一种氧化锆质定径水口的制备方法及设备的制造方法

文档序号:8553135阅读:846来源:国知局
一种氧化锆质定径水口的制备方法及设备的制造方法
【技术领域】
[0001]本发明涉及制备有关钢铁冶金工业中连续铸造中间包用控制钢水流量的装置用功能耐火材料的一种成型坯料制备工艺,具体是一种氧化锆质定径水口的制备方法及设备。
【背景技术】
[0002]定径水口是指安装在连续铸造中间包底部的一种高温结构陶瓷制作的功能器件。其主要作用是中间包钢水静压力基本维持不变,钢水通过定径水口流入结晶器,结晶器通过大流量水冷,带走钢液凝固时放出的热量,使钢水凝固成坯。由于结晶器水冷带走的热量有限,因而,单位时间内流入结晶器的钢液数量必须在一定范围之内。定径水口的孔径愈大,单位时间流入结晶器钢液数量愈多,选择合适的孔径制成中间包用水口,即为定径水口。定径水口失效的主要原因是由于钢水流动过程中的热与氧化锆中的稳定剂反应,造成稳定剂脱溶,进而引起氧化锆失稳,颗粒破例,强度大幅度降低,抗冲刷性能下降造成扩径,使流入结晶器的钢水凝固放出的热量大于结晶器冷却水所能带走的热量而退出使用。
[0003]目前,国内外生产的定径水口从成型原料粒度上分,可以分为三类:第一类是粗颗粒型定径水口。该种定径水口的配方中原料的临界粒度可达2_,颗粒与细粉的合理搭配使得其成型简单。由于原料粒度大,烧成的制品收缩小、气孔率高,热震稳定性好,使用中很少出现炸裂现象。但这种定径水口强度低、气孔率高,使其在使用中抗冲刷和抗侵蚀性能不佳,使用寿命偏低。第二种是细颗粒型定径水口。生产该种定径水口所用原料粒径均在50μπι以下。烧成后的制品质地均匀、气孔率低、强度高、抗冲刷和抗侵蚀性能较好,获得了较广泛的使用。缺点是热震稳定性不及粗颗粒型产品,在开浇瞬间可能发生炸裂而导致非正常停浇。第三种是陶瓷型定径水口。该种定径水口所用原料粒径在5 μπι以下,成品气孔率极低(<5%),强度非常高,使用寿命长。但过细的原料给成型和烧成带来了困难,成品率不及前二者高。同时陶瓷型制品热震稳定性非常差,使用前要经过严格的烘烤制度,稍有不当会发生炸裂而导致停浇,目前在国内处于研宄试用阶段。
[0004]陶瓷型定径水口生产过程中由于采用原料粒径在5 μπι以下的微粉,产品压制成型难度非常大。为了解决上述问题,目前陶瓷行业采用的普遍方法是干法制粉机械增湿造粒和湿法细磨制浆喷雾干燥造粒。干法制粉机械增湿造粒优点是节能,但增湿造粒存在坯料颗粒形状和流动性差、级配不合理等问题;湿法细磨制浆喷雾干燥造粒与干法制粉机械增湿造粒恰好相反,湿法细磨制浆喷雾干燥造粒制得的坯料颗粒形状和流动性好、级配合理、压制的坯体强度高,但占浆料三分之一的水分需要蒸发,蒸发后废烟气和水蒸气排放量大,粉尘含量高,对环境污染影响较大。后续废烟气处理成本较高。

【发明内容】

[0005]针对现有技术中的缺陷和不足,本发明解决了现有的氧化锆质定径水口体积密度低、气孔率高和产品压制成型难度大的问题,同时还克服了干法制粉机械增湿造粒存在的坯料颗粒形状和流动性差、级配不合理等问题。
[0006]为了实现上述任务,本发明采取如下的技术解决方案:
[0007]一种氧化锆质定径水口的制备方法,该方法包括将雾化的结合剂与悬浮于气流中的粉料结合得到颗粒物,颗粒物再结合得到坯料,将得到的坯料在1710?1720°C下进行烧结制得到氧化错质定径水口 ;
[0008]所述的粉料包括部分稳定氧化锆、单斜氧化锆,部分稳定氧化锆和单斜氧化锆的质量比为(50?60): (40?50);所述的结合剂为氧化镁凝胶。
[0009]具体的,雾化的结合剂与悬浮于气流中的粉料相对运动进行碰撞结合得到颗粒物。
[0010]更具体的,所述的颗粒物在悬浮状态下碰撞再结合得到坯料。
[0011]具体的,所述的氧化镁凝胶为将含镁化合物溶液与分散剂通过溶胶凝胶法制备得到,含镁化合物溶液的浓度为1.0?2.0mol/L,分散剂的用量为粉料总重量的1.2%,所述的分散剂为PEG。
[0012]具体的,所述的部分稳定氧化错的化学组成为(wt%):Zr02= 95.02、HfO 2 =
2.04、MgO = 2.61、CaO = 0.03、Al2O3= 0.03 和烧失量为 0.27,粒径为 d95= 1.0-5.0 μπι ;单斜氧化锆的化学组成为(wt % ):Zr02+Hf02> 98和S1 2< 0.3,单斜氧化锆的粒径为d 50=1.0 ?2.0 μ m,d95< 3.75 μ m0
[0013]一种氧化锆质定径水口的制备设备,该设备包括:
[0014]雾化造粒单元,雾化造粒单元用于将雾化的结合剂与悬浮于气流中的粉料结合得到颗粒物;
[0015]旋风分离单元,旋风分离单元用于将来自雾料混合单元的颗粒物再结合得到坯料;
[0016]负压单元,负压单元为物料混合单元和旋风分离单元提供负压环境;
[0017]负压单元与旋风单元连通,旋风单元与雾化单元连通。
[0018]具体的,所述的雾化造粒单元包括混合筒,混合筒上设有将结合剂雾化的喷头和输送粉料的进料口。
[0019]更具体的,所述的旋风分离单元包括旋风筒和收集器,所述的旋风筒包括筒体和芯管,芯管由顶部与筒体连通,筒体的侧部设有入口,筒体的底部设有排料口,收集器与旋风筒的排料口连通。
[0020]再具体的,入口高度a为90?110mm、入口宽度b为为150?170mm、筒体直径De为300?340mm、芯管直径de为为150?170mm、排料口直径D 2为45?55mm、筒体高度h为为640?660_、总高度H为为1500?1550mm、芯管插入高度!^为200?210_,筒体高度h:筒体直径队=2.0?2.1,锥体部分的高度为总高度H-筒体高度h,锥体部分的高度:筒体直径De= 3.0?3.1。
[0021]同时,进料口的进料量为3?4kg/min ;喷头的喷雾压力为0.8?0.9Mpa,喷头的流量为0.18?0.201/min ;混合筒内的负压风速为5.3?5.5m/s,旋风筒内的负压风速为
3.5 ?3.7m/s0
[0022]本发明的优点为:
[0023](I)本发明的氧化锆质定径水口,通过粉料与以溶胶-凝胶法制得的氧化镁凝胶结合剂混合,通过悬浮态循环造粒工艺制得陶瓷型氧化锆质定径水口压制成型用坯料,坯料经陈化、成型,坯体于105±5°C条件下干燥24h,在1710-1720°C的电窑中保温6个小时烧成,制得陶瓷型氧化锆质定径水口。其体积密度比普通增湿造粒工艺提高4%左右,成品气孔率降低75%,使用寿命可达36小时以上;
[0024](2)通过本发明方法制得的氧化锆质定径水口与机械增湿造粒法产品相比,体积密度由5.30g/cm3提高至5.51g/cm3,成品气孔率由4.83%降至1.20%,冷态耐压强度彡lOOOMpa,使用寿命可达36小时以上;
[0025](3)通过本发明的设备,能很好的实现粉料与结合剂的悬浮造粒的过程的实现,且通过设计的旋风筒的尺寸,能满足本发明的方法所述的物料的旋风分离。
【附图说明】
[0026]图1是本发明的悬浮态循环造粒设备结构示意图;
[0027]图2是本发明旋风筒的结构示意图;
[0028]图3是本发明的陶瓷型氧化锆质定径水口成型用坯料制备工艺流程图;
[0029]图中各标号表不为:1_压力栗、2-进料口、3_喂'头、4-旋风筒、401_芯管、402-入口、403-筒体、404-排料口、5-收集器、6-风机、7-混合筒;
[0030]a-入口高度、b-入口宽度、De-筒体直径、de_芯管直径、D2-排料口直径、h_筒体高度、H-总高度、he-芯管插入高度;
[0031]以下结合附图和实施例对本发明作进一步的详细说明。
【具体实施方式】
[0032]目前,氧化锆定径水口生产基本上是采用有机结合剂。采用有机结合剂的缺点是水分挥发、有机物氧化燃烧后,坯体气孔率提高,密实度降低,烧结难度增大。另外,有机物氧化燃烧大体在600?700°C之间,700°C以上,有机物氧化燃烧后坯体强度降低。氧化锆定径水口生产工艺中,基质采用单斜氧化锆,加入氧化镁微粉作为稳定剂,烧结过程中通过氧化镁扩散进入氧化锆,形成固溶体,冷却过程中使高温四方或立方相能在常温下存在。单斜氧化锆中加入氧化镁微粉,微粉越细,在氧化锆中分布越均匀效果愈好。以氧化镁凝胶作结合剂的优点一是本来基质中要加入氧化镁且要分散均与,氧化镁凝胶的加入可以部分取代氧化镁微粉,其分散性极高,活性高,烧结中易扩散。二是取代有机结合剂,将临时有机结合剂变为无机永久结合剂,不存在氧化燃烧气孔率增大问题,且随着煅烧温度提高坯体强度一直处于上升状态。
[0033]细粉部分氧化镁固溶于单斜氧化锆,形成部分稳定氧化锆,细粉即基质部分以四方氧化锆为主,四方氧化锆相变临界尺寸大,相变增韧效果明显。达到烧成温度后,细粉中形成的四方稳定氧化锆数量达到最大值。加入氧化镁使部分单斜氧化锆转变为四方相,产生体积效应,基质部分产生可控制数量的微裂纹;微裂纹的存在有利于定径水口韧性和热震稳定性的提高,可防止定径水口出现开浇炸裂问题。氧化镁的加入除作为稳定剂起相变增韧作用以外,其另一个重要作用是起到烧结剂和瓷化剂作用,解决陶瓷型氧化锆质定径水口烧成困难问题。在1710?1720°C烧成,成品气孔率< 3%,冷态耐压强度彡100Mpao
[0034]根据表面物理化学原理,由于微粉本身受表面张力作用会自发产生团聚现象。当微粉进入悬浮态循环造粒设备中时,在风力作用下会充分的分散并与有一定粘性的凝胶溶液雾滴结合剂充分接触,以雾滴或者大颗粒
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1