一种低热导率、高断裂韧性航空航天热障材料及其制备

文档序号:25544003发布日期:2021-06-18 20:41阅读:375来源:国知局
一种低热导率、高断裂韧性航空航天热障材料及其制备

本发明涉及热障涂层材料领域,尤其一种低热导率、高断裂韧性航空航天热障材料及其制备。



背景技术:

热障涂层能够有效保护保护涡轮发动机、火箭外壳和载人舱等关键部件,保证发动机的稳定运行和航空航天任务的完成。但是要实现载人航天,现有的热障材料存在不足,难以达到应用需求。

我国热障材料广泛使用的ysz材料,其固有热导率仍然较高(3.99~4.51w.m-1.k-1)。而目前被认为可替代ysz的稀土锆酸盐材料,其断裂韧性较低(如la2zr2o7和nd2zr2o7分别为0.89mpa•m1/2、0.67mpa•m1/2),且其热导率仍偏高。为满足航天系统的性能提高,所需关键零部件材料需要同时满足热障性能和力学性能。因此,降低热障材料的热导率、提升其断裂韧性是我国航天计划的亟待解决的任务,对我国建设太空强国具有重要意义。

类比于高熵合金,将多种组元按等摩尔或近等摩尔比混合配制,体系熵值增加,制备出单相固溶体,同时由于鸡尾酒效应,能显著改善材料的性能。目前已报道单相岩盐结构、钙钛矿结构、尖晶石结构、烧绿石结构等高熵氧化物陶瓷,均具有突出的性能,是一种极具应用潜力的热障材料。但目前所报道的高熵氧化物陶瓷烧结温度较高、烧结时间长,导致材料的断裂韧性和热导率性能难以达到共同提高。改善高熵陶瓷成分、制备工艺方法,同时优化热导率和断裂韧性,对于热障材料的进一步发展有重要意义。



技术实现要素:

本发明所要解决的技术问题是提供一种低热导率、高断裂韧性航空航天热障材料。

本发明所要解决的另一个技术问题是提供该低热导率、高断裂韧性航空航天热障材料的制备。

为解决上述问题,本发明所述的一种低热导率、高断裂韧性航空航天热障材料,其特征在于:该热障材料按原子比计的成分是(zro2)a(ceo2)b(hfo2)c(y2o3)d(a2o3)e,对应(zracebhfcy2da2e)of,其中a为sm或nd,a=0.75~1.25,b=0.75~1.25,c=0.75~1.25,d+e=0.75~1.25,d和e是近等原子比,f=2(a+b+c)+3(d+e)。

如上所述的一种低热导率、高断裂韧性航空航天热障材料的制备方法,其特征在于:将zro2、ceo2、hfo2、y2o3、sm2o3或nd2o3粉末物料按原子比装入球磨罐中经球磨混粉,得到混合均匀的原始粉末制品;然后将所述原始粉末制品装入石墨模具,置于sps放电等离子烧结炉中进行烧结,烧结结束后,材料随炉冷却至室温;最后,经热处理后冷却制得。

所述zro2、ceo2、hfo2、y2o3、sm2o3、nd2o3粉末物料的纯度均>99.5%,粒度均为0.5~30μm。

所述球磨混粉是指按每100g混合粉末加入1~5ml无水乙醇作为研磨介质,磨球为zro2球,球料比为0.5~5:1,球磨转速为100~300r/min,球磨时间为5~24h,球磨完经干燥、研磨、过100~200目筛。

所述烧结的条件是指烧结温度为1550~1750℃,升温速率为60~200℃/min,烧结压力为20~70mpa,保温时间为3~10min,真空度为5×10-3~15pa。

所述热处理的条件是指温度为150~400℃,保温时间为5~24小时。

所述冷却方式为随炉空冷或水冷淬火。

本发明与现有技术相比具有以下优点:

1、本发明基于扩散动力学和相变热力学,通过耦合材料设计,并结合放电等离子烧结和热处理技术,制备得到高熵氧化物材料,该材料具有元素分布均匀的萤石结构固溶体相,不但提高了晶格畸变,而且实现了纳米相的析出,进而实现了高晶格畸变的固溶体状态和纳米析出相的耦合。

2、本发明选择热障性能优异的(zr-ce-hf-y)o高熵氧化物为基体,通过添加原子半径和键长结构独特的sm、nd的氧化物,在保证高晶格畸变固溶体的同时,减小晶粒尺寸和促进纳米析出相的形成,实现断裂韧性的提高和热导率的降低。

⑴本发明在有效降低烧结温度、缩短烧结时间的同时,抑制了晶粒的长大,从而使得制备的高熵氧化物具有晶粒细小、成分均匀的高晶格畸变单相固溶体结构、弥散纳米析出的特点。该晶粒尺寸在0.5~4μm,平均晶粒尺寸为2μm左右。

⑵本发明所制备的氧化物材料的断裂韧性高,与稀土锆酸盐相比,断裂韧性提高了40%~50%。

⑶本发明具有较低热导率,在800℃时最低仅为0.677w.m-1.k-1,与稀土锆酸盐相比,热导率降低了约3倍,从而实现了在热障材料领域从0到1的技术突破。

3、本发明工艺简单、成本低,所得材料解决了我国航空航天热障材料方面热导率与力学性能冲突的瓶颈难题,可作为发动机、载人飞船、火箭等航空航天设施的热障部件材料。

附图说明

下面结合附图对本发明的具体实施方式作进一步详细的说明。

图1为本发明中实施例1~3所制备高熵氧化物的xrd图。

图2为本发明中实施例1所制备高熵氧化物的sem晶粒形貌。

图3为本发明中实施例1所制备高熵氧化物的eds图谱。

图4为本发明中实施例1所制备高熵氧化物的断裂韧性压痕图。

图5为本发明中实施例2所制备高熵氧化物的sem晶粒形貌。

图6为本发明中实施例2所制备高熵氧化物的eds图谱。

图7为本发明中实施例2所制备高熵氧化物的断裂韧性压痕图。

图8为本发明中实施例3所制备高熵氧化物的sem晶粒形貌。

图9为本发明中实施例3所制备高熵氧化物的eds图谱。

图10为本发明中实施例3所制备高熵氧化物的断裂韧性压痕图。

图11为本发明中实施例1~3所制备高熵氧化物的热导率。

具体实施方式

一种低热导率、高断裂韧性航空航天热障材料,该热障材料按原子比计的成分是(zro2)a(ceo2)b(hfo2)c(y2o3)d(a2o3)e,对应(zracebhfcy2da2e)of,其中a为sm或nd,a=0.75~1.25,b=0.75~1.25,c=0.75~1.25,d+e=0.75~1.25,d和e是近等原子比,f=2(a+b+c)+3(d+e)。

实施例1制备(zro2)1(ceo2)1(hfo2)1(y2o3)0.5(sm2o3)0.5,对应(zr1ce1hf1y1sm1)o9高熵氧化物:

⑴混粉:按照原子比为1:1:1:0.5:0.5称量zro2、ceo2、hfo2、y2o3、sm2o3粉末(粒度0.5μm,纯度≥99.9%),将其装入球磨罐中进行球磨,每100g混合粉末加入1ml无水乙醇作为研磨介质,磨球为zro2球,球料比(g/g)为0.5:1,球磨转速100r/min,球磨时间为5h,球磨完在干燥箱中进行干燥处理,研磨后进行100目过筛,得到混合均匀的原始粉末制品。

⑵烧结:将步骤⑴所得制品装入石墨模具,然后置于sps放电等离子烧结炉中进行烧结,烧结温度1550℃,升温速率60℃/min,烧结压力为20mpa,保温时间3min,真空度为5×10-3pa,烧结结束后,材料随炉冷却至室温。

⑶热处理:将步骤⑵所得材料置于热处理炉中,在400℃保温处理为5小时,随炉空冷即得。

所得的(zr1ce1hf1y1sm1)o9高熵氧化物采用x射线衍射仪分析烧结后高熵陶瓷材料的物相组成,可知材料结构为单一萤石相结构,如图1所示。

采用扫描电子显微镜分析材料晶粒大小和元素分布,如图2~3所示,平均晶粒尺寸为2μm,各元素分布均匀,存在均匀分布的纳米析出相。

采用压痕法测量材料的断裂韧性,测试条件为:载荷0.3kg,保持时间10s,至少测试5个点求平均值。测试结果如图4所示,压痕对角线长d1=22.5μm,d2=21.8μm,测试硬度hv=11.12gpa,计算得该材料断裂韧性为1.176mpa•m1/2

采用激光法导热仪测试材料的热导率,至少测试5个试样求平均值,如图11所示,室温~1000℃热导率为0.907~1.153w.m-1.k-1

实施例2制备(zro2)0.75(ceo2)1.25(hfo2)1(y2o3)0.3(sm2o3)0.45,对应(zr0.75ce1.25hf1y0.6sm0.9)o8.25高熵氧化物:

⑴混粉:按照原子比为0.75:1.25:1:0.3:0.45称量zro2、ceo2、hfo2、y2o3、sm2o3粉末(粒度30μm,纯度≥99.5%),将其装入球磨罐中进行球磨,每100g混合粉末加入5ml无水乙醇作为研磨介质,磨球为zro2球,球料比为5:1,球磨转速300r/min,球磨时间为24h,球磨完在干燥箱中进行干燥处理,研磨后进行200目过筛,得到混合均匀的原始粉末制品。

⑵烧结:将步骤⑴所得制品装入石墨模具,然后置于sps放电等离子烧结炉中进行烧结,烧结温度1750℃,升温速率200℃/min,烧结压力为70mpa,保温时间10min,真空度为15pa,烧结结束后,材料随炉冷却至室温。

⑶热处理:将步骤⑵所得材料置于热处理炉中,在150℃保温处理为24小时,水冷淬火即得。

所得的(zr0.75ce1.25hf1y0.6sm0.9)o8.25高熵氧化物采用x射线衍射仪分析烧结后高熵陶瓷材料的物相组成,可知材料结构为单一萤石相结构,如图1所示。

采用扫描电子显微镜分析材料晶粒大小和元素分布,如图5~6所示,平均晶粒尺寸为1.8μm,各元素分布均匀,存在均匀分布的纳米析出相。

采用压痕法测量材料的断裂韧性,测试条件为:载荷0.3kg,保持时间10s,至少测试5个点求平均值。测试结果如图7所示,压痕对角线长d1=22.1μm,d2=23.7μm,测试硬度hv=10.39gpa,计算得该材料断裂韧性为1.197mpa•m1/2

采用激光法导热仪测试材料的热导率,至少测试5个试样求平均值,如图11所示,室温~1000℃最低热导率为0.923~1.136w.m-1.k-1

实施例3制备(zro2)1(ceo2)0.75(hfo2)1.25(y2o3)0.6(nd2o3)0.65,对应(zr1ce0.75hf1.25y1.2nd1.3)o9.75高熵氧化物:

⑴混粉:按照原子比为1:0.75:1.25:0.6:0.65称量zro2、ceo2、hfo2、y2o3、nd2o3粉末(粒度10μm,纯度≥99.5%),将其装入球磨罐中进行球磨,每100g混合粉末加入3ml无水乙醇作为研磨介质,磨球为zro2球,球料比为3:1,球磨转速200r/min,球磨时间为12h,球磨完在干燥箱中进行干燥处理,研磨后进行150目过筛,得到混合均匀的原始粉末制品。

⑵烧结:将步骤⑴所得制品装入石墨模具,然后置于sps放电等离子烧结炉中进行烧结,烧结温度1600℃,升温速率100℃/min,烧结压力为40mpa,保温时间5min,真空度为10pa,烧结结束后,材料随炉冷却至室温。

⑶热处理:将步骤⑵所得材料置于热处理炉中,在300℃保温处理为10小时,随炉空冷即得。

所得的(zr1ce0.75hf1.25y1.2nd1.3)o9.75高熵氧化物采用x射线衍射仪分析烧结后高熵陶瓷材料的物相组成,可知材料结构为单一萤石相结构,如图1所示。

采用扫描电子显微镜分析材料晶粒大小和元素分布,如图8~9所示,平均晶粒尺寸为2.5μm,各元素分布均匀,存在均匀分布的纳米析出相。

采用压痕法测量材料的断裂韧性,测试条件为:载荷0.3kg,保持时间10s,至少测试5个点求平均值。测试结果如图10所示,压痕对角线长d1=24.9μm,d2=24.2μm,测试硬度hv=9.04gpa,计算得该材料断裂韧性为1.079mpa•m1/2

采用激光法导热仪测试材料的热导率,至少测试5个试样求平均值,如图11所示,室温~1000℃最低热导率为0.995~1.196w.m-1.k-1

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1