制备氨合成气的方法

文档序号:10502656阅读:474来源:国知局
制备氨合成气的方法
【专利摘要】一种通过将烃与蒸气在配置有多个外部加热的催化管的初级重整器(1)中反应,然后与空气在次级重整器(2)中混合制备氨合成气体的方法,其特征在于所述烃与所述蒸气在所述初级重整器(1)中的反应是在操作压力大于35bar的催化管中进行,加入所述次级重整器中空气过量于氨合成所需的氮气量,过量的氮气优选通过次级重整器下游深冷分离或通过TAS或PSA型分子筛去除。该方法适于大量合成气体的制备,成本低,节省能源。
【专利说明】制备氨合成气的方法
[0001 ]本申请要求2007年8月8日提交的欧洲专利申请第07015647.6号的优先权;本申请是申请日为2008年7月18日、题目为“制备氨合成气的方法”的中国专利申请第200880102280.X号的分案申请。
技术领域
[0002]本发明广义上涉及生产氨所需的合成气混合物的制备。
[0003]特别地,本发明涉及一种制备氨合成气体的方法,所述氨合成气包括由烃重整得到的氢气(?)和氮气(N2)。
[0004]本发明还涉及一种由烃重整得到的合成气体制备氨的方法。
[0005]在说明书和随附的权利要求书中,术语“烃”一般表示氢和碳的原料来源,例如甲烷、天然气、石脑油、GPL(液化石油气)或炼油气及它们的混合物。
[0006]众所周知,在制备合成气体领域中,越来越需要采用易于实现,适于大规模生产,同时操作简单,成本低,耗能少的方法。
【背景技术】
[0007]本领域公知的制备氨合成气的方法主要是重整耦合法,包括将去硫烃与蒸气以适当比例混合,得到的混合物进入初级重整器中,其中进料中的大部分烃在15?35bar的中压和780 °C?820 0C的高温下,经适当催化生成(转化为)一氧化碳、二氧化碳和氢气混合物的蒸气。
[0008]所述转化过程为吸热过程,催化剂置于多重催化管内,并通过气体燃料在空气中燃烧提供的反应热在外部加热。
[0009]气体产物从初级重整器排出,进入次级重整器中,所述次级重整器通常包括催化床中的适当催化剂以及位于催化反应床上的反应空间,次级重整器还以可控量进料空气流,以提供下游氨合成所需的氮气。
[0010]氧气与来自初级重整器的气体产物中的可燃性组分在催化床上的反应空间发生反应,得到的混合产物气体以高温进入催化床。
[0011]在通过催化剂的过程中,剩余的甲烷吸热与蒸气发生吸热反应,结果是次级重整器出口气体的温度约为1000°C,99%的烃进料转化为碳氧化物和氢气。
[0012]由次级重整器排出的重整气体随后在一系列下游设备进行处理去除碳氧化物,得到适于氨合成的气体成分(即H2/N2摩尔比接近3:1)。所述设备包括:
[0013]-CO变换炉,在CO变换炉中,重整气体中的大部分一氧化碳(CO)成分与未反应的蒸气催化转化生成二氧化碳和一定体积的氢气,
[0014]-CO2洗涤柱,通过适当的溶剂如胺或碳酸钾的水溶液在CO2洗涤柱中涤气,几乎完全去除二氧化碳成分,从而得到含有氮和氢,以及痕量的甲烷、碳氧化物和氩的气流,其中出/^2摩尔比约为3:1。
[0015]-甲烧转化器,剩余的碳氧化物在甲烧转化器中催化转化为甲烧,以免这些含氧化合物弓I起下游氨合成催化剂中毒。
[0016]这样,最终得到低压的氨合成气(一般15?25bar),根据所采用的氨合成方法,将其压缩至氨合成所需的压力,所述压力通常为80?300bar,一般为约150bar。
[0017]尽管上述氨合成气体的方法在一些方面具有优点,但也存在公认的缺点,即难于在大规模生产氨的工厂中进行。
[0018]既然这样,主要的问题在于设计并制造压缩机,其涡轮机用于压缩大规模生产氨的工厂所需大量的合成气流,将低压气流压缩至氨合成所需的高压气流。
[0019]此外,对于大规模生产氨的工厂,在上述合成气体方法的操作条件(特别是压力)下,其它设备和管道也需要非常大的尺寸。然而,这必将增加成本和能耗,因此限制合成气体的生产能力。

【发明内容】

[0020]本发明的根本问题是提供一种易于实现,产量高,且操作简单,成本低,节省能源的制备适于生产氨的氨合成气体的方法。
[0021]解决上述技术问题所采用的制备氨合成气体的方法,其特点在于,所述方法包括以下步骤:
[0022]-向配置有多个外部加热的催化管的初级重整器中通入含烃的气流和含蒸气的气流;
[0023]-所述烃与所述蒸气在所述初级重整器中的催化管中反应,反应在操作压力大于35bar的催化管中进行,得到气体产物;
[0024]-向次级重整器中通入所述气体产物和空气流,加入的所述空气过量于氨合成所需的氮气量,使得来自初级重整器的所述气体产物的全部烃成分基本转化;
[0025]-使所述气体产物与所述空气发生反应,然后进行次级重整,得到含有过量于氨合成所需的氮气、氢气、碳氧化物和未反应的蒸气的重整气体;
[0026]-从所述重整气体中去除碳氧化物和过量的氮气,得到所述合成气体。
[0027]此处,术语“气体产物”表示部分重整的气体,例如初级重整器出口或次级重整器的反应空间内的气体,通常包括碳氧化物(CO和C02)、氢气(H2)、蒸气和未转化的烃。
[0028]此处,术语“合成气体”表示含有适当摩尔比的用于氨合成的犯和出的气体,即所述气体中,N2/H2接近化学当量1:3的摩尔比。此处,术语“重整气体”表示完全重整的气体,例如次级重整器出口的气体,其通常含有氮气、氢气、碳氧化物和未反应的蒸气,还可能含有痕量未转化的烃。
[0029]本发明基于如下发现:通过将初级重整器催化管内的操作压力增加至大于35bar,并向次级重整器中提供过量的空气(其还产生了超出用于氨合成的最终合成气所需的过量氮气),使得初级重整器排出的气体产物中所含的烃完全转化(重整),从而能够获得高压氨合成气体,同时可实现大量生产。
[0030]这一发现与现有技术的教导形成鲜明对照,根据现有技术的教导,为了获得高产量的氨合成气体,相关工厂必须具备大型的设备(特别是压缩机)和管道。
[0031]令人惊讶地,根据本发明的方法,特别是增加压力是可行的,例如与现有技术的方法相比,可以将催化管内的压力基本上增加一倍(例如获得的压力为60bar),而无需改变目前使用的初级重整器中的管设计。
[0032]根据本发明优选初级重整器催化管内的压力为40?10bar,更优选地,60?80baro
[0033]优选地,为避免在本发明新的操作压力下可能会减少管的使用寿命,已经发现可采用下述方式:加热管使得气体产物离开所述管的出口温度不超过750°C (优选650?750
0Oo
[0034]管出口温度的选择取决于管内的操作压力,当操作压力增加时,降低出口温度,以保证导管的使用寿命。
[0035]例如,当以一般的内径约为IOOmm,壁厚1?12mm的催化管运行时,根据本发明,60bar压力/750 °C出口温度,管显示出约100,000小时的良好的使用寿命。
[0036]而且,根据本发明方法最终得到的合成气体具有高压,这允许采用小型设备和重整器的下游管道系统,降低了成本和能耗。
[0037]特别地,这使得在氨生产设备的合成回路中可以采用小型的和价格低廉的用于将最终的合成气体压缩至转化成氨所需的压力的设备成为可能。此外,由于在重整工序的出口处最终得到高压的合成气体,压缩所需的能量减少。因此,根据本发明,氨合成设备采用高压合成气体,可实现能耗的降低。
[0038]根据本发明方法的优选方案,所述空气的过量为大于制备氨合成所需氮气成分需要的空气量的15%?100%,优选20%?40%。
[0039]采用过量的空气可以使初级重整器出口气体(初级重整器中烃的含量随压力的增加和温度的降低而增加)中含有的烃(特别是甲烷)在次级重整器的催化床的上部空间发生有效地转化,生成碳氧化物和蒸气,由此获得高温气体产物。
[0040]然后,该气体产物流经次级重整器的催化床,发生吸热重整反应(利用所述气体产物的热量),充分地完成了转化过程,与现有技术的生产方法相比,有利地实现了烃的完全转化。
[0041]根据本发明的另一方面,从所述重整气体中去除碳氧化物和所述过量氮气的所述步骤包括如下操作阶段:
[0042]-通过与部分未反应的蒸气发生催化转化反应生成二氧化碳和氢气,从所述重整气体中基本去除一氧化碳,得到去除一氧化碳和蒸气的重整气体;
[0043]-通过适当溶液或溶剂洗涤所述基本去除一氧化碳和部分蒸气的重整气体,基本去除二氧化碳,得到仍含有痕量碳氧化物的重整气体;
[0044]-采用将其转化为甲烷的方式,去除重整气体中含有的痕量碳氧化物,得到不含碳氧化物的重整气体;
[0045]-通过深冷分离去除所述不含碳氧化物的重整气体中过量的氮气。
[0046]根据本发明的另一方面,从重整气体中去除碳氧化物和所述过量氮气的所述步骤包括如下操作阶段:
[0047]-通过与未反应的蒸气发生催化转化反应生成二氧化碳和氢气,从所述重整气体中基本去除一氧化碳,得到去除一氧化碳和蒸气的重整气体;
[0048]-通过适当溶液或溶剂洗涤所述基本去除一氧化碳和蒸气的重整气体,基本去除二氧化碳,得到仍含有痕量的碳氧化物的重整气体;
[0049]-通过将所述仍含有痕量碳氧化物的重整气体流经PSA或TSA型分子筛,去除所述痕量碳氧化物和所述过量的氮气。
[0050]此处,术语“分子筛”包括所有具有微孔的,易于吸附混合气体中所含有的氮气和碳氧化物的材料。根据吸附和释放氮气和碳氧化物的过程,这些材料可分为PSA(变压吸附,pressure swing adsorpt1n)分子筛或TSA(变温吸附,temperature swing adsorpt1n)分子筛。
[0051]根据PSA过程,含有痕量氮气和碳氧化物的混合气体在一定压力下流经PSA分子筛,氮气和碳氧化物被分子筛中的微孔结构吸收。然后,降低压力,氮气和碳氧化物从微孔结构中脱附,再生分子筛。
[0052]与此不同,根据TSA过程,含有痕量氮气和碳氧化物的混合气体在一定温度下流经TSA分子筛,氮气和碳氧化物被吸收。然后,升高温度,例如,通蒸气流或热水,使氮气和碳氧化物从微孔结构中脱附,再生分子筛。
[0053]本发明还涉及由合成气体制备氨的方法,包括步骤:
[0054]-将含烃气流与含蒸气的气流通入配置有多个外部加热的催化管的初级重整器中;
[0055]-在所述初级重整器中,所述烃与所述蒸气在大于35bar压力的催化管中发生反应,得到气体产物;
[0056]-将所述气体产物和空气流通入次级重整器,所加入的过量的空气大于合成氨的最终合成气所需的氮气量,使来自初级重整器的所述气体产物中全部的烃成分基本转化;
[0057]-使所述气体产物与所述空气发生反应,然后进行次级重整,得到含有大于氨合成所需的过量的氮气、氢气和碳氧化物的重整气体;
[0058]-从所述重整气体中去除碳氧化物和过量的氮气,得到所述合成气体;以及
[0059]-将所述合成气体加入氨合成回路中,在可有效制得氨的条件下发生反应。
[0060]参照附图,以下述实施例的描述进一步说明本发明的特点和优点,但下述实施例不用来限制本发明的范围。
【附图说明】
[0061]图1为根据本发明实施例,制备氨合成气体的装置的示意图,所述装置与合成氨设备的氨合成回路流体连通;
[0062]图2为本发明另一实施例制备氨合成气体的装置的示意图,所述装置与合成氨设备的氨合成回路流体连通。
【具体实施方式】
[0063]图1中,装置示意图阐明了根据本发明,通过含烃气流的初级和次级重整来制备氨合成气体的方法步骤。在此阐述的方法中,采用由天然气组成的烃源作为原料。
[0064]如图1所示,数字I为初级重整器,数字2为次级重整器,数字3为一系列⑶变换炉(仅显示一个),数字4为CO2洗涤柱,数字5为甲烷转化器,区域6为氨合成回路。
[0065]低压线路7表示采用常规方法去硫后的天然气气流,低压线路8表示蒸气流。
[0066]按照每摩尔天然气中碳,蒸气约1:2.5?5的摩尔比,混合去硫天然气流7和蒸气流8,混合物经过线路9进入热交换器10,在此将混合物预热至约500°C,预热的混合物经过线路11进入初级重整器I。
[0067]初级重整器I内部包括常规的多个装有适当催化剂的管(未显示),其通过线路12所示的热交换液体进行外部加热。
[0068]根据本发明,加热初级重整器的催化管使得管出口温度达到650?750°C,同时通入初级重整器I中的含烃和蒸气的气体混合物以达到约60bar的压力进入管内。
[0069]此外,在本实施例中,全部天然气给料至初级重整器I中。
[0070]初级重整器I排出的温度为650?750°C,压力约60bar的气体产物由线路13进入次级重整器2,同时通过线路14向次级重整器2提供由空气组成的氧化剂气流。
[0071]根据本发明,向次级重整器2中提供的空气大于合成氨的最终氨合成气所需氮气的总量,根据现有技术,采用加压和降温的方式,以补偿来自初级重整器的气体产物中增加的烃含量。
[0072]在本实施例中,次级重整器2包括带有适当催化剂(如镍基催化剂)的催化床2a和上部反应空间2b。进入次级重整器2的氧气(空气中含有的)与初级重整器I排出的气体产物在反应空间2b中发生反应,在高温下得到次级气体产物。
[0073]然后,该次级气体产物经由次级重整器的催化床2a,发生吸热重整反应(利用所述次级气体产物的热量),从而基本完成重整过程,得到含氮气(过量)、氢气、碳氧化物和剩余蒸气的重整气体。
[0074]根据另一个可选的实施例(未显示),次级重整器2没有催化床2a。在这种情况下,次级重整器2将包括一个或多个反应空间作为上述反应空间2b,进行并完成重整过程。
[0075]次级重整器2排出的最终重整气体的温度约1000°C,压力约60bar,其首先由线路17进入热交换器16,在此冷却至约350°C,然后,由线路18进入一系列(一般为两个)C0变换炉3 0
[0076]在CO变换炉3中,重整气体中的一氧化碳成分与未反应的蒸气催化转化成二氧化碳并产生一定体积的氢气。最后的(第二个)CO变换炉3的出口温度约220 °C,至少98%的CO进气发生转化。最后的CO变换炉3排出的重整气体进入热交换器19(经由线路20),在此冷却至接近环境温度,冷却后的气体进入分离器21(经由线路22),分离冷凝物。
[0077]从分离器21排出的气体经线路22a进入⑶2洗涤柱4,大部分二氧化碳成分通过适当的溶剂,如胺的水溶液或碳酸钾溶液,涤气去除。从柱4顶部出来的出气由过量氢气和氮气以及痕量的烃(甲烷)和碳氧化物组成。
[0078]气体经过线路24进入热交换器23,在此加热至约300°C,然后经过线路25进入甲烷转化器5。甲烷转化器5包括含适当催化剂,如镍基催化剂的催化床,将痕量碳氧化物转化成甲烷,以免这些含氧化合物造成下游的氨合成催化剂中毒。
[0079]从甲烷转化器5排出的气体由线路27进入热交换器26中进行冷却,冷却后的气体经线路29进入分离器28,进行冷凝物的分离。
[0080]从分离器28排出的气体随后由线路30进入深冷分离器40,在此分离出大于氨合成所需的过量氮气,以及由甲烷转化器5得到的甲烷和一部分氢气,得到以适当摩尔比混合的氮气和氢气的氨合成气体(即,H2/N2摩尔比接近3:1)和分离气。
[0081 ]经线路41回收来自深冷分离器40的分离气,其通常作为补充燃料,而氨合成气体进入压缩机33(经线路42),压缩至氨合成所需的压力,例如150bar。
[0082]根据本发明,由于通过压缩机33得到的氨合成气体具有比现有技术高的压力(本实施例中约S60bar),因此使得本发明装置简单,成本低廉。
[0083]最后,压缩的合成气体由线路31供给合成回路6,在有效生成氨的条件下进行反应。得到的氨经线路32从合成回路6排出。
[0084]图2为根据本发明另一实施例,制备氨合成气体的装置的示意图。
[0085]图2中与上述图1装置的相应部件相同或等同的装置的部件,采用与图1编号相同的编号,且不再赘述。
[0086]从图2中可以看出,该装置与上述图1装置不同之处在于其包括具有PSA或TSA型分子筛的分离器60,其取代了深冷分离器40。
[0087]此外,分离器60直接经线路61接收由洗涤柱4排出的气体混合物,进行碳氧化物和过量氮气的分离。结果是,省去了甲烷转化器5和相关设备,使得流程简化,降低了成本。
[0088]在分离器60中,根据PSA或TSA过程,碳氧化物和过量的氮气被分子筛的微孔结构选择性地吸附,得到以适当摩尔比混合的氮气和氢气的氨合成气体(即,H2/N2摩尔比接近3:1)和分离气。
[0089]在分子筛再生过程中(根据上述PSA或TSA过程),经线路62回收来自分离器60的分离气,其通常作为补充燃料,而氨合成气体进入压缩机33(经线路42),压缩至氨合成所需的压力,例如150bar。
[0090]参照图2,根据需要和根据已知技术,可沿柱4和分离器60之间的线路61增加一个或多个中间设备(例如热交换器或压缩机),来提供其它实施例。
[0091]根据本发明进一步的实施例,在初级重整器I的下游设置预重整器。该预重整器本身是常规型号,因此没有在图1或图2中显示,其以隔热方式运行,S卩,无热交换。向该预重整器中通入天然气气流7和部分蒸气流8。在预重整器中,得到含烃气流,将其与蒸气流8的其余部分一起加入初级重整器I。
[0092]当然,本领域技术人员对本发明方法进行的修改或改进,都属于权利要求请求保护的范围。
【主权项】
1.一种制备由天然气重整得到的氨合成气体的方法,其特征在于,其包括步骤: -向配置有多个外部加热的催化管的初级重整器中通入所述天然气和含蒸气气流,所有天然气都供给至初级重整器中; -所述天然气与所述蒸气在所述初级重整器的中催化管进行反应,反应是在操作压力大于35bar的催化管中进行,得到气体产物; -向次级重整器中通入所述气体产物和空气流,加入的所述空气过量于氨合成所需的氮气量,使得来自初级重整器的所述气体产物的全部天然气成分基本转化; -使所述气体产物与所述空气发生反应,然后进行次级重整,得到含有过量于氨合成所需的氮气、氢气、碳氧化物和未反应的蒸气的重整气体; -从所述重整气体中去除碳氧化物和过量的氮气,得到所述合成气体。2.根据权利要求1所述的方法,其特征在于,所述空气的过量为大于制备氨合成所需氮气成分需要的空气量的15%?100%。3.根据权利要求2所述的方法,其特征在于,所述空气的过量为大于制备氨合成所需氮气成分需要的空气量的20%?40%。4.根据权利要求1或2所述的方法,其特征在于,所述初级重整器的催化管内的操作压力为40?I OObar。5.根据权利要求4所述的方法,其特征在于,所述初级重整器的催化管内的操作压力为60?80baro6.根据权利要求1?5中任一项所述的方法,其特征在于,来自初级重整器催化管的所述气体产物的出口温度不超过750°C。7.根据权利要求3或4所述的方法,其特征在于,所述初级重整器(I)的催化管内的操作压力为约60bar,所述出口温度为650?750°C。8.根据权利要求1?7中任一项所述的方法,其特征在于,从所述重整气体中去除碳氧化物和过量氮气的所步骤包括如下操作阶段: -通过与未反应的蒸气发生催化转化反应生成二氧化碳和氢气,从所述重整气体中基本去除一氧化碳,得到基本去除一氧化碳和部分蒸气的重整气体; -通过适当溶液或溶剂洗涤所述基本去除一氧化碳和部分蒸气的重整气体,基本去除二氧化碳,得到仍含有痕量碳氧化物的重整气体; -通过将其催化转化为甲烷,去除重整气体中含有的痕量碳氧化物,得到不含碳氧化物的重整气体; -通过深冷分离去除所述不含碳氧化物的重整气体中过量的氮气。9.根据权利要求1?7中任一项所述的方法,其特征在于,从所述重整气体中去除碳氧化物和所述过量氮气的所述步骤包括如下几个阶段: -通过与部分未反应的蒸气发生催化转化反应生成二氧化碳和氢气,从所述重整气体中基本去除一氧化碳,得到基本去除一氧化碳和部分蒸气的重整气体; -通过适当溶液或溶剂洗涤所述基本去除一氧化碳和蒸气的重整气体,基本去除二氧化碳,得到仍含有痕量碳氧化物的重整气体; -通过将所述仍含有痕量碳氧化物的重整气体流经PSA或TSA型分子筛,去除所述痕量碳氧化物和所述过量的氮气。
【文档编号】C01B3/48GK105858603SQ201610162373
【公开日】2016年8月17日
【申请日】2008年7月18日
【发明人】厄曼诺·菲利皮, 马克·巴达诺, 杰弗里·弗雷德里克·斯金纳
【申请人】阿梅尼亚·卡萨莱股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1