶之间相互搭接,形成了多孔陶瓷。

由表3可以看出实施例4采用44.9.wt%的碳纳米管和43.6wt%的氮化硅粉作为原料,11.5wt%的氧化钇为烧结助剂,成型压力为60mpa,经过1550℃保温5h气固反应,再在1700℃下保温2h进行液相烧结,所得多孔si3n4陶瓷材料的气孔率为70%,强度可达90.3mpa。

由表3可以看出实施例6采用65.9wt%的氮化硅粉和25.4wt%的碳纳米管作为原料,8.7wt%的氧化钇为烧结助剂成型压力为60mpa,经过1500℃保温5h气固反应,再在1750℃下保温2h进行液相烧结,所得多孔si3n4陶瓷材料的气孔率为65%,强度可达125.5mpa。从附图1可以看出,高长径比的直径尺寸为纳米级少量微米的氮化硅棒状晶之间相互搭接,形成了多孔陶瓷。

由表3可以看出实施例10采用44.9.wt%的碳纳米管和43.6wt%的氮化硅粉作为原料,11.5wt%的氧化钇为烧结助剂,成型压力为60mpa,经过1550℃保温5h气固反应,再在1800℃下保温2h进行液相烧结,所得多孔si3n4陶瓷材料的气孔率为65%,强度可达96.9mpa。

由表3可以看出实施例13采用20.2.wt%的碳纳米管和70.1wt%的氮化硅粉作为原料,10.0wt%的氧化钇为烧结助剂,成型压力为80mpa,经过1500℃保温5h气固反应,再在1850℃下保温2h进行液相烧结,所得多孔si3n4陶瓷材料的气孔率为40%,强度可达325.0mpa。

从附图1可以看出,高长径比的直径尺寸为纳米级少量微米的氮化硅棒状晶之间相互搭接,形成了多孔陶瓷。

图2为实施例2所获得的多孔si3n4陶瓷材料的xrd图。如图所示,经过液相烧结后,所获得的相为单一的β-si3n4。

图3为气固反应示意图,其中序号1为烧结炉,序号2为涂覆bn的石墨盖,序号3为涂覆bn的石墨坩埚,序号4为含有cnt的生坯,序号5为多孔bn平板,序号6为sio粉末。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1