一种预热器用抗结皮耐磨耐火材料的制作方法

文档序号:25544020发布日期:2021-06-18 20:42阅读:113来源:国知局

本发明涉及耐火材料技术领域,具体涉及一种预热器用抗结皮耐磨耐火材料。



背景技术:

水泥厂预热器主要为回转窑预热器。预热器使用时间长了,内壁上会产生大量结皮。结皮形成的主要原因是含碱氧化物与含硫氧化物在高温状态下,以气态形式和窑尾废气一起与生料换热,挥发物冷凝再生料表面,附着在烟室内壁上逐渐形成结皮。由此可见,烟室温度越高,原燃材料中硫碱含硫越高,结皮越严重,结皮又导致窑内通风降低,煤粉后燃,加剧结皮形成,形成恶性循环。

防结皮材料以其耐磨、耐腐蚀、耐温等优异性能已经成功应用于水泥行业篦冷机内衬,预热器筒体、闸板、溜槽、称量漏斗等部位,并取得显著的节能降耗效果。重量轻,安装时降低了劳动强度,维修起来十分方便。防结皮材料不与配合料发生化学反应,防腐性能好,抗结皮,拥有更长的使用周期,可作为水泥企业耐磨、耐腐蚀、耐高温部位较为理想的代替品。虽然目前结皮材料不断更新和改进,但其成本仍然较高,并没有针对预热器内筒的特性开发的抗结皮材料,其抗震性和抗急冷急热性能还有待提高,所以需要一种抗结皮材料既能保持其耐磨、耐温、耐腐蚀等性能,还能进一步降低材料成本,并提高材料的抗震性和抗急冷急热性能,更加适合预热器使用。



技术实现要素:

针对上述现有技术,本发明的目的是提供一种预热器用抗结皮耐磨耐火材料。本发明适合预热器内筒使用,不仅保持抗结皮材料的耐磨、耐温、耐腐蚀等性能,还降低了材料成本,提高了材料的耐急冷急热性能。

为实现上述目的,本发明采用如下技术方案:

本发明的第一方面,提供一种预热器用抗结皮耐磨耐火材料,包括以下重量份的原料:

刚玉砖废料20~30份,钛酸铝陶瓷废料30~40份,氧化铝8~12份,碳化硅10~15份,微硅粉5~10份,粉煤灰8~13份,防爆纤维0.1份,碳化硅纤维0.01~0.05份,高强度粘结剂2~5份,减水剂0.5~1份。

优选的,所述刚玉砖废料包含粒度为1-3mm的刚玉颗粒和8-10mm的刚玉颗粒;所述1-3mm的刚玉颗粒和8-10mm的刚玉颗粒质量比为1:(4~5)。

优选的,所述钛酸铝陶瓷废料中氧化铝的含量大于或等于25%。

优选的,所述钛酸铝陶瓷废料中包括:6-10mm的钛酸铝陶瓷颗粒10~15份、3-5mm的钛酸铝陶瓷颗粒6~10份、1-3mm的钛酸铝陶瓷颗粒7~13份份、0-1mm的钛酸铝陶瓷颗粒7~13份。

优选的,所述防爆纤维为钢纤维。

优选的,所述高强度粘结剂羧甲基纤维素、壳聚糖和磷酸二氢铝按质量比2:2:6混合而成。

本发明的第二方面,提供上述预热器用抗结皮耐磨耐火材料在制备预热器中的应用。

本发明的第三方面,提供上述预热器用抗结皮耐磨耐火材料制备预热器筒体的方法,包括以下步骤:

(1)将刚玉砖废料和钛酸铝陶瓷废料分别进行粉碎,将粉碎后的刚玉砖废料和钛酸铝陶瓷废料再依次进行振动筛选,分别得到粒径为1-3mm和8-10mm的刚玉颗粒,以及粒径为6-10mm、3-5mm、1-3mm和0-1mm的钛酸铝陶瓷颗粒;

(2)将各原料按重量份称重,并混合均匀得到泥料;

(3)将泥料经注浆或压制成型制成坯体,然后进行烧结,烧结结束后将得到的烧结体安装到预热器的壳体上。

优选的,步骤(2)中,先将刚玉砖废料、钛酸铝陶瓷废料、氧化铝、碳化硅、微硅粉、粉煤灰混合均匀,再加入高强度粘结剂和减水剂进行搅拌,搅拌均匀后加入防爆纤维和碳化硅纤维继续混合均匀。

优选的,步骤(3)中,所述烧结的温度为1400~1500℃,烧结时间为3~5天。

本发明的有益效果:

(1)本发明以刚玉砖废料和钛酸铝陶瓷废料为主要原料,可降低材料成本,同时钛酸铝陶瓷本身具有优异的抗震性和耐急冷急热的性能,能够提高抗结皮材料的抗震性和耐急冷急热性。并且烧制钛酸铝陶瓷时,烧结助剂中的氧化硅和原料中的氧化铝在烧结后期会生成莫来石相,所以钛酸铝陶瓷废料还能够替代莫来石使用,原料中就无需再加入莫来石,进一步降低材料成本。

(2)本发明在抗结皮材料中加入了碳化硅纤维,可以提高材料的耐高温性能,和使用寿命,还可以增加材料的耐磨和耐腐蚀性。

(3)本发明在原料中还加入了粉煤灰,作为抗结皮原料可以改善泥料拌和料的流动性、粘聚性和保水性。使抗结皮料可以用于注浆或压制成型。同时,粉煤灰为由燃料(主要是煤)燃烧过程中排出的微小灰粒,原料易得且成本低,进一步降低了抗结皮材料的成本。

(4)本发明将羧甲基纤维素与壳聚糖混合,壳聚糖形成聚阳离子,而羧甲基纤维素形成聚阴离子,壳聚糖与羧甲基纤维素发生较强的离子交联,形成稳定的聚电解质网络结构;再加入磷酸二氢铝可与羧甲基纤维素发生复合凝聚,进一步提高磷酸二氢铝的粘结性能和耐温性能。

(5)本发明的抗结皮材料具有耐磨、耐温、耐腐蚀等性能,降低了材料成本;还具有优异的抗震性和耐急冷急热性,对于高低温变化频繁的部位尤为适合。

具体实施方式

应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

本发明提供一种预热器用抗结皮耐磨耐火材料,以钛酸铝陶瓷废料替代莫来石,钛酸铝陶瓷废料中含有氧化铝,烧制钛酸铝陶瓷时,烧结助剂中的氧化硅和原料中的氧化铝在烧结后期会生成莫来石相,所以钛酸铝陶瓷废料可以部分替代莫来石使用。使用钛酸铝陶瓷的同时,为了不降低抗结皮材料的耐磨、耐温性能,本发明还加入了少量碳化硅纤维,以提高材料的耐磨性等。同时钛酸铝陶瓷本身具有较好的抗震性和耐急冷急热的性能,能够进一步提高抗结皮材料的急冷急热性。

本发明将羧甲基纤维素与壳聚糖分别配置成一定浓度的水溶液,将两者混合后,壳聚糖形成聚阳离子,而羧甲基纤维素形成聚阴离子,壳聚糖与羧甲基纤维素发生较强的离子交联,形成稳定的聚电解质网络结构;再加入磷酸二氢铝可与羧甲基纤维素发生复合凝聚,进一步提高磷酸二氢铝的粘结性能和耐温性能。同时,在配置羧甲基纤维素与壳聚糖时,可以根据情况调节水的加入量,形成各种浓度的溶液(40~200g/l)。这样后续原料混合时就不用额外加入水。

本发明通过使用刚玉砖废料、钛酸铝陶瓷废料、粉煤灰等工业废料,大大降低了抗结皮材料的成本,同时还提高了其抗震性和急冷急热性。

为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。

本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。

实施例1

(1)将刚玉砖废料和钛酸铝陶瓷废料分别放入粉碎搅拌机中进行粉碎,将粉碎后的刚玉砖废料和钛酸铝陶瓷废料依次通过孔径由小到大的筛网并进行振动筛选,从孔径小的筛网中筛选下来的颗粒在放入孔径略大的筛网进行筛选,分别得到粒径为1-3mm和8-10mm的刚玉颗粒,以及粒径为6-10mm、3-5mm、1-3mm和0-1mm的钛酸铝陶瓷颗粒。

(2)将0.4kg羧甲基纤维素和0.4kg壳聚糖按照侬度为80g/l配制成溶液,加热至80℃下反应1h,冷却至40℃加入1.2kg磷酸二氢铝,保温并反应0.5h,得到高温粘结剂。

(3)将1-3mm的刚玉颗粒4kg,8-10mm的刚玉颗粒16kg,6-10mm的钛酸铝陶瓷颗粒10kg、3-5mm的钛酸铝陶瓷颗粒6kg、1-3mm的钛酸铝陶瓷颗粒7kg、0-1mm的钛酸铝陶瓷颗粒7kg,氧化铝8kg,碳化硅10kg,微硅粉5kg,粉煤灰8kg,混合均匀,再加入高强度粘结剂2kg,减水剂0.5kg混合均匀,最后加入钢纤维0.1kg,碳化硅纤维0.01kg混合均匀得到泥料。

(4)将泥料经注浆进入模具中,然后1400~1500℃下烧结4天。烧结结束后将得到的烧结体安装到预热器的壳体上。

实施例2

(1)将刚玉砖废料和钛酸铝陶瓷废料分别放入粉碎搅拌机中进行粉碎,将粉碎后的刚玉砖废料和钛酸铝陶瓷废料依次通过孔径由小到大的筛网并进行振动筛选,从孔径小的筛网中筛选下来的颗粒在放入孔径略大的筛网进行筛选,分别得到粒径为1-3mm和8-10mm的刚玉颗粒,以及粒径为6-10mm、3-5mm、1-3mm和0-1mm的钛酸铝陶瓷颗粒。

(2)将0.7kg羧甲基纤维素和0.7kg壳聚糖按照侬度为140g/l配制成溶液,加热至85℃下反应1h,冷却至45℃加入2.1kg磷酸二氢铝,保温并反应0.5h,得到高温粘结剂。

(3)将1-3mm的刚玉颗粒5kg,8-10mm的刚玉颗粒20kg,6-10mm的钛酸铝陶瓷颗粒11kg、3-5mm的钛酸铝陶瓷颗粒7kg、1-3mm的钛酸铝陶瓷颗粒9kg、0-1mm的钛酸铝陶瓷颗粒8kg,氧化铝10kg,碳化硅13kg,微硅粉8kg,粉煤灰10kg,混合均匀,再加入高强度粘结剂3.5kg,减水剂0.8kg混合均匀,最后加入钢纤维0.1kg,碳化硅纤维0.03kg混合均匀得到泥料。

(4)将泥料在模具中压制成型得到坯体,然后1400~1500℃下烧结3天。烧结结束后将得到的烧结体安装到预热器的壳体上。

实施例3

(1)将刚玉砖废料和钛酸铝陶瓷废料分别放入粉碎搅拌机中进行粉碎,将粉碎后的刚玉砖废料和钛酸铝陶瓷废料依次通过孔径由小到大的筛网并进行振动筛选,从孔径小的筛网中筛选下来的颗粒在放入孔径略大的筛网进行筛选,分别得到粒径为1-3mm和8-10mm的刚玉颗粒,以及粒径为6-10mm、3-5mm、1-3mm和0-1mm的钛酸铝陶瓷颗粒。

(2)将1.0kg羧甲基纤维素和1.0kg壳聚糖按照侬度为150g/l配制成溶液,加热至80℃下反应1h,冷却至40℃加入3.0kg磷酸二氢铝,保温并反应0.5h,得到高温粘结剂。

(3)将1-3mm的刚玉颗粒5kg,8-10mm的刚玉颗粒25kg,6-10mm的钛酸铝陶瓷颗粒12kg、3-5mm的钛酸铝陶瓷颗粒8kg、1-3mm的钛酸铝陶瓷颗粒10kg、0-1mm的钛酸铝陶瓷颗粒10kg,氧化铝12kg,碳化硅15kg,微硅粉10kg,粉煤灰13kg,混合均匀,再加入高强度粘结剂5kg,减水剂1kg混合均匀,最后加入钢纤维0.1kg,碳化硅纤维0.05kg混合均匀得到泥料。

(4)将泥料经注浆进入模具中,然后1400~1500℃下烧结5天。烧结结束后将得到的烧结体安装到预热器的壳体上。

对比例1

(1)将刚玉砖废料放入粉碎搅拌机中进行粉碎,将粉碎后的刚玉砖废料通过孔径由小到大的筛网并进行振动筛选,分别得到粒径为1-3mm和8-10mm的刚玉颗粒。

(2)将0.4kg羧甲基纤维素和0.4kg壳聚糖按照侬度为80g/l配制成溶液,加热至80℃下反应1h,冷却至40℃加入1.2kg磷酸二氢铝,保温并反应0.5h,得到高温粘结剂。

(3)将1-3mm的刚玉颗粒4kg,8-10mm的刚玉颗粒16kg,6-10mm的莫来石颗粒10kg、3-5mm的莫来石颗粒6kg、1-3mm的莫来石颗粒7kg、0-1mm的莫来石颗粒7kg,氧化铝8kg,碳化硅10kg,微硅粉5kg,粉煤灰8kg,混合均匀,再加入高强度粘结剂2kg,减水剂0.5kg混合均匀,最后加入钢纤维0.1kg混合均匀得到泥料。

将泥料经注浆进入模具中,然后1400~1500℃下烧结4天。烧结结束后将得到的烧结体安装到预热器的壳体上。

对比例2

(1)将刚玉砖废料和钛酸铝陶瓷废料分别放入粉碎搅拌机中进行粉碎,将粉碎后的刚玉砖废料和钛酸铝陶瓷废料依次通过孔径由小到大的筛网并进行振动筛选,从孔径小的筛网中筛选下来的颗粒在放入孔径略大的筛网进行筛选,分别得到粒径为1-3mm和8-10mm的刚玉颗粒,以及粒径为6-10mm、3-5mm、1-3mm和0-1mm的钛酸铝陶瓷颗粒。

(2)将1-3mm的刚玉颗粒4kg,8-10mm的刚玉颗粒16kg,6-10mm的钛酸铝陶瓷颗粒10kg、3-5mm的钛酸铝陶瓷颗粒6kg、1-3mm的钛酸铝陶瓷颗粒7kg、0-1mm的钛酸铝陶瓷颗粒7kg,氧化铝8kg,碳化硅10kg,微硅粉5kg,铝酸钙水泥8kg,混合均匀,再加入磷酸二氢铝2kg,减水剂0.5kg,水8kg混合均匀,最后加入钢纤维0.1kg,碳化硅纤维0.01kg混合均匀得到泥料。

(4)将泥料经注浆进入模具中,然后1400~1500℃下烧结4天。烧结结束后将得到的烧结体安装到预热器的壳体上。

对比例3

(1)将刚玉砖废料放入粉碎搅拌机中进行粉碎,将粉碎后的刚玉砖废料通过孔径由小到大的筛网并进行振动筛选,分别得到粒径为1-3mm和8-10mm的刚玉颗粒。

(3)将1-3mm的刚玉颗粒4kg,8-10mm的刚玉颗粒16kg,6-10mm的莫来石颗粒10kg、3-5mm的莫来石颗粒6kg、1-3mm的莫来石颗粒7kg、0-1mm的莫来石颗粒7kg,氧化铝8kg,碳化硅10kg,微硅粉5kg,铝酸钙水泥8kg,混合均匀,再加入磷酸二氢铝2kg,减水剂0.5kg,水8kg混合均匀,最后加入钢纤维0.1kg混合均匀得到泥料。

将泥料经注浆进入模具中,然后1400~1500℃下烧结4天。烧结结束后将得到的烧结体安装到预热器的壳体上。

试验例

坯料的性能测试

将实施例1~3以及对比例1~3得到的坯料经过成形、养护、烧结后对制成的抗结皮材料性能进行测试。分别对其体积密度、抗折强度、耐压强度、耐碱性以及线变化率进行测试,其中,干燥条件分别为110℃下干燥24小时、1200℃下保温3小时。所得结果见表1。

抗结皮性:以成对的尺寸为40mm×40mm×80mm的耐火材料为试样,以20%的硫酸钾和10%的硫酸钙作为结皮料,使用样品上下夹住结皮料,1200℃热处理3小时,检测其抗粘结性。

抗热震性:将样品置于900℃下灼烧3小时,将品从900℃取出,空气中自然冷却到室温(风冷)。

耐急冷急热性:从900℃平衡状态下将样品快速投掷于20℃的去离子水中,冷却并擦干表面的水后再快速放回900℃的环境,如此连续循环。900℃平衡状态是指样品处于900℃的温度环境中至少恒温30min,20℃的去离子水其重量不低于样品自身重量的400倍,快速是指时间不超过5秒。

其他测试方法:

抗折强度按gb/t3001-2017的标准进行检验;

抗压强度按gb/t5072-2008的标准进行检验;

线变化按gb/t5988-2007的标准进行检验;

耐碱性按cb/t10696-89的标准进行检验,

抗热振性按jct2171-2013标准进行检验。

表1

由表1可知,实施例1~3制备的抗结皮材料其抗折强度、耐压强度、耐碱性、耐磨性和线变化率都优于对比例1~3制备的抗结皮材料。特别是抗热震性和耐急冷急热性能都远高于对比例1~3。耐火材料和实施例1~3制备的结皮料几乎不发生粘结,用手一拿结皮和耐火材料就脱开,说明本发明的抗结皮材料具有很好的抗结皮性。

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1