一种提高硫化铋多晶电导率的方法

文档序号:8918187阅读:1673来源:国知局
一种提高硫化铋多晶电导率的方法
【技术领域】
[0001]本发明属于化学化工、能源材料技术领域,特别涉及一种提高硫化铋多晶电导率的方法,涉及到水热法合成、射频感应热压烧结和热处理技术。
【背景技术】
[0002]热电材料能够实现热和电直接转换的清洁能源材料,提高能源利用效率,在环境污染和能源紧缺的今天引起了高度的关注。热电转换技术具有体积小、无需机械装置、无噪声、寿命持久等优点,在余热发电、电子元器件制冷具有广阔的应用前景。
[0003]Bi2S3是一种重要的半导体材料,与Bi 2Te3、Bi2Se3等低温热电材料属同族化合物,原料丰富,无毒无污染。它具有高的Seebeck系数,低的热导率。但是由于电阻率太高,比Bi2Te3, Bi2Se3高几个数量级,限制了其在热电方向的应用。如果能够大幅提高Bi2S3的电导性,它将成为取代有毒的Bi2Te3、Bi2Se3的有力候选。
[0004]由于层状的晶体结构,Bi2S3的电学性能也呈现出明显的各向异性。北京科技大学的GE Z-H等人的研宄发现,机械合金化制备的无掺杂硫化铋多晶由于无序排列电电阻率高于水热法和放电等离子体烧结制备的硫化铋样品,从而影响了热电性能。[GE Z-H, ZHANGB-P, SHANG P-P, et al.Journal of Materials Chemistry, 2011, 21(25):9194.]
[0005]休斯顿大学任志峰教授课题组的Weishu Liu博士等人[LIU W,⑶O C F,ZHANGQ, et al., Nano Energy ;2014,Medium:X ;Size: 113-22.]用溶剂热法制备硫化秘前驱粉体,经乙醇稀释的联氨和H2/Ar混合气对前驱粉体进行表面处理后,硫化铋的电导率大幅提升,热电性能得到了提高。但是该方法用到了有毒和腐蚀性的联氨,并且热处理中使用H2具有一定危险性。一种更简单、安全、环保的显著地提高硫化铋多晶电导率的方法有待开发。

【发明内容】

[0006]本发明针对现有技术存在的上述不足,提出了一种提高硫化铋多晶电导率的方法。该方法利用特定的原料水热法合成纳米棒粉体,再结合退火热处理工艺提高结晶度,显者地提尚了硫化秘多晶材料热导率进而提尚其热电性能。
[0007]为实现上述目的及其他相关目的,本发明提供一种提尚硫化秘多晶电导率的方法,至少包括以下步骤:
[0008]提供氯化铋和硫脲作为原料,将氯化铋和硫脲以设定摩尔比混合均匀;
[0009]将混合均匀的氯化铋和硫脲进行水热反应,得到由硫化铋纳米棒组成的前驱粉体;
[0010]将所述前驱粉体置于射频感应炉内进行射频感应热压烧结,得到多晶硫化铋块体。
[0011 ] 作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述氯化铋和硫脲的摩尔比为1:2。
[0012]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述水热反应的温度为200?300°C,反应时间为6?24小时。
[0013]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述水热反应的温度为250°C,反应时间为12小时。
[0014]作为本发明的提高硫化铋多晶导电率的方法的一种优选方案,所述硫化铋纳米棒的直径为100?600nm,长度为I?10 μ m。
[0015]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,将所述前驱粉体置于射频感应炉内进行射频感应热压烧结的具体方法为:
[0016]将所述前驱粉体装入一导电感应模具内,将所述导电感应模具置于所述射频感应炉内由室温加热至第一温度;
[0017]在所述射频感应炉内抽真空并通入惰性气体,继续加热至第二温度,在所述第二温度下加压保温预定时间后冷却至室温。
[0018]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述惰性气体为高纯氮气或氩气,所述射频感应炉内气压为0.05?6个大气压,所述射频感应炉的电源频率大于 10kHz。
[0019]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述第一温度为80?120°C,所述第二温度为300?500°C,烧结压力为70?80MPa,加压保温时间为20?40分钟。
[0020]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述第一温度为100C,所述第二温度为400°C,烧结压力为75MPa,加压保温时间为30分钟。
[0021]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,由室温加热至第一温度的速率为15?20K/min,由第一温度加热至第二温度的速率为20K/min,加压保温后随炉冷却至室温。
[0022]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,在得到所述多晶硫化铋块体之后,还包括将所述多晶硫化铋块体置于退火炉中进行退火处理的步骤。
[0023]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述退火处理的退火温度为200?300°C,退火时间为5?10小时。
[0024]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述退火温度为250°C,退火时间为6小时。
[0025]作为本发明的提高硫化铋多晶电导率的方法的一种优选方案,所述退火处理在惰性气体的保护下进行,退火炉内气压为0.1?1.5个大气压。
[0026]本发明的一种提高硫化铋多晶电导率的方法的有益效果为:采用氯化铋和硫脲为原料制备的硫化铋热压块体电导率明显优于其它原料制备的;通过退火热处理进一步减少晶体缺陷,提高结晶度,使得硫化铋多晶材料的电导率显著提高,进而提高了硫化铋多晶材料的热电性能。该方法简单可控、操作性强、无污染。
【附图说明】
[0027]图1显示为本发明的提高硫化铋多晶电导率的方法的流程图。
[0028]图2a显示为本发明的提高硫化铋多晶电导率的方法中水热反应合成的由硫化铋纳米棒组成的前驱粉体的扫描电镜图。
[0029]图2b显不为本发明的提尚硫化秘多晶电导率的方法中使用不同原料制备的多晶硫化铋样品电导率随温度变化曲线图。
【具体实施方式】
[0030]以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的【具体实施方式】加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
[0031]请参阅图1?图2b。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
[0032]实施例一
[0033]如图1至图2a所示,本实施例提供一种提高硫化铋多晶电导率的方法,至少包括以下步骤:
[0034]S1:提供氯化铋和硫脲作为原料,将氯化铋和硫脲以设定摩尔比混合均匀;
[0035]S2:将混合均匀的氯化铋和硫脲进行水热反应,得到由硫化铋纳米棒组成的前驱粉体;
[0036]S3:将所述前驱粉体置于射频感应炉内进行射频感应热压烧结,得到多晶硫化铋块体。
[0037]执行步骤SI,请参阅图1中的SI步骤,提供氯化铋(BaCl3)和硫脲(CH4N2S)作为原料,将氯化铋和硫脲以设定摩尔比混合均匀。
[0038]具体的,所述氯化铋和所述硫脲的摩尔比为1: 2。
[0039]具体的,可以采用干法混合工艺或湿法混合工艺混合所述氯化铋和硫脲;优选地,本实施例中,采用湿法混合工艺混合所述氯化铋和硫脲,具体方法为:以去离子水作为溶剂,按摩尔比:氯化铋/硫脲=1:2配制,称量相应质量的氯化铋和硫脲加入去离子水中,通过超声混合将所述氯化铋和硫脲混合均匀。
[0040]执行步骤S2,请参阅图1中的S2步骤及图2a,将混合均匀的氯化铋和硫脲进行水热反应,得到由硫化铋纳米棒组成的前驱粉体。
[0041]具体的,将混合好的氯化铋和硫脲置于水热釜中进行水热反应,所述水热反应的温度为200?300 °C,反应时间为6?24小时;优选地,所述水热反应的温度为250 °C,反应时间为6?24小时;更为优选地,本实施例中,所述水热反应的温度为250°C,反应时间为12小时。
[0042]得到的前驱粉体如图2a所示,由图2a可知,所述硫化铋纳米棒组成的前驱粉体为沿C轴取向的硫化铋纳米棒组成的前驱粉体,其晶粒多为(001)取向,所述硫化铋纳米棒的直径为100?600nm,长度为I?10 μ m。
[0043]执行步骤S3,请参阅图1中的S3步骤,将所述前驱粉体置于射频感应炉内进行射频感应热压烧结
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1