一种高压绝缘材料及其制备方法和应用与流程

文档序号:26138646发布日期:2021-08-03 14:21阅读:153来源:国知局
本发明涉及绝缘材料
技术领域
,尤其涉及一种高压绝缘材料及其制备方法和应用。
背景技术
:高压绝缘材料在输电线路和变电站中广泛应用,起着支撑导线和绝缘的作用,其质量好坏直接影响着电网的安全运行。绝缘材料一旦发生断裂,轻则造成短路器损坏、变压器烧损,重则造成大面积停电,严重影响经济发展和社会稳定。众所周知,由于陶瓷的绝缘性好,传统的高电压绝缘材料多使用陶瓷材料,常见高强度电瓷材料有普通电瓷、高硅质电瓷和铝质电瓷等。然而,一般的电瓷材料存在易碎、抗冲击性差等缺点,因此在超高压、特高压领域被玻璃钢和有机复合绝缘材料所替代。但是,玻璃绝缘难以成型外形大而复杂的制品,有机复合绝缘材料抗老化能力有限,从而限制了高压电力设备的发展。技术实现要素:本发明的目的在于提供一种高压绝缘材料及其制备方法和应用,所制备的高压绝缘材料具有优异的抗冲击性能和高绝缘性能,满足户内绝缘及户外绝缘等多种高压环境的使用要求。为了实现上述发明目的,本发明提供以下技术方案:本发明提供了一种高压绝缘材料的制备方法,包括以下步骤:将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种;将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料;将所述混合粉料进行冷等静压成型,得到第一生坯;在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯;将所述第二生坯进行气压烧结,得到高压绝缘材料。优选的,所述氮化硅粉的平均粒径d50<1μm,α相含量>90%;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的平均粒径d50独立地<1μm。优选的,所述氮化硅粉占所述氮化硅粉与烧结助剂总质量的质量百分比为80~95%;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的质量比为(0~8):(0~8):(0~4):(0~4):(0~4)。优选的,所述压制的压力为50~150mpa,保压时间为100~200s。优选的,所述冷等静压成型的压力为200~300mpa,保压时间为100~500s。优选的,所述氮化硼料浆固相物料的质量含量为30~40%。优选的,所述气压烧结的温度为1680~1800℃,保温时间为10~20h,压力为2~8mpa;升温至所述气压烧结的温度的升温速率为3~8℃/min。本发明提供了上述技术方案所述制备方法制备得到的高压绝缘材料,包括β相氮化硅和弥散分布于所述β相氮化硅中的玻璃相,所述玻璃相由烧结助剂形成;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种。本发明提供了上述技术方案所述高压绝缘材料在高压电力设备中的应用。本发明提供了一种高压绝缘材料的制备方法,包括以下步骤:将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种;将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料;将所述混合粉料进行冷等静压成型,得到第一生坯;在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯;将所述第二生坯进行气压烧结,得到高压绝缘材料。本发明以具有优异绝缘性的氮化硅材料为原料,同时所用烧结助剂的绝缘性好,能够减少烧结助剂对氮化硅陶瓷绝缘性的影响,从而保证材料的绝缘性能;本发明采用氮化硅陶瓷,其柱状晶粒结构和高致密度使其抗冲击性能优异;本发明通过在坯体表面涂抹氮化硼料浆,能够隔绝烧结炉体内石墨部件对坯体的渗透,从而提高材料的电阻率,进一步提高其绝缘性能。本发明制备的高压绝缘材料的体积密度为3.20~3.26g/cm3,维氏硬度hv10≥1460,三点抗弯强度≥700mpa,断裂韧性≥7mpa·m-1/2,体积电阻率>1016ω×m,表面电阻率>1017ω,最大气孔尺寸<10μm,具有高体积电阻率和表面电阻率,且抗冲击性能优越,可用于内绝缘及户外绝缘等多种高压环境。具体实施方式本发明提供了一种高压绝缘材料的制备方法,包括以下步骤:将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种;将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料;将所述混合粉料进行冷等静压成型,得到第一生坯;在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯;将所述第二生坯进行气压烧结,得到高压绝缘材料。在本发明中,若无特殊说明,所需制备原料均为本领域技术人员熟知的市售商品。本发明将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆。在本发明中,所述氮化硅粉的平均粒径d50优选<1μm,α相含量>90%;在本发明中,所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种,更优选为氧化铝、氧化钇和氧化锆,或者氧化铝、氧化钇和氧化镁,或者氧化钇、氧化镁和氧化硅;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的平均粒径d50优选独立地<1μm。在本发明中,所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的质量比优选为(0~8):(0~8):(0~4):(0~4):(0~4),更优选为(2~6):(2~6):(1~3):(1~3):(1~3)。本发明利用烧结助剂促进氮化硅陶瓷的致密化,且所述烧结助剂均不会损害氮化硅陶瓷的绝缘性能,以玻璃相形式存在于氮化硅陶瓷内部。在本发明中,所述氮化硅粉占所述氮化硅粉与烧结助剂总质量的质量百分比优选为80~95%,更优选为85~90%,所述烧结助剂占所述氮化硅粉与烧结助剂总质量的质量百分比优选为5~20%,更优选为10~15%。在本发明中,所述研磨介质优选为无水乙醇,本发明对所述研磨介质的具体用量没有特殊的限定,按照本领域熟知的过程调整能够顺利进行研磨即可。在本发明中,所述湿法研磨所用研磨球优选为氮化硅球;本发明对所述氮化硅球的规格没有特殊的限定,本领域熟知的湿法研磨用氮化硅球即可。本发明对所述氮化硅粉、烧结助剂和研磨介质混合的过程没有特殊的限定,按照本领域熟知的过程能够将物料混合均匀即可。在本发明中,所述湿法研磨优选在搅拌磨中进行,本发明对所述搅拌磨没有特殊的限定,本领域熟知的搅拌磨均可;所述湿法研磨的转速优选为200~400r/min,更优选为250~350r/min,研磨时间优选为20~40h,更优选为25~35h。得到混合料浆后,本发明将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料。在本发明中,所述干燥优选在真空烘箱进行,所述干燥的温度优选为40~50℃;本发明对所述干燥的时间没有特殊的限定,按照本领域熟知的过程能够得到干燥物料即可。完成所述干燥后,本发明优选将干燥所得粉料装入橡胶容器并密封,然后进行压制。本发明对所述橡胶容器没有特殊的限定,本领域熟知的干燥用橡胶容器即可。在本发明中,所述压制的压力优选为50~150mpa,更优选为80~120mpa;保压时间优选为100~200s,更优选为120~160s。在本发明中,所述粉碎优选通过旋轮磨机进行,所述混合粉料的粒径优选为50目以下。本发明对所述旋轮磨机没有特殊的限定,选用本领域熟知的旋轮磨机能够得到上述粒径范围的混合粉料即可。本发明通过压制和粉碎的过程造粒,能够提高粉料的松装密度和流动性,从而提高后续坯体的均匀性,防止坯体不均匀导致的烧结坯体开裂。得到混合粉料后,本发明将所述混合粉料进行冷等静压成型,得到第一生坯。在本发明中,所述冷等静压成型优选在冷等静压机中进行;本发明对所述冷等静压机没有特殊的限定,本领域熟知的相应设备即可;所述冷等静压成型的压力优选为200~300mpa,更优选为220~280mpa,进一步优选为250~260mpa,保压时间优选为100~500s,更优选为150~400s,进一步优选为250~350s。本发明通过冷等静压成型提高坯体的密度,促进坯体的烧结致密化,从而提高坯体的强度。得到第一生坯后,本发明在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯。在本发明中,所述氮化硼料浆中氮化硼的d50优选<10μm;所述氮化硼料浆所用溶剂优选为无水乙醇;本发明对所述氮化硼料浆的制备过程没有特殊的限定,按照本领域熟知的方法将氮化硼与无水乙醇混合均匀即可得到氮化硼料浆。在本发明中,所述氮化硼料浆中固相物料的质量含量优选为30~40%,更优选为35%。本发明对所述氮化硼与无水乙醇混合的过程没有特殊的限定,按照本领域熟知的过程能够将物料混合均匀即可。本发明利用氮化硼料浆中氮化硼优异的绝缘性和导热性,且高温下保持良好的润滑性,可在隔绝碳渗透的同时不影响坯体的收缩和热传递,从而提高氮化硅陶瓷的电阻率,特别是表面电阻率。在本发明中,在所述第一生坯表面涂覆氮化硼料浆具体是在第一生坯的整个表面涂覆氮化硼料浆;本发明对所述涂覆的过程没有特殊的限定,按照本领域熟知的过程能够涂覆均匀即可。在本发明中,所述干燥的方式优选为自然晾干,所述自然晾干的温度优选为20~30℃。完成所述干燥后,所述氮化硼料浆在第一生坯表面形成的氮化硼涂层的厚度优选为1~4mm,更优选为2~3mm。得到第二生坯后,本发明将所述第二生坯进行气压烧结,得到高压绝缘材料。在本发明中,所述气压烧结优选在气氛压力烧结炉中进行;所述气压烧结的温度优选为1680~1800℃,更优选为1700~1750℃;保温时间优选为10~20h,更优选为12~18h;压力优选为2~8mpa,更优选为3~5mpa;升温至所述气压烧结的升温速率优选为3~8℃/min,更优选为5~6℃/min。在所述气压烧结过程中,烧结助剂形成液相,促进氮化硅由α相转化为柱状晶粒的β相;氮化硼附着在坯体表面,隔绝炉体内碳元素对坯体的渗透,从而提高材料的电阻率,进一步提高其绝缘性能。完成所述气压烧结后,本发明优选将所得坯体表面的氮化硼层进行打磨,然后加工至成品尺寸,超声洗涤后,得到高压绝缘材料。本发明优选使用金刚石砂纸进行打磨,去除坯体表面的氮化硼层。本发明优选使用精雕机或车床进行所述加工。本发明对所述打磨、加工和超声清洗的具体过程没有特殊的限定,按照本领域熟知的过程进行即可。本发明提供了上述技术方案所述制备方法制备得到的高压绝缘材料,包括β相氮化硅和弥散分布于所述β相氮化硅中的玻璃相,所述玻璃相由烧结助剂形成;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种。在本发明中,所述高压绝缘材料的体积密度为3.20~3.26g/cm3,维氏硬度hv10≥1460,三点抗弯强度≥700mpa,断裂韧性≥7mpa·m-1/2,体积电阻率>1016ω×m,表面电阻率>1017ω,最大气孔尺寸<10μm。本发明提供了上述技术方案所述高压绝缘材料在高压电力设备中的应用。本发明对所述应用的方法没有特殊的限定,按照本领域熟知的方法应用即可。下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。以下实施例中,所述“%”均代表质量百分含量。实施例1将85%氮化硅粉(d50=0.8μm,α相含量95%)、8%氧化铝(d50=0.6μm)、4%氧化钇(d50=0.8μm)和3%氧化锆(d50=0.5μm)加入到搅拌磨中,转速250r/min,以无水乙醇为介质,氮化硅球为研磨介质,研磨35h,得到混合料浆;将所述混合料浆置于真空烘箱中,在40℃下烘干,将所得粉料装入橡胶容器并密封,在压力100mpa,保压120s,使用旋轮磨机将所得块料破碎成50目以下粉料,得到混合粉料;将所述混合粉料装入模具中,密封后置于冷等静压机中,在压力200mpa,保压200s,得到第一生坯;以无水乙醇为溶剂,配制固相质量含量30%的氮化硼(d50=6μm)料浆,得到氮化硼料浆;在所述第一生坯整个表面涂覆氮化硼料浆,25℃条件晾干,在所述第一生坯表面所形成的氮化硼涂层厚度为2mm,得到第二生坯;将所述第二生坯置于气氛压力烧结炉中,以5℃/min的升温速率升温到1780℃,保温10h,保压4mpa,进行气压烧结;将所得坯体表面的氮化硼层使用金刚石砂纸打磨干净,然后使用精雕机加工,超声清洗,得到高压绝缘材料。实施例2将90%氮化硅粉(d50=0.8μm,α相含量95%)、4%氧化铝(d50=0.6μm)、4%氧化钇(d50=0.8μm)和2%氧化镁(d50=0.5μm)加入到搅拌磨中,转速250r/min,以无水乙醇为介质,氮化硅球为研磨介质,研磨35h,得到混合料浆;将所述混合料浆置于真空烘箱中,在40℃下烘干,将所得粉料装入橡胶容器并密封,在压力100mpa,保压120s,使用旋轮磨机将所得块料破碎成50目以下粉料,得到混合粉料;将所述混合粉料装入模具中,密封后置于冷等静压机中,在压力250mpa,保压300s,得到第一生坯;以无水乙醇为溶剂,配制固相质量含量30%的氮化硼(d50=6μm)料浆,得到第一氮化硼料浆;在所述第一生坯整个表面涂覆氮化硼料浆,25℃条件晾干,在所述第一生坯表面所形成的氮化硼涂层厚度为2mm,得到第二生坯;将所述第二生坯置于气氛压力烧结炉中,以3℃/min的升温速率升温到1800℃,保温12h,保压8mpa,进行气压烧结;将所得坯体表面的氮化硼层使用金刚石砂纸打磨干净,然后使用精雕机加工,超声清洗,得到高压绝缘材料。实施例3将88%氮化硅粉(d50=0.8μm,α相含量95%)、4%氧化钇(d50=0.8μm)、4%氧化镁(d50=0.5μm)和4%氧化硅(d50=0.4μm)加入到搅拌磨中,转速250r/min,以无水乙醇为介质,氮化硅球为研磨介质,研磨35h,得到混合料浆;将所述混合料浆置于真空烘箱中,在40℃下烘干,将所得粉料装入橡胶容器并密封,在压力100mpa,保压120s,使用旋轮磨机将所得块料破碎成50目以下粉料,得到混合粉料;将所述混合粉料装入模具中,密封后置于冷等静压机中,在压力250mpa保压300s,得到第一生坯;以无水乙醇为溶剂,配制固相质量含量30%的氮化硼(d50=6μm)料浆,得到氮化硼料浆;在所述第一生坯整个表面涂覆氮化硼料浆,25℃条件晾干,在所述第一生坯表面所形成的氮化硼涂层厚度为2mm,得到第二生坯;将所述第二生坯置于气氛压力烧结炉中,以5℃/min的升温速率升温到1750℃,保温10h,保压8mpa,进行气压烧结;将所得坯体表面的氮化硼层使用金刚石砂纸打磨干净,然后使用精雕机加工,超声清洗,得到高压绝缘材料。性能测试对实施例1~3制备的高压绝缘材料进行性能测试,其中,根据gb/t25995方法测试体积密度,根据gb/t16534方法测试维氏硬度,根据gb/t6569方法测试三点抗弯强度,根据gb/t23806方法测试断裂韧性,根据gb/t1410-2006方法测试体积电阻率(测试电压10kv),根据gb/t1410-2006方法测试表面电阻率(测试电压10kv),使用金相显微镜观察材料的气孔尺寸,具体结果见表1:表1实施例1~3制备的高压绝缘材料的性能数据项目实施例1实施例2实施例3体积密度(g/cm3)3.253.263.25维氏硬度hv10146014801460三点抗弯强度(mpa)700800750断裂韧性(mpa·m-1/2)7.57.58.0体积电阻率(ω×m)1.5×10162.6×10161.5×1016表面电阻率(ω)1.2×10171.8×10171.1×1017最大气孔尺寸(μm)1077由表1可知,本发明制备的高压绝缘材料的三点抗弯强度达到700mpa以上,远高于现有电瓷材料(<200mpa),说明本发明制备的高压绝缘材料的抗冲击性能优异;同时,该高压绝缘材料的体积电阻率≥1016ω×m,表面电阻率≥1017ω,说明材料的绝缘性能优异,可用于内绝缘及户外绝缘等多种使用环境。以上所述仅是本发明的优选实施方式,应当指出,对于本
技术领域
的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1