一种基于3D打印的碳纤维增强受电弓碳滑板的制备方法与流程

文档序号:25544028发布日期:2021-06-18 20:42阅读:84来源:国知局

本发明涉及一种基于3d打印的碳纤维增强受电弓碳滑板的制备方法,属于受电弓碳滑板的制备技术领域。



背景技术:

电力机车运行过程中,所需的电能是由地面供电系统通过接触网经受电弓获得,受电弓传输的能量经过整流设备、发动机将电能转化为机械能,从而为机车提供牵引力来使电力机车工作,因此受电弓与接触网导线的可靠接触是列车能够正常运行的重要保障。受电弓滑板是机车供电系统中的最重要集电元件,它安装在受电弓上,与接触网导线接触,将输电网上的电流引导下来,传输给机车供电系统,来维持电力机车正常运行。随着高速列车运行速度的大幅度提升、运行环境及弓网结构特性的巨大改变,高速列车保持稳定的受流质量对受电弓滑板提出了更高的技术要求。

目前,纯碳滑板、浸金属碳滑板是主要的受电弓滑板材料。纯碳材料滑板对导线磨耗低,可延长导线使用寿命,但其机械强度低、易出现断裂、掉块现象,耐冲击性差,使用寿命低。特别是在环境不好的情况下,易局部拉沟,常出现弓网事故。浸金属碳滑板具有较好的性能,基本解决了碳滑板机械强度低的问题,但现有技术制备的浸金属碳滑板普遍存在制备工艺复杂,易掉块和抗冲击力不足的缺点。碳纤维增强复合材料由于具有电阻率设计性强、比强高、比重小、力学性能好、对接触导线的磨损小好优点,成为了高性能受电弓滑板较为理想的材料。现有技术对碳纤维增强复合材料作为碳滑板材料进行了一些研究,但普遍存在机械强度不高,制备工艺复杂,原料浪费等问题。



技术实现要素:

本发明的发明目的是提供一种基于3d打印的碳纤维增强受电弓碳滑板的制备方法,该方法可实现碳滑板的快速制备,原料利用率高,节约制备成本且而可减少环境污染和原材料浪费,所制备的碳滑板具有优良的综合性能,解决了现有碳纤维复合材料受电弓滑板存在的层间开裂,耐磨性和稳定性差等问题,同时解决了现有浸渍金属碳滑板制备工艺复杂且浸渍金属效率低下的问题。

本发明实现其发明目的所采取的技术方案是:一种基于3d打印的碳纤维增强受电弓碳滑板的制备方法,包括以下步骤:

s1、准备打印原料,所述打印原料包括打印浆料和碳纤维布,打印浆料包括热固性酚醛树脂颗粒、石墨粉、丁腈橡胶颗粒、铜纳米颗粒、增强纤维和光敏树脂;所有打印原料的质量百分比为:碳纤维布15%-25%、热固性酚醛树脂颗粒20%-30%、石墨粉15%-25%、丁腈橡胶颗粒3%-6%、铜纳米颗粒8%-15%、增强纤维10%-20%和光敏树脂15%-25%,其中增强纤维包括硅灰石纤维和短切碳纤维,二者质量比为1:0.5-1:2;

s2、构建所需制备碳滑板的三维模型并将其输入3d打印编辑软件中,编辑后进行二维化处理,确定每个打印层面的二维切片数据,将二维切片数据和碳纤维布厚度导入3d打印设备,设定3d打印工艺参数,包括打印路径、打印层面厚度和光照时间;

s3、在成型缸的成型基板上方设置温度控制装置和温度监控装置,密封3d打印设备的工作区域并充入氩气保护;在成型缸逐层填入打印浆料并铺设碳纤维布,开始光固化成型3d打印碳滑板坯件,具体打印方式是:

s31、预热成型基板后,在成型缸内填入一层打印浆料;

s32、3d打印设备的光源按照预先设定打印路径,选择性地对成型基板上的打印浆料进行扫描,光敏树脂固化,完成坯件第一个打印层面的打印;

s33、在完成打印的坯件打印层面上铺设一层预热至碳纤维布设定温度的碳纤维布;然后在碳纤维布上填入一层打印浆料,并通过温度控制装置加热打印浆料温度至浆料设定温度;

s34、3d打印设备的光源按照预先设定打印路径,选择性地对成型基板上的打印浆料进行扫描,光敏树脂固化,完成坯件当前打印层面的打印;

s35、重复步骤s33-s34至坯件打印完成,去除多余的碳纤维布及打印浆料,得到成形的碳滑板坯件;

s4、对碳滑板坯件依次进行脱脂处理、焙烧处理,洗涤并烘干后进行预热和浸铜处理,即完成碳纤维增强受电弓碳滑板的制备;

所述浸铜处理采用真空压力浸铜方法,浸铜压力8-12mpa、浸铜温度1300-1400℃,浸铜时间10-30min。

所述碳纤维布设定温度和浆料设定温度通过预实验获得,浆料设定温度可以在保证打印浆料不受高温破坏的前提下,使得前打印层面与碳纤维布下面的打印层面之间良好融合,避免层间未融合缺陷,通过浆料设定温度和碳纤维布设定温度控制打印层面的层间温度,不仅可使得碳纤维布与已经完成打印的坯件打印层面之间结合界面良好,还可以增强当前打印层面与碳纤维布之间的结合界面,有利于提高3d打印碳滑板成型质量。

与现有技术相比,本发明的有益效果是:

1、长碳纤维增强复合材料虽然在性能上具有更多优势,但其制备工艺较为局限,在3d打印技术领域更是有较多的技术瓶颈。所以,在碳纤维增强复合材料制备技术领域,短切碳纤维增强复合材料制备工艺简单、可操作性强,具有一定优势。但是,在短切碳纤维增强复合材料中,碳纤维含量过少无法起到增强作用,含量过多容易出现分布不均匀、团聚等问题,也无法起到良好的增强效果,传统的短切碳纤维增强复合材料中短碳纤维排列是杂乱无章的,增强效果有限。本发明结合碳纤维布(长纤维)和短纤维共同增强效果,短碳纤维在打印层面中分散分布、碳纤维布分布于打印层面之间,即使在高增强纤维含量的情况下,也不会出现团聚等现象,在增强碳滑板的力学性能和耐磨性能的同时,还提高了碳滑板的导电性能。分散分布的短切碳纤维和与基体交替分布的碳纤维布保证了碳滑板的强度、在摩擦时的稳定性和导电性,硅灰石纤维作为增强纤维也可明显降低碳滑板的磨损量。

2、本发明采用光固化3d打印的方法制备碳滑板,不仅具有制备工艺简单,制备效率高,成型精度高,避免原材料浪费等优势,且光敏树脂的脱脂使得碳滑板内部存在孔隙,使浸渍的金属呈均匀分布的网状结构,更能集合碳材料和金属材料的各自优势,使得碳滑板的电阻率低,导电能力强,强度高,使用寿命增长。

3、本发明打印浆料的配比是通过大量前期研究,采用均匀设计和回归分析的算法和大量试验确定的,采用碳纤维与硅灰石纤维混杂作为增强纤维,结合石墨粉、铜纳米颗粒和丁腈橡胶颗粒与热固性酚醛树脂混合作为集体,可获得综合性能优异的受电弓碳滑板材料。

进一步,本发明所述打印浆料中短切碳纤维的直径为3μm-15μm,长度为200μm-600μm,热固性酚醛树脂粒径分布范围为300μm-600μm,丁腈橡胶颗粒粒径分布范围为300μm-600μm。

进一步,本发明所述打印浆料的制备方法如下:

s13、对短切碳纤维进行刻蚀处理,然后将刻蚀处理的短切碳纤维、石墨粉、铜纳米颗粒和硅灰石纤维加入用于溶解热固性酚醛树脂的溶剂中,超声分散并充分搅拌混合,得到混合均匀的固液混合物;将热固性酚醛树脂颗粒与六亚甲基四胺充分搅拌混合,得到固体混合物;

s14、将步骤s13得到固液混合物和固体混合物同时加入反应容器中,搅拌使固体混合物充分溶解,然后干燥得到混合物块体;随后将混合物块体破碎成300-600μm直径的混合颗粒备用;

s15、将步骤s14破碎后的混合颗粒和丁腈橡胶颗粒加入气相二氧化硅,搅拌1-3h,得到打印粉料;

s16、将打印粉料与光敏树脂混合,搅拌得到混合均匀的打印浆料。

上述对短切碳纤维进行刻蚀处理的具体方法是:将短切碳纤维分散在67%硝酸溶液,加热至55℃反应3h,然后过滤并洗涤干燥,得到刻蚀处理的短切碳纤维;用于溶解热固性酚醛树脂的溶剂为丙酮。

上述打印浆料制备方法通过对将热固性酚醛树脂溶解后再析出包覆增强纤维和其他颗粒粉料,有利于减少纤维和颗粒粉料的团聚,使得打印原料均匀分散于酚醛树脂中,提高最终打印得到的复合材料的整体性能,且在包覆前,先对碳纤维进行刻蚀处理,可大大提高碳纤维与树脂件的结合强度,提高碳纤维增强复合材料的力学性能。

进一步,本发明所述打印原料中的热敏树脂按质量百分比,包括以下组分:三环癸烷二甲醇二丙烯酸酯20%,3,3-﹝氧基双亚甲基﹞-双﹝3-乙基﹞氧杂环丁烷20%,双酚a型环氧树脂20%,脂环族环氧树脂30%,1-羟基环己基苯甲酮3%,三芳基硫鎓六氟锑酸盐4%,3-甲基丙烯酰氧基丙基三甲氧基硅2%。

上述组分得到的热敏树脂具有耐高温、收缩变形小的特点,可确保打印碳滑板的成型效果,提高成型质量。

进一步,本发明所述打印原料所用的碳纤维布为硫氮共掺杂碳纤维布,硫氮共掺杂碳纤维布的制备方法是:将碳纤维布置入装有硫脲溶液的反应容器中,然后边搅拌边向溶液中滴入酸碱调节剂,调节溶液的ph至ph=7.8-8.5,密封反应容器并在170℃-220℃温度下加热10h-14h,自然冷却后取出碳纤维布,洗涤并干燥。

硫氮共掺杂碳纤维布不仅使得碳纤维布具有更大的表面积,碳纤维布表面光滑、呈化学惰性,与打印层面的粘结性能差,限制了材料整体优异性能的充分发挥。硫氮共掺杂增加了碳纤维布的表面积,改善了碳纤维布与打印层面的结合性能,且增加了碳纤维布表面的活性位点,氮元素与硫元素可降低碳纤维布与基体结合界面的电阻率,提高碳滑板的导电性。上述制备方法通过一次性反应实现了氮硫元素的掺杂,制备工艺简单。

进一步,本发明所述设置在成型基板上方的温度控制装置包括一系列微小等距均匀布置的惰性气体通道,通过调节喷出的惰性保护气体的温度,实现对成型基板或打印浆料的冷却处理或加热处理;温度监控装置为红外测温仪,用于实时监控成型基板或打印浆料的温度。

进一步,本发明所述步骤s2中设定的3d打印工艺参数还包括各打印层面中增强纤维的排布方向;在打印过程中,每次填入的打印浆料比该打印层面需要的打印浆料厚,填入一层打印浆料后,先通过温度控制装置加热打印浆料温度至浆料设定温度,再采用刮板沿着设定的当前打印层面中增强纤维的排布方向从一侧匀速刮至另一侧,在刮掉多余打印浆料的同时,增强纤维因剪切诱导性沿其受到刮板的剪切力方向排布。

通过对增强纤维进行了剪切诱导,实现了增强纤维的定向分布,与传统制备工艺中的杂乱无章相比,有利于使打印碳滑板性能得到更大的提升。

进一步,本发明所述步骤s4中对碳滑板坯件进行脱脂处理、焙烧处理是在真空热压烧结炉中进行,脱脂处理工艺根据热敏树脂的失重曲线设计,焙烧处理工艺根据热固性酚醛树脂的失重曲线设计。

脱脂处理工艺根据热敏树脂的失重曲线设计可使得光敏树脂缓慢裂解成气体挥发出去,在碳滑板内形成分布均匀的孔隙,使浸渍的铜在碳滑板内部形成均匀分布的网状结构,有利于增加碳滑板的导电性能。

进一步,本发明所述步骤s4浸铜之前预热的预热温度为800℃-1200℃,预热时间为10-30min。

下面结合具体实施方式对本发明做进一步详细描述。

具体实施方式

实施例

一种基于3d打印的碳纤维增强受电弓碳滑板的制备方法,包括以下步骤:

s1、准备打印原料,所述打印原料包括打印浆料和碳纤维布,打印浆料包括热固性酚醛树脂颗粒、石墨粉、丁腈橡胶颗粒、铜纳米颗粒、增强纤维和光敏树脂;所有打印原料的质量百分比为:碳纤维布15%-25%、热固性酚醛树脂颗粒20%-30%、石墨粉15%-25%、丁腈橡胶颗粒3%-6%、铜纳米颗粒8%-15%、增强纤维10%-20%和光敏树脂15%-25%,其中增强纤维包括硅灰石纤维和短切碳纤维,二者质量比为1:0.5-1:2;

s2、构建所需制备碳滑板的三维模型并将其输入3d打印编辑软件中,编辑后进行二维化处理,确定每个打印层面的二维切片数据,将二维切片数据和碳纤维布厚度导入3d打印设备,设定3d打印工艺参数,包括打印路径、打印层面厚度和光照时间;

s3、在成型缸的成型基板上方设置温度控制装置和温度监控装置,密封3d打印设备的工作区域并充入氩气保护;在成型缸逐层填入打印浆料并铺设碳纤维布,开始光固化成型3d打印碳滑板坯件,具体打印方式是:

s31、预热成型基板后,在成型缸内填入一层打印浆料;

s32、3d打印设备的光源按照预先设定打印路径,选择性地对成型基板上的打印浆料进行扫描,光敏树脂固化,完成坯件第一个打印层面的打印;

s33、在完成打印的坯件打印层面上铺设一层预热至碳纤维布设定温度的碳纤维布;然后在碳纤维布上填入一层打印浆料,并通过温度控制装置加热打印浆料温度至浆料设定温度;

s34、3d打印设备的光源按照预先设定打印路径,选择性地对成型基板上的打印浆料进行扫描,光敏树脂固化,完成坯件当前打印层面的打印;

s35、重复步骤s33-s34至坯件打印完成,去除多余的碳纤维布及打印浆料,得到成形的碳滑板坯件;

s4、对碳滑板坯件依次进行脱脂处理、焙烧处理,洗涤并烘干后进行预热和浸铜处理,即完成碳纤维增强受电弓碳滑板的制备;

所述浸铜处理采用真空压力浸铜方法,浸铜压力8-12mpa、浸铜温度1300-1400℃,浸铜时间10-30min。

本例所述打印浆料中短切碳纤维的直径为3μm-15μm,长度为200μm-600μm,热固性酚醛树脂粒径分布范围为300μm-600μm,丁腈橡胶颗粒粒径分布范围为300μm-600μm。

本例所述打印浆料的制备方法如下:

s13、对短切碳纤维进行刻蚀处理,然后将刻蚀处理的短切碳纤维、石墨粉、铜纳米颗粒和硅灰石纤维加入用于溶解热固性酚醛树脂的溶剂中,超声分散并充分搅拌混合,得到混合均匀的固液混合物;将热固性酚醛树脂颗粒与六亚甲基四胺充分搅拌混合,得到固体混合物;

s14、将步骤s13得到固液混合物和固体混合物同时加入反应容器中,搅拌使固体混合物充分溶解,然后干燥得到混合物块体;随后将混合物块体破碎成300-600μm直径的混合颗粒备用;

s15、将步骤s14破碎后的混合颗粒和丁腈橡胶颗粒加入气相二氧化硅,搅拌1-3h,得到打印粉料;

s16、将打印粉料与光敏树脂混合,搅拌得到混合均匀的打印浆料。

本例所述打印原料中的热敏树脂按质量百分比,包括以下组分:三环癸烷二甲醇二丙烯酸酯20%,3,3-﹝氧基双亚甲基﹞-双﹝3-乙基﹞氧杂环丁烷20%,双酚a型环氧树脂20%,脂环族环氧树脂30%,1-羟基环己基苯甲酮3%,三芳基硫鎓六氟锑酸盐4%,3-甲基丙烯酰氧基丙基三甲氧基硅2%。

本例所述打印原料所用的碳纤维布为硫氮共掺杂碳纤维布,硫氮共掺杂碳纤维布的制备方法是:将碳纤维布置入装有硫脲溶液的反应容器中,然后边搅拌边向溶液中滴入酸碱调节剂,调节溶液的ph至ph=7.8-8.5,密封反应容器并在170℃-220℃温度下加热10h-14h,自然冷却后取出碳纤维布,洗涤并干燥。

本例所述设置在成型基板上方的温度控制装置包括一系列微小等距均匀布置的惰性气体通道,通过调节喷出的惰性保护气体的温度,实现对成型基板或打印浆料的冷却处理或加热处理;温度监控装置为红外测温仪,用于实时监控成型基板或打印浆料的温度。

本例所述步骤s2中设定的3d打印工艺参数还包括各打印层面中增强纤维的排布方向;在打印过程中,每次填入的打印浆料比该打印层面需要的打印浆料厚,填入一层打印浆料后,先通过温度控制装置加热打印浆料温度至浆料设定温度,再采用刮板沿着设定的当前打印层面中增强纤维的排布方向从一侧匀速刮至另一侧,在刮掉多余打印浆料的同时,增强纤维因剪切诱导性沿其受到刮板的剪切力方向排布。

本例所述步骤s4中对碳滑板坯件进行脱脂处理、焙烧处理是在真空热压烧结炉中进行,脱脂处理工艺根据热敏树脂的失重曲线设计,焙烧处理工艺根据热固性酚醛树脂的失重曲线设计。

本例所述步骤s4浸铜之前预热的预热温度为800℃-1200℃,预热时间为10-30min。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1