一种加入氧化钇的低渗出电熔锆刚玉砖的制备方法与流程

文档序号:25543985发布日期:2021-06-18 20:41

本发明涉及玻璃生产的技术领域,具体涉及一种高硼硅玻璃生产用加入氧化钇的低渗出电熔锆刚玉砖的制备方法。



背景技术:

电熔锆刚玉砖是玻璃窑炉用来生产玻璃的主要耐火材料之一,因此生产出的玻璃质量好坏与电熔锆刚玉砖的性能紧密相关。

目前,国内生产的电熔锆刚玉砖质量不稳定,其主要原因就是普通电熔锆刚玉砖没有拥有很高的玻璃相初析温度,带入了一些杂质成份(fe203+ti02),砖体容易出现开裂、被腐蚀、易污染玻璃等问题,并且增加了玻璃窑炉运行及维修、更新成本。



技术实现要素:

本发明为了解决上述技术问题,提供一种玻璃制造用低渗出电熔锆刚玉砖的制备方法,本发明充分保留了电熔锆刚玉砖原有的优点,工艺简单,且能生产出具有良好性能的产品。

本发明所采用的技术方案是:主要从改进原料的配比中进行提升产品性能,采用调整、优化的热熔法生产出性能更为优异的电熔锆刚玉砖。

一种加入氧化钇的低渗出电熔锆刚玉砖的制备方法,包括以下步骤:

步骤一、原料预处理:工业氧化铝粉,锆英砂,脱硅锆,镁砂细粉,纯碱,硼砂及氧化钇,验收合格后将原料进行热处理;锆英砂:1-0.5mm;镁砂细粉:200目;

步骤二、原始料加入的重量份数为:工业氧化铝粉45-50份,锆英石20-27份,斜锆石10-17份,氧化镁2-3份,氧化钇1-3份,纯碱2-3份,硼砂6-8份;结合剂为纸浆废液:加入量占原始料总重量的5.7%;

步骤三、熔化工序:将配合好的电熔锆刚玉原料加入自动控制的电弧炉中,在将混合均匀的原料倒入电炉中熔化成料液,熔化温度为1870-1920℃;熔化过程的关键是保持稳定的熔化温度制度:当电弧炉继续升温至2700℃时,保温30min,制得化学组成均匀、含碳量少并具有一定温度和良好浇铸性能的熔体;熔化过程中同时进行吹氧工艺;

步骤四、浇注工序:吹氧结束后,待熔融料温度降至1900℃开始浇注,将熔融料注入专门设计的产品模具中,制成结构致密和使用性能良好的熔铸电熔砖;

步骤五、涂层工序:将已经获得成型的电熔锆刚玉砖进行涂层,用氧化钇进行涂抹使其表面均匀并全面覆盖;涂层厚度:258-287μm;

步骤六、保温退火工序:将涂抹均匀的电熔锆刚玉砖放入隧道窑,按1400-1200℃时:降温速度为20℃/h、10h;1200-1000℃时:降温速度为10℃/h、20h;1000-800℃时:降温速度为20℃/h、10h;800-400℃时:降温速度为40℃/h、10h;400℃以下:自然冷却,使制得的锆刚玉砖的结晶体生长并形成最佳结构;

步骤七、取出工序:将退火后的电熔锆刚玉砖从型腔内取出,进行产品检验;

步骤八、精修工序:根据电熔锆刚玉砖的外观缺陷、砖型尺寸、表面精度进行研磨加工,保证砖坯的尺寸及表面精度。

其中步骤一中原材料加入纯碱起到助熔作用,na2o能抑制莫来石的形成、促进莫来石的热分解;对原料进行热处理,保证制品体积稳定性,提高其性能。

其中步骤三中吹氧工艺的作用降低制品的碳含量,使熔体中的低价氧化物被氧化为高价氧化物,提高玻璃相的析出温度达1400-1450℃,增强抗玻璃液侵蚀的能力;

其中步骤五的氧化钇厚度258-287μm,在此范围内既能有效减少玻璃相的形成,最大程度的发挥出氧化钇增加电熔锆刚玉砖的抗氧化性和抗腐蚀性,又能在保证抗冲蚀性最佳的前提下节约原料。

其中步骤六中,自然冷却,使制得的锆刚玉砖的结晶体生长并形成最佳结构;这种最佳结构为网状玻基斑状结构,基质由玻璃质、莫来石、微小斜错石组成,其中主要是玻璃相,具有分布均匀的较细晶体和较少玻璃相,且具有较多的串珠状,链状,十字形的斜石晶体,及细柱状的斜错石和刚玉的共晶体,呈平行或半平行排列。

本发明创新地引入了氧化钇,不仅在原始料中引入,更是在成品的表面涂抹氧化钇涂层,并在原料成分中加入工业氧化铝和氧化镁,并且提高了氧化锆的纯度和含量,极大地提高了玻璃相的初析温度,在高硼硅玻璃的生产中产生的玻璃相极少析出,增加了所生产高硼硅玻璃清晰度,解决了生产中易出现裂开、被腐蚀、易污染玻璃等问题,更利于中高硼硅玻璃的生产。

本发明创新地在原始料中加入氧化钇,氧化钇拥有高达2410℃的熔点温度,并且其沸点更是高达将近4300℃,在制作电熔锆刚玉砖时加入氧化钇粉末,可以将其用于加强氧化锆的稳定效果发挥出来,利用其所在稀土元素中的优势能够加强氧化锆的耐高温稳定性,从整体上提高了电熔锆刚玉砖的理化性质,进一步提高制成的电熔锆刚玉砖的初析温度,减少在制作高硼硅玻璃过程中玻璃相的析出量,并减少玻璃液的浑浊度,提高高硼硅玻璃的质量,因为氧化锆是同质多晶结构,它有单斜晶、四方晶、立方晶三种变体,在氧化锆的晶型转变中伴随着很大的体积变化,导致制品产生粉化现象。氧化钇在加入后会使其生成稳定的立方晶或亚稳态的四方晶结构,阻止有害相变,当制品中较多的单斜晶二氧化锆转变为四方晶,伴随着一定量的体积收缩,使制品总的膨胀量减少,热学性能优良,此外,氧化锆的相变增强作用对于提高耐火材料强度也有一定积极作用,因此氧化钇作为有助于氧化锆发挥作用的相关材料,创造性地将其加入到本产品中作为原料;

本发明在将已经成型的电熔锆刚玉砖进行涂层,用氧化钇进行涂抹使其表面均匀并全面覆盖;涂层厚度:258-287μm;

由于氧化钇拥有良好的表皮致密性和防酸防碱性能,能提高氧化膜的抗剥落性能,又因为氧化钇与氧、氢等元素有较强的亲和力,拥有能抑制这些元素促进组织疏松的作用,从而使渗层组织致密,而且氧化钇可使新相的形核率增加,有利于渗镀层组织的细化,可将其作为可延缓裂纹产生和扩展,并使涂层内贯穿性孔洞减少,从而提高涂层的抗热震性,因此本产品的表皮涂层能够进一步减少氧化钠的析出,减少二氧化硅与氧化钠的接触,进而减少玻璃相的形成,提高高硼硅玻璃的质量。且由于降低了玻璃相主成份(sio2,na2o)的含量及控制杂质成份(fe203+ti02)的带入,玻璃相渗出量更低,1500℃×4h条件下玻璃相渗出量降低至1.2%以下,有利于减少对玻璃液的污染,提高玻璃质量,尤其适用于高档玻璃的生产制造。材料结晶固化形成晶体镶嵌结构,在减少玻璃相渗出量的同时,还可以减少飞料中碱、硼等活性挥发物通过玻璃相向砖体扩散所进行的化学置换、交替作用,从而减少对耐火材料的蚀损,有助于延长耐火材料的使用寿命,进而延长玻璃窑炉的使用寿命,使用寿命延长1.5倍以上,降低玻璃窑炉运行及维修、更新成本,是电熔锆刚玉砖生产上的创新,有良好的社会和经济效益。

本发明减少了二氧化硅的含量,在无碱的环境中,sio2与al2o3生成莫来石结晶,在电熔锆刚玉砖中,莫来石结晶的存在是有害的,莫来石的出现会使玻璃相和刚玉减少,破坏azs的高性能的岩相结构,因此必须限制sio2含量。sio2虽是电熔锆刚玉砖的主成分,却属于被限制成分。sio2的有益作用是,可生成玻璃基质-玻璃相,这对缓解由zro2相变所引发的铸件裂纹会起重要作用。对高锆的电熔锆刚玉砖-41来说,玻璃相也是要限制的,所以在成分的改进中适当的减少了二氧化硅的含量。

本发明减少了氧化钠的含量。根据国外做过的在azs配料中加入少量na2o作用的研究,na2o对zac铸块构成相的影响。随着na2o加入量的增加,会促进莫来石的热分解,抑制铸件中的莫来石生成。当na2o在1.5%附近时,sio2全部生成了玻璃相,基质玻璃的含量增多,约达20%,它能吸收铸件中出现的热应力,防止产生裂纹。关于azs-41中的na2o含量较低,因为sio2含量减少了,其适宜的含量是以sio2/na2o=11〜14决定的,当sio210%〜13%时,约是na2o0.98%〜1.18%。na2o的加入量,对玻璃相数量影响很显著。当na2o从1.30%减至0.65%时,玻璃相含量由20%降至12%,制成品发生严重裂纹。所以将氧化钠的含量减少并控制在0.8%。

本发明用氧化镁代替部分氧化铝。氧化铝熔点是2050℃(以刚玉为例),氧化镁熔点是2800℃。在元素周期表中镁和铝相邻,两者的化学性质相似且氧化镁比氧化铝耐腐蚀。所以有氧化镁代替一部分氧化铝,不仅增加了刚玉的熔点、耐腐蚀程度,而且也减少了霞石的产生,间接提高了玻璃液的纯度。

其中步骤三的熔化工序中用三相电弧炉熔融配合料熔体温度在2700℃,温度低则不能制得高度均匀的熔体,易使铸件形成多孔体,使熔铸制品产生气孔和裂纹,收缩也相应增大。在熔化过程中同时进行吹氧工艺,吹氧作用:排除熔料中的碳;使fe、ti等氧化物以高价态形式存在;当配料中的铁、钛氧化物杂质以低价态形式存在,会使基质玻璃相的软化温度和粘度降低,使玻璃相析出温度降低。

其中步骤四的浇注工序中用适当过热至1200℃的熔体浇铸时,熔铸出来的锆刚玉砖的缩孔集中,致密区的厚度增加,整个制品的密度也增大;但过热程度太高时,虽然熔体密度有所增大,但又易使制品形成裂纹和大缩孔。

其中步骤五的涂层工序中将氧化钇创造性的涂抹在制得的电熔锆刚玉砖的表面,由于氧化钇拥有良好的表皮致密性和防酸防碱性能,能提高氧化膜的抗剥落性能,又因为氧化钇与氧、氢等元素有较强的亲和力,拥有能抑制这些元素促进组织疏松的作用,从而使渗层组织致密,可以改善改性层的致密性以及与基体的结合力,降低氧化速率,提高氧化膜的抗剥落性能,从而显著改善改性层的高温抗氧化性。通过增加氧化钇的涂层,能够减少氧化钠的渗出,因此减少了氧化钠和二氧化硅的反应和接触,而且氧化钇可使新相的形核率增加,有利于渗镀层组织的细化,可将其作为可延缓裂纹产生和扩展,并使涂层内贯穿性孔洞减少,从而提高涂层的抗热震性;表皮氧化钇涂层能够进一步减少氧化钠的析出,减少二氧化硅与氧化钠的接触,进而在高温情况下减少玻璃相的形成,而且氧化钇涂层,在后续的高温下,可以渗入电熔锆刚玉砖中,与电熔锆刚玉砖中的氧化钇共同作用,从而达到了锆刚玉砖的结晶体生长的最佳结构,为网状玻基斑状结构,基质由玻璃质、莫来石、微小斜错石组成,其中主要是玻璃相,具有分布均匀的较细晶体和较少玻璃相,且具有较多的串珠状,链状,十字形的斜石晶体,及细柱状的斜错石和刚玉的共晶体,呈平行或半平行排列;进一步提升所生产出高硼硅玻璃的质量,为医药行业做出贡献。

本发明的有益效果为:

本发明提供一种玻璃制造用低渗出电熔锆刚玉砖的制备方法,工艺简单,且能制备出具有良好性能的产品,本发明充分保留了电熔锆刚玉砖原有的优点,且由于降低了玻璃相主成份(sio2,na2o)的含量及控制杂质成份(fe203+ti02)的带入,玻璃相渗出量更低,在1500℃×4h条件下玻璃相渗出量降低至1.2%以下,有利于减少对高硼硅玻璃液的污染,间接提高了高硼硅玻璃产品性能。材料结晶固化形成晶体镶嵌结构,在减少玻璃相渗出量的同时,还可以减少飞料中碱、硼等活性挥发物通过玻璃相向砖体扩散所进行的化学置换、交替作用,从而减少对耐火材料的蚀损,有助于延长耐火材料的使用寿命,进而延长玻璃窑炉的使用寿命达1.5倍以上,降低玻璃窑炉运行及维修、更新成本,尤其适用于药用高硼硅玻璃的生产制造。

具体实施方式

下面通过实施例对本发明方案作进一步说明:

实施例1

一种加入氧化钇的低渗出电熔锆刚玉砖的制备方法,包括以下步骤:

步骤一、原料预处理:工业氧化铝粉,锆英砂,脱硅锆,镁砂细粉,纯碱,硼砂及氧化钇,验收合格后将原料进行热处理;锆英砂:1-0.5mm;镁砂细粉:200目;

步骤二、原始料加入的重量份数为:工业氧化铝粉45份,锆英石25份,斜锆石17份,氧化镁2份,氧化钇3份,纯碱2份,硼砂6份;结合剂为纸浆废液:加入量占原始料总重量的5.7%;

步骤三、熔化工序:将配合好的电熔锆刚玉原料加入自动控制的电弧炉中,在将混合均匀的原料倒入电炉中熔化成料液,熔化温度为1870-1920℃;熔化过程的关键是保持稳定的熔化温度制度:当电弧炉继续升温至2700℃时,保温30min,制得化学组成均匀、含碳量少并具有一定温度和良好浇铸性能的熔体;熔化过程中同时进行吹氧工艺;

步骤四、浇注工序:吹氧结束后,待熔融料温度降至1900℃开始浇注,将熔融料注入专门设计的产品模具中,制成结构致密和使用性能良好的熔铸电熔砖;

步骤五、涂层工序:将已经获得成型的电熔锆刚玉砖进行涂层,用氧化钇进行涂抹使其表面均匀并全面覆盖;涂层厚度:258μm;

步骤六、保温退火工序:将涂抹均匀的电熔锆刚玉砖放入隧道窑,按1400-1200℃时:降温速度为20℃/h、10h;1200-1000℃时:降温速度为10℃/h、20h;1000-800℃时:降温速度为20℃/h、10h;800-400℃时:降温速度为40℃/h、10h;400℃以下:自然冷却,使制得的锆刚玉砖的结晶体生长并形成最佳结构;步骤七、取出工序:将退火后的电熔锆刚玉砖从型腔内取出,进行产品检验;

步骤八、精修工序:根据电熔锆刚玉砖的外观缺陷、砖型尺寸、表面精度进行研磨加工,保证砖坯的尺寸及表面精度。

实施例2

一种加入氧化钇的低渗出电熔锆刚玉砖的制备方法,包括以下步骤:

步骤一、原料预处理:工业氧化铝粉,锆英砂,脱硅锆,镁砂细粉,纯碱,硼砂及氧化钇,验收合格后将原料进行热处理;锆英砂:1-0.5mm;镁砂细粉:200目;

步骤二、原始料加入的重量份数为:工业氧化铝粉50份,锆英石20份,斜锆石15份,氧化镁3份,氧化钇1份,纯碱3份,硼砂8份;结合剂为纸浆废液:加入量占原始料总重量的5.7%;

步骤三、熔化工序:将配合好的电熔锆刚玉原料加入自动控制的电弧炉中,在将混合均匀的原料倒入电炉中熔化成料液,熔化温度为1870-1920℃;熔化过程的关键是保持稳定的熔化温度制度:当电弧炉继续升温至2700℃时,保温30min,制得化学组成均匀、含碳量少并具有一定温度和良好浇铸性能的熔体;熔化过程中同时进行吹氧工艺;

步骤四、浇注工序:吹氧结束后,待熔融料温度降至1900℃开始浇注,将熔融料注入专门设计的产品模具中,制成结构致密和使用性能良好的熔铸电熔砖;

步骤五、涂层工序:将已经获得成型的电熔锆刚玉砖进行涂层,用氧化钇进行涂抹使其表面均匀并全面覆盖;涂层厚度:287μm;

步骤六、保温退火工序:将涂抹均匀的电熔锆刚玉砖放入隧道窑,按1400-1200℃时:降温速度为20℃/h、10h;1200-1000℃时:降温速度为10℃/h、20h;1000-800℃时:降温速度为20℃/h、10h;800-400℃时:降温速度为40℃/h、10h;400℃以下:自然冷却,使制得的锆刚玉砖的结晶体生长并形成最佳结构;

步骤七、取出工序:将退火后的电熔锆刚玉砖从型腔内取出,进行产品检验;

步骤八、精修工序:根据电熔锆刚玉砖的外观缺陷、砖型尺寸、表面精度进行研磨加工,保证砖坯的尺寸及表面精度。

实施例3

一种加入氧化钇的低渗出电熔锆刚玉砖的制备方法,包括以下步骤:

步骤一、原料预处理:工业氧化铝粉,锆英砂,脱硅锆,镁砂细粉,纯碱,硼砂及氧化钇,验收合格后将原料进行热处理;锆英砂:1-0.5mm;镁砂细粉:200目;

步骤二、原始料加入的重量份数为:工业氧化铝粉48份,锆英石22份,斜锆石17份,氧化镁3份,氧化钇2份,纯碱2份,硼砂6份;结合剂为纸浆废液:加入量占原始料总重量的5.7%;

步骤三、熔化工序:将配合好的电熔锆刚玉原料加入自动控制的电弧炉中,在将混合均匀的原料倒入电炉中熔化成料液,熔化温度为1870-1920℃;熔化过程的关键是保持稳定的熔化温度制度:当电弧炉继续升温至2700℃时,保温30min,制得化学组成均匀、含碳量少并具有一定温度和良好浇铸性能的熔体;熔化过程中同时进行吹氧工艺;

步骤四、浇注工序:吹氧结束后,待熔融料温度降至1900℃开始浇注,将熔融料注入专门设计的产品模具中,制成结构致密和使用性能良好的熔铸电熔砖;

步骤五、涂层工序:将已经获得成型的电熔锆刚玉砖进行涂层,用氧化钇进行涂抹使其表面均匀并全面覆盖;涂层厚度:260μm;

步骤六、保温退火工序:将涂抹均匀的电熔锆刚玉砖放入隧道窑,按1400-1200℃时:降温速度为20℃/h、10h;1200-1000℃时:降温速度为10℃/h、20h;1000-800℃时:降温速度为20℃/h、10h;800-400℃时:降温速度为40℃/h、10h;400℃以下:自然冷却,使制得的锆刚玉砖的结晶体生长并形成最佳结构;

步骤七、取出工序:将退火后的电熔锆刚玉砖从型腔内取出,进行产品检验;

步骤八、精修工序:根据电熔锆刚玉砖的外观缺陷、砖型尺寸、表面精度进行研磨加工,保证砖坯的尺寸及表面精度。

上述实施例虽然描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式作出多种变更或修改,而不背离本发明的原理和实质,均属于本发明的保护范围。

再多了解一些
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1