一种高性能铌酸钠基无铅热释电陶瓷材料及其制备方法和应用与流程

文档序号:18950916发布日期:2019-10-23 02:12阅读:905来源:国知局
一种高性能铌酸钠基无铅热释电陶瓷材料及其制备方法和应用与流程

本发明涉及一种高性能铌酸钠基无铅热释电陶瓷材料及其制备方法和应用,属于红外探测材料领域。



背景技术:

热释电效应是热释电材料对温度变化而产生的电效应,已被研究了很长时间,由于这个特性,热释电材料在热成像、激光探测、辐射计、红外探测器、火灾警报器、和军用探测器等领域,具有广泛的应用,近些年其在能量收集方面的应用也引起了广泛关注。其中热释电材料作为红外探测器的核心元件,其工作模式包括本征热释电模式和介电-热释电模式。本征热释电模式主要是利用自发极化随温度的变化而产生的电荷,其居里温度(tc)或者退极化温度(td)较高,可以经过高温处理不发生性能恶化,室温附近温度稳定性好,无需温度稳定装置,在实用的单元、多元红外探测器中具有广泛的应用。当陶瓷材料应用于本征热释电模式红外探测器时,要求材料的tc/td高,热释电系数大,介电常数和介电损耗小,探测率优值高。目前,锆钛酸铅材料(pzt)是市场上主要用于红外探测器的热释电材料,但是铅对人体和环境有害的,因此无铅化是热释电材料研究和应用的必然趋势。

近些年来,许多无铅铁电材料体系的热释电性能及潜在应用得到科研工作者的广泛关注,包括sr0.3ba0.7nb2o6、ba0.67sr0.33tio3和na0.5bi0.5tio3体系等,大部分工作集中于通过掺杂或者构筑准同型相界来获得优异的热释电性能,但是,这些新发展的材料有一个共同的缺点就是退极化温度低和介电损耗较大,由于材料在生产加工处理过程中处于较高的温度,低的退极化温度会导致材料失效,而高的介电损耗会影响热释电探测率优值。比如说bi0.5na0.5tio3-ba(zr0.055ti0.945)o3在80℃时发生相变,表明材料会在80℃发生退极化,失去热释电性能。bi0.5na0.5tio3-bialo3-k0.5na0.5nbo3在118℃发生相似的退极化。而高的介电损耗会使材料在实际应用过程中产生很大的噪音,影响红外探测器的灵敏度,因此制约了其在红外成像领域的进一步发展和应用。为了实际应用,材料需要同时具有高的退极化温度,低的介电损耗和高的热释电性能,尽管无铅材料已经在热释电方面获得很大的进展,但是性能依然无法与商用pzt媲美,因此需要进一步优化性能,获得兼具优异热释电性能、高退极化温度和低介电损耗的材料。



技术实现要素:

针对上述问题,本发明提供的目的在于提供一种获得兼具优异热释电性能、低介电损耗和高退极化温度的铌酸钠基无铅热释电陶瓷材料及其制备方法和应用。

第一方面,本发明提供了一种铌酸钠基无铅热释电陶瓷材料,所述铌酸钠基无铅热释电陶瓷材料的化学组成为:(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,其中0≤x≤0.20。

在本发明中,首次发现铌酸钠陶瓷具有较高的退极化温度(~300℃),较低的介电常数(~140)和介电损耗(1~2%),在热释电方面展示了巨大的应用潜力。而且,本发明进一步提供了(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,其中0≤x≤0.20的组分,获得具有高热释电性能、低介电损耗和高退极化温度的铌酸钠基无铅热释电材料,可望应用于非制冷红外探测领域。本发明创新性主要来源于在nanbo3中同时加入ba0.6(bi0.5k0.5)0.4tio3和mnco3。加入ba0.6(bi0.5k0.5)0.4tio3的主要目的是:纯nanbo3室温下为正交反铁电体,需要施加很高的电场(>9kv/mm)才能转变为铁电体,从而体现出热释电性;并且由于nanbo3具有较高的居里温度,其室温热释电系数很低,难以满足实际生产的需要。ba0.6(bi0.5k0.5)0.4tio3室温下铁电四方相,将ba0.6(bi0.5k0.5)0.4tio3引入到nanbo3可以有效的改变nanbo3的相结构,使其从正交反铁电相转变为四方铁电相,并且ba0.6(bi0.5k0.5)0.4tio3的引入会降低居里温度提高材料的热释电特性。加入mnco3的作用主要是1:提高材料的烧结活性,降低材料的漏导,2:可以提高材料的铁电和压电性能,利于材料在高电场下极化。

较佳的,0.05≤x≤0.15。热释电系数和退极化温度之间存在矛盾关系,所以无法同时在某一具体组分中获得最大的热释电系数及最高的退极化温度,本发明所提供的组分范围主要基于同时具有较高的退极化温度和较高的热释电系数,所以组分范围选定为0.05~0.15。

较佳的,所述铌酸钠基无铅热释电陶瓷材料在25℃、10hz的测试条件下的相对介电常数为332~2949、介电损耗为0.016~0.033。

较佳的,所述铌酸钠基无铅热释电陶瓷材料的热释电系数为(1.88~3.11)×10-8ccm-2k-1,热释电探电流响应优值为(0.63~1.04)×10-10m/v,热释电探电压响应优值因子为(0.36~2.13)×10-2m2/c,探测率优值因子为(0.39~0.81)×10-5pa-1/2

第二方面,本发明提供了一种如上述的铌酸钠基无铅热释电陶瓷材料的制备方法,包括:

(1)按照化学组成计量比称取原料na2co3粉体、nb2o5粉体、baco3粉体、bi2o3粉体、k2co3粉体、tio2粉体、mnco3粉体并混合,在850~1050℃下煅烧1~6小时,得到nn-bbkt-mn固溶体粉体;

(2)在所得nn-bbkt-mn固溶体粉体中加入粘结剂并造粒,再经陈化、过筛、成型和排塑后,得到nn-bbkt-mn坯体;

(3)将所得nn-bbkt-mn坯体在1060~1240℃下烧结2~4小时,得到所述的铌酸钠基无铅热释电陶瓷材料。

较佳的,所述粘结剂为聚乙烯醇、聚乙二醇、聚苯乙烯和甲基纤维素中的至少一种,加入量为所述nn-bbkt-mn固溶体粉体的5%~7wt.%。

较佳的,所述陈化的时间为12~24小时;所述排塑的温度为700~800℃,时间为1.5~2小时。

较佳的,所述煅烧的升温速率为1~3℃/分钟。升温速率大小可以通过控制升温时间进行调整。

较佳的,所述烧结的升温速率为1~3℃/分钟。升温速率大小可以通过控制升温时间进行调整。

第三方面,本发明提供了一种热释电陶瓷元件,其特征在于,由上述的铌酸钠基无铅热释电陶瓷材料制成。

有益效果:

本发明制备的铌酸钠基无铅热释电陶瓷材料的性能优异,经过极化后的铌酸钠基无铅热释电材料具有高的退极化温度,可望应用于非制冷红外探测领域。

在本发明中,经过极化后的铌酸钠基无铅热释电陶瓷材料在25℃和1khz的测试频率下相对介电常数为332~2949、介电损耗为0.016~0.033。经过极化后的热释电陶瓷的热释电系数为(1.88~3.11)×10-8ccm-2k-1、热释电探电流响应优值为(0.63~1.04)×10-10m/v、热释电探电压响应优值因子为(0.36~2.13)×10-2m2/c、探测率优值因子为(0.39~0.81)×10-5pa-1/2。在本公开中,铌酸钠基的无铅热释电陶瓷材料的退极化温度一般高于110℃,最高284℃。当x=0.15时,铌酸钠基无铅热释电陶瓷材料具有高的退极化温度、低介电常数、高热释电系数、高探测率优值。

附图说明

图1为实施例1-4中经极化处理后采用静态法测试的铌酸钠基无铅热释电陶瓷材料的系数随着温度的变化规律图;

图2为实施例1-4中经极化处理后采用静态法测试的铌酸钠基无铅热释电陶瓷材料在室温下的探测率优质因子。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

在本公开中,高性能铌酸钠基无铅热释电陶瓷材料化学组成可为:(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,其中0≤x≤0.20,优选0.05≤x≤0.15。

在可选的实施方式中,所述铌酸钠基无铅热释电陶瓷材料在25℃和10hz的测试条件下的相对介电常数较小为332~2949、介电损耗较低为0.016~0.033。

本发明一实施方式中,通过配料、混料、合成、细磨、成型、排塑、烧结等步骤制备铌酸钠基无铅热释电陶瓷材料,简称nn-bbkt-mn热释电陶瓷材料。以下示例性说明本发明提供的铌酸钠基无铅热释电陶瓷的制备方法。

按照化学组成计量比称取原料na2co3粉体、nb2o5粉体、baco3粉体、bi2o3粉体,k2co3粉体、tio2粉体、mnco3粉体并混合,得到混合原料。所有原料纯度均大于99.0%。上述混合方式可采用湿式球磨法混合。其中球磨法混合的球磨介质可选钢球、锆球或者玛瑙球中的一种,溶剂为无水乙醇。优选锆球,所用的原料:酒精:锆球为1:(0.8-1.2):(4-6),球磨时间为24小时。球磨法混合后优选进行烘干处理,以去除溶剂。

将混合原料进行压制成型、煅烧合成,得到nn-bbkt-mn固溶体块体。在合成过程中,升温速度为1~3℃/min,合成温度为850-1050℃,保温时间1-6小时。合成后将块体粉碎,过40目筛网。

将nn-bbkt-mn固溶体块体进一步粉碎之后,得到nn-bbkt-mn固溶体粉末。将所得nn-bbkt-mn固溶体粉末中再加入粘结剂,进行第二次湿式球磨,烘干处理。然后再经过压块、陈化、过筛、冷等静压成型、排塑等步骤,制得nn-bbkt-mn坯体。具体来说,采用湿式球磨法,球墨介质可选钢球、锆球或者玛瑙球中的一种,溶剂为无水乙醇,优选锆球,且原料:酒精:锆球为1:(0.8-1.2):(4-6),球磨时间为24~48小时。然后烘干粉料,加入适量一定浓度的粘结剂(pva),经陈化、过筛、冷等静压成型,在700~800℃下排塑1.5~2小时,得到nn-bbkt-mn坯体。在上述过程中,陈化可在室温下进行,时间可为12-24小时。所述过筛可为过30目筛。

将nn-bbkt-mn坯体放置在坩埚中,并用相同组分的已烧结后nn-bbkt-mn固溶体覆盖,减少bi、na、k挥发。控制烧结温度可为1060-1240℃,时间可为2-4小时。烧结的升温速度可为1~3℃/min。在烧结之后,随炉冷却至室温,得到nn-bbkt-mn热释电陶瓷材料。

将nn-bbkt-mn热释电陶瓷进行加工,得到所需要的尺寸,超声清洗、丝网印刷、烘干、烧银处理,得到所述的热释电陶瓷元件。所述的烧银条件为700~800℃,保温30分钟。

将所得热释电陶瓷元件置于硅油中,加热至100℃,对其加电场6kv/mm的直流电场,进行极化30分钟,得到极化后的热释电陶瓷元件。

在可选的实施方式中,采用byer-roundy方法测得极化后的热释电陶瓷元件的热释电系数为(1.88~3.11)×10-8ccm-2k-1、热释电探电流响应优值可为(0.63~1.04)×10-10m/v、热释电探电压响应优值因子可为(0.36~2.13)×10-2m2/c、探测率优值因子可为(0.39~0.81)×10-5pa-1/2

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1:

(1)制备(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,x=0.05所示的组分。首先按照(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,x=0.05化学组成计量比称取原料na2co3粉体,nb2o5粉体,baco3粉体,bi2o3粉体,k2co3粉体,tio2粉体,mnco3粉体,所有原料纯度均大于99.0%。采用湿式球磨法混合24小时使各组分混合均匀,球磨介质为锆球,溶剂为无水乙醇。所用的原料:酒精:锆球比为1:(0.8-1.2):(4-6)。烘干,压制成型,煅烧合成得到(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,x=0.05固溶体粉末。在合成过程中,升温速度为1~3℃/min,合成温度为850-1050℃,保温时间1-6小时;

(2)合成后将块体粉碎,过40目筛网,进行第二次湿式球磨,烘干粉料,加粘结剂,造粒,压块,陈化,过筛,冷等静压成型,排塑等步骤制得nn-bbkt-mn坯体;

(3)将坯体放置在坩埚中,并用相同组分的已烧结后的粉料覆盖,减少bi、na、k挥发,烧结温度为1060-1240℃,时间为2-4小时,升温速度为1~3℃/min。在烧结之后,随炉冷却至室温,得到nn-bbkt-mn热释电陶瓷材料。

将烧结制得的热释电陶瓷材料的双面磨至0.5mm,超声清洗,烘干,丝网印刷银浆,再烘干,在700℃下烧银保温30分钟,得到热释电陶瓷元件,并测试其电学性能。将所得热释电陶瓷元件置于硅油中,加热至80℃,对其加电场6kv/mm的直流电场,进行极化40分钟,撤去电场取出陶瓷样品,对极化后的样品测量其不加外电场的介电及热释电性能。

实施例2:

材料的组成为(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,x=0.10,按照上述配方重复实施例1的制备方法得到极化后的热释电陶瓷元件,对极化后的样品测量其不加外电场的介电及热释电性能。

实施例3:

材料的组成为(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,x=0.15,按照上述配方重复实施例1的制备方法得到极化后的热释电陶瓷元件,对极化后的样品测量其不加外电场的介电及热释电性能。

实施例4:

材料的组成为(1-x)nanbo3-xba0.6(bi0.5k0.5)0.4tio3+1mol%mnco3,x=0.20,按照上述配方重复实施例1的制备方法得到极化后的热释电陶瓷元件,对极化后的样品测量其不加外电场的介电及热释电性能。

表1分别列出了实施例1-4中极化后的热释电陶瓷材料的室温介电性能和热释电性能:

从表1、图1和图2中可以看出实施例3具有最佳的综合热释电性能,兼具高的退极化温度和高的热释电系数和探测率优值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1