氧化铝陶瓷及其制备方法和等离子体刻蚀设备的制造方法

文档序号:10605458阅读:722来源:国知局
氧化铝陶瓷及其制备方法和等离子体刻蚀设备的制造方法
【专利摘要】本发明涉及一种氧化铝陶瓷及其制备方法和等离子体刻蚀设备。该氧化铝陶瓷的制备方法包括如下步骤:将有机单体、交联剂和分散剂加水混合,并调节pH值至9~10,得到预配液;将纳米氧化铝粉、微米氧化铝粉和抑制晶粒长大剂加入到预配液中,经混合,得到固相的体积百分含量为45~55%、粘度低于1Pa·s的陶瓷浆料;在陶瓷浆料中加入催化剂和引发剂,经凝胶化,得到湿坯;将湿坯干燥,再经烧结,得到氧化铝陶瓷。上述氧化铝陶瓷的制备方法制备得到的氧化铝陶瓷具有较好的耐等离子体腐蚀性能。
【专利说明】
氧化铝陶瓷及其制备方法和等离子体刻蚀设备
技术领域
[0001] 本发明涉及陶瓷材料领域,特别是涉及一种氧化铝陶瓷及其制备方法和等离子体 刻蚀设备。
【背景技术】
[0002] 等离子体处理装置被广泛用于半导体制造中,其主要用于刻蚀、表面清洗等工艺。 其工作原理是将反应室中cf4、c 4f8等含卤化合物气体电离成等离子体,并用等离子体中的 自由基去轰击或溅射被刻蚀材料的表面分子,形成易挥发物质,从而实现刻蚀的目的。而反 应室中的构件暴露在等离子体中,受到不同程度的等离子体腐蚀,除了降低构件的使用寿 命而增加等离子体处理装置的使用成本,等离子体腐蚀所产生的金属/陶瓷颗粒还会污染 反应室和被加工工件表面,影响被加工工件的质量。
[0003] 为了提高构件的抗等离子体腐蚀性能,采取了多种工艺措施,如在金属构件喷涂 氧化钇、氧化铝等无机物涂层,但喷涂的涂层与金属构件的结合力不强,且无机物涂层与金 属构件的膨胀系数不匹配,在使用过程中存在脱落的风险;同时也由于涂层中无机物颗粒 没有达到烧结状态,颗粒间结合力不够,在等离子体腐蚀下容易脱落,另外,也有用烧结致 密的陶瓷材料制作构件,如氧化铝、氧化钇等陶瓷材料,在抗等离子体腐蚀性能方面有一定 提升,但氧化铝、氧化钇等陶瓷材料的制备过程中加入的一些烧结助剂容易被等离子体腐 蚀,以及陶瓷材料在烧结过程中晶粒的异常长大会造成陶瓷微观结构不良而使得陶瓷的性 能劣化,大大缩短了陶瓷构件的使用寿命,同时,陶瓷构件的被腐蚀后也会产生陶瓷颗粒污 染加工工件的问题。

【发明内容】

[0004] 基于此,有必要提供一种能够制备出耐等离子体腐蚀性能较好的氧化铝陶瓷的制 备方法。
[0005] 此外,还提供一种氧化铝陶瓷及等离子体刻蚀设备。
[0006] -种氧化铝陶瓷的制备方法,包括如下步骤:
[0007] 将有机单体、交联剂和分散剂加水混合,并调节pH值至9~10,得到预配液;
[0008] 将纳米氧化铝粉、微米氧化铝粉和抑制晶粒长大剂加入到所述预配液中,经混合, 得到固相的体积百分含量为45~55%、粘度低于IPa ? s的陶瓷浆料,其中,所述纳米氧化铝 粉的粒径为10~100纳米,所述微米氧化铝粉的粒径为0.2~0.6微米,且所述纳米氧化铝粉 的质量与所述纳米氧化铝粉和所述微米氧化铝粉的质量之和的比为5:100~50:100;
[0009 ]在所述陶瓷浆料中加入催化剂和引发剂,经凝胶化,得到湿坯;
[0010] 将所述湿坯干燥,再经烧结,得到氧化铝陶瓷。
[0011] 在其中一个实施例中,所述有机单体为丙烯酰胺、甲基丙烯酰胺或羟甲基丙烯酰 胺;所述交联剂为N,N'_亚甲基双丙烯酰胺;所述分散剂选自聚丙烯酸铵、柠檬酸氨及聚乙 二醇中的一种。
[0012] 在其中一个实施例中,在所述预配液中,所述有机单体的质量百分含量为10~ 20%,所述分散剂的质量百分含量为2~5%,所述有机单体与所述交联剂的质量比为10:1 ~40:1〇
[0013] 在其中一个实施例中,所述抑制晶粒长大剂的质量与所述纳米氧化铝粉和所述微 米氧化铝粉的质量之和的比为〇. 1:100~1:100;所述抑制晶粒长大剂选自氧化镁及三氧化 二钇中的至少一种。
[0014] 在其中一个实施例中,所述引发剂为过硫酸铵,所述催化剂为N,N,N',N'_四甲基 乙二胺。
[0015] 在其中一个实施例中,在所述陶瓷浆料中加入所述催化剂和所述引发剂的步骤之 前,还包括将所述陶瓷浆料抽真空除泡的步骤。
[0016] 在其中一个实施例中,将所述湿坯干燥的步骤为:将所述湿坯于室温下干燥1~5 天,接着于90~100 °C保温10~20小时。
[0017] 在其中一个实施例中,所述烧结的步骤为:以30~60°C/小时的升温速率升温至 500~600°C保温1~2小时,再以100°C/小时的升温速率升温至1000~1100°C,接着以30~ 60 °C /小时的升温速率升温至1400~1650 °C保温1~5小时。
[0018] 根据上述氧化铝陶瓷的制备方法制备的氧化铝陶瓷,所述氧化铝陶瓷的相对密度 大于99.5%,平均晶粒小于1微米,最大晶粒小于2微米。
[0019] -种等离子体刻蚀设备,含有上述的氧化铝陶瓷。
[0020] 上述氧化铝陶瓷的制备方法通过将粒径为10~100纳米的纳米氧化铝粉和粒径为 0.2~0.6微米的微米氧化铝粉搭配使用,且纳米氧化铝粉的质量与纳米氧化铝粉和微米氧 化铝粉的质量之和的比为5:100~50:100,纳米氧化铝粉填充到微米氧化铝粉的孔隙中,减 少了孔隙尺寸,通过配合凝胶注模成型工艺提高了陶瓷素坯的密度,有利于提高氧化铝陶 瓷的相对密度,而提高相对密度也能够提高氧化铝陶瓷的耐等离子体腐蚀性能;纳米氧化 铝的添加能够促进烧结活性,可缩小烧结物颗粒间隙,有助于减低烧结温度,且能够减少烧 结助剂的添加量,使得陶瓷的纯度更加高,而添加少量的抑制晶粒长大剂能够有效地抑制 晶粒的异常长大,从而获得了相对密度大于99.5%、平均晶粒小于1微米、且最大晶粒小于2 微米的氧化铝陶瓷,具有细晶结构,从而使得其具有较好的耐等离子体腐蚀性能。
【附图说明】
[0021] 图1为一实施方式的氧化铝陶瓷的制备方法的流程图。
【具体实施方式】
[0022] 为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中 给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文 所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透 彻全面。
[0023]除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的 技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具 体的实施例的目的,不是旨在于限制本发明。本文所使用的术语"及/或"包括一个或多个相 关的所列项目的任意的和所有的组合。
[0024] 如图1所示,一实施方式的氧化铝陶瓷的制备方法,包括如下步骤:
[0025] 步骤S110:将有机单体、交联剂和分散剂加水混合,并调节pH值至9~10,得到预配 液。
[0026]其中,有机单体为丙烯酰胺、甲基丙烯酰胺或羟甲基丙烯酰胺;交联剂为N,N'_亚 甲基双丙烯酰胺;分散剂选自聚丙烯酸铵、柠檬酸氨及聚乙二醇中的一种。可以理解,在其 它实施例中,交联剂还可以为聚(乙烯基乙二醇)双甲基丙烯酸。
[0027]其中,在预配液中,有机单体的质量百分含量为10~20%,分散剂的质量百分含量 为2~5%,有机单体与交联剂的质量比为10:1~40:1。
[0028]其中,调节pH值至9~10使用的试剂为氨水。
[0029]步骤S120:将纳米氧化铝粉、微米氧化铝粉和抑制晶粒长大剂加入到预配液中,经 混合,得到固相的体积百分含量为45~55%、粘度低于IPa ? s的陶瓷浆料。
[0030] 其中,纳米氧化铝粉为a-Al2〇3粉。纳米氧化铝粉粒径(D50)为10~100纳米。即纳米 氧化错粉粒径为10~100纳米为50%。
[0031] 其中,纳米氧化铝粉的质量与纳米氧化铝和微米氧化铝的质量之和的比为5:100 ~50:100〇
[0032]其中,微米氧化铝粉的粒径(D50)为0.2~0.6微米。即微米氧化铝粉粒径为0.2~ 0.6微米为50 %。
[0033] 其中,抑制晶粒长大剂与陶瓷粉体的质量比为0.1:100~1:100。该比例的抑制晶 粒长大剂不仅能够抑制晶粒的长大,还能够保证氧化铝陶瓷具有较好的性能。若抑制晶粒 长大剂的添加量较少,起不到抑制晶粒长大的作用;若抑制晶粒长大剂的添加量过多,会与 氧化铝反应过量,生成镁铝尖晶石和\或钇铝石榴石过量,直接影响氧化铝陶瓷的性能。抑 制晶粒长大剂选自氧化镁及三氧化二钇中的至少一种。
[0034] 其中,将纳米氧化铝粉、微米氧化铝粉和抑制晶粒长大剂加入到预配液中后的混 合步骤为:球磨混合5~20小时。
[0035] 步骤S130:在陶瓷浆料中加入催化剂和引发剂,经凝胶化,得到湿坯。
[0036]其中,催化剂为N,N,N',N'_四甲基乙二胺;催化剂与有机单体的质量比为0.1:100 ~2:100〇
[0037] 其中,引发剂为过硫酸铵;引发剂与有机单体的质量比为0.1:100~2:100。
[0038] 其中,在陶瓷浆料中加入催化剂和引发剂的步骤之前,还包括将陶瓷浆料抽真空 除气的步骤。具体的,将陶瓷浆料抽真空除气10~30分钟。
[0039]步骤S140:将湿坯干燥,再经烧结,得到氧化铝陶瓷。
[0040] 其中,将湿坯干燥的步骤为:将湿坯于室温下干燥1~5天,接着于90~100°C保温 10~20小时,以尽可能地去除湿坯中的水分。
[0041 ] 其中,烧结的步骤为:以30~60°C/小时的升温速率升温至500~600°C保温1小时 ~2小时,再以100 °C /小时的升温速率升温至1000~1100 °C,接着以60 °C/小时的升温速率 升温至1400°C~1650°C保温2小时。以30~60°C/小时的升温速率升温至500~600°C保温1 小时~2小时是为了除去有机物。
[0042]上述氧化铝陶瓷的制备方法得到的氧化铝陶瓷的相对密度大于99.5%,粒径小于 1微米,最大粒径小于2微米。
[0043] 上述氧化铝陶瓷的制备方法通过将粒径为10~100纳米的纳米氧化铝粉和粒径为 0.2~0.6微米的微米氧化铝粉搭配使用,且纳米氧化铝粉的质量与纳米氧化铝粉和微米氧 化铝粉的质量之和的比为5:100~50:100,纳米氧化铝粉填充到微米氧化铝粉的孔隙中,减 少了孔隙尺寸,通过配合凝胶注模成型工艺提高了陶瓷素坯的密度,有利于提高氧化铝陶 瓷的相对密度;纳米氧化铝的添加,能够促进烧结活性,可缩小烧结物颗粒间隙,有助于减 低烧结温度,且能够减少烧结助剂的添加量,使得陶瓷的纯度更加高,而添加少量的抑制晶 粒长大剂能够有效地抑制晶粒的异常长大,从而获得了相对密度大于99.5%、平均晶粒小 于1微米、且最大晶粒小于2微米的氧化铝陶瓷,具有细晶结构,从而使得其具有较好的耐等 离子体腐蚀性能。
[0044] 根据上述氧化铝陶瓷的制备方法制备得到的氧化铝陶瓷,其相对密度大于 99.5%,平均晶粒小于1微米,最大晶粒小于2微米,该氧化铝陶瓷具有细晶结构,从而使得 其具有较好的耐等离子体腐蚀性能。
[0045] 上述氧化铝陶瓷可应用于等离子体刻蚀设备中。
[0046] 以下为具体实施例部分:
[0047] 实施例1
[0048]本实施例的氧化铝陶瓷的制备过程如下:
[0049] (1)将丙烯酰胺、N,N'_亚甲基双丙烯酰胺和聚丙烯酸铵加去离子水搅拌混合,使 用氨水调节至pH值至9,得到预配液,其中,在预配液中,丙烯酰胺的质量百分含量为15%, 聚丙烯酸铵的质量百分含量为3%,丙烯酰胺与N,N'_亚甲基双丙烯酰胺的质量比为25:1。 [0050] (2)将纳米a-Al 203粉、微米氧化铝粉和氧化镁加入到预配液中,经球磨混合15小 时,得到固相的体积百分含量为50%、粘度低于IPa ? s的陶瓷浆料,其中,纳米a-Al203粉的 质量与纳米a_Al2〇3粉和微米氧化错粉的质量之和的比为30:100,氧化儀的质量与纳米a-Al2〇 3粉和微米氧化铝粉的质量之和的比为0.5:100。其中,微米氧化铝粉的粒径为0.2~0.4 微米,纳米氧化错粉粒径为10~50纳米。
[0051 ] (3)将陶瓷浆料抽真空除气20分钟,接着在陶瓷浆料中加入质量百分含量为50% 的N,N,N',N ' -四甲基乙二胺的水溶液和质量百分含量为10 %的过硫酸铵,注入模具中,凝 胶化15分钟,脱膜后得到湿坯。其中,N,N,N',N'_四甲基乙二胺与丙烯酰胺的质量比为1: 100;过硫酸铵与丙烯酰胺的质量比为1:100。
[0052] (4)将湿坯于室温下阴干3天,接着在烘箱中于95 °C保温15小时,然后在高温炉中 以45°C/小时的升温速率升温至600°C保温1.5小时,再以100°C/小时的升温速率升温至 1100°C,接着以60°C/小时的升温速率升温至1500°C保温2小时,得到氧化铝陶瓷。
[0053]使用阿基米德法测试得到本实施例的氧化铝陶瓷的相对密度(其中,使用阿基米 德法测量陶瓷的体积密度,取氧化铝陶瓷的理论密度为3.95g/cm3,相对密度=体积密度/ 理论密度)。
[0054]其中,本实施例的氧化铝陶瓷的平均晶粒的检测方法如下:
[0055]首先,对样品进行研磨和抛光至镜面效果;然后进行热腐蚀,将样品放入马弗炉, 300°C/h升温至热腐蚀温度,保温10~30min后随炉冷却,这个热腐蚀温度比陶瓷的烧结温 度低300~400°C。热腐蚀后,获得晶粒粒径分析样品。
[0056] 然后,对热腐蚀后样品进行扫描电镜观察,任意选取2~3个部位放大10000倍拍摄 扫描电镜照片,在照片上描绘面积(A)的圆,通过下面式子由圆内的晶粒数n。与圆周的晶粒 数m求出每单位面积的晶粒数Nc,公式为:他=(11。+1/21^)/(4/10000 2)。
[0057] 其中,1/Nc为1个晶粒所占的面积。由此利用下面式子算出当量圆直径(D)作为平 均直径,公式为:D = 2/(jtNg)V2。
[0058]氧化铝陶瓷的最大粒径的测试方法:
[0059] 对热腐蚀后样品进行扫描电镜观察,放大10000倍,通过所观察的最大晶粒的单向 最大粒径(Krumb e i n径)取得的大小。
[0060] 本实施例的氧化铝陶瓷的耐等离子体腐蚀性能的测试方法如下:
[0061 ] 将氧化铝陶瓷切割成尺寸为30mm X 30mmX 5mm,将表面研磨抛光至粗糙度Ra彡0.5 Mi,然后用聚酰亚胺胶带掩盖抛光表面周边位置并在中心留出20mm X 20mm的暴露区域。使 用电感親合等离子体刻蚀系统(Inductively Coupled Plasma Etching System,德国 SENTECH,型号SI 500)在CF4和〇2混合气体等离子体中进行照射处理。通过使用DektakXT探 针式表面轮廓仪测量被掩盖和未被掩盖区域之间的台阶高度来确定腐蚀深度,根据刻蚀的 时间计算出刻蚀速率。其中,等离子体暴露条件:刻蚀气体为CF4(0.04L/min) +02 (0.01L/ min),腔体压力5Pa,等离子功率100W。
[0062] 本实施例的氧化铝陶瓷的相对密度、粒径、最大粒径和刻蚀速率见表1。
[0063] 实施例2
[0064] 本实施例的氧化铝陶瓷的制备过程如下:
[0065] (1)将羟甲基丙烯酰胺、N,N'_亚甲基双丙烯酰胺和柠檬酸氨加去离子水搅拌混 合,使用氨水调节至pH值至10,得到预配液,其中,在预配液中,羟甲基丙烯酰胺的质量百分 含量为10%,柠檬酸氨的质量百分含量为2%,羟甲基丙烯酰胺与N,N'_亚甲基双丙烯酰胺 的质量比为40:1。
[0066] (2)将纳米a-Al203粉、微米氧化铝粉和三氧化二钇加入到预配液中,经球磨混合18 小时,得到固相的体积百分含量为45%、粘度低于IPa ? s的陶瓷浆料,其中,纳米a-Al203粉 的质量与纳米a_Al2〇3粉和微米氧化铝粉的质量之和的比为5:100,三氧化二钇的质量与纳 米a-Al 203粉和微米氧化铝粉的质量之和的比为0.1:100。其中,微米氧化铝粉的粒径为0.2 ~0.3微米,a-Al 203粉的粒径为10~100纳米。
[0067] (3)将陶瓷浆料抽真空除气10分钟,接着在陶瓷浆料中加入质量百分含量为50% 的N,N,N',N ' -四甲基乙二胺的水溶液和质量百分含量为10 %的过硫酸铵,注入模具中,凝 胶化10分钟,脱膜后得到湿坯。其中,N,N,N',N'_四甲基乙二胺与丙烯酰胺的质量比为0.1: 100;过硫酸铵与丙烯酰胺的质量比为0.1:100。
[0068] (4)将湿坯于室温下阴干1天,接着在烘箱中于90 °C保温20小时,然后以30 °C /小时 的升温速率升温至500°C保温1小时,再以100°C/小时的升温速率升温至1000°C,接着以60 °C/小时的升温速率升温至1400°C保温2小时,得到氧化铝陶瓷。
[0069] 采用实施例1相同的测试方法得到本实施例的氧化铝陶瓷的相对密度、平均晶粒、 最大晶粒和刻蚀速率见表1。
[0070] 实施例3
[0071 ]本实施例的氧化铝陶瓷的制备过程如下:
[0072] (1)将甲基丙烯酰胺、N,N'_亚甲基双丙烯酰胺和聚乙二醇加去离子水搅拌混合, 使用氨水调节至pH值至10,得到预配液,其中,在预配液中,甲基丙烯酰胺的质量百分含量 为20%,聚乙二醇的质量百分含量为5%,甲基丙烯酰胺与N,N'_亚甲基双丙烯酰胺的质量 比为10:1。
[0073] (2)将纳米a-Al203粉、微米氧化铝粉、氧化镁和三氧化二钇加入到预配液中,经球 磨混合20小时,得到固相的体积百分含量为55%、粘度低于IPa ? s的陶瓷浆料,其中,纳米 <1-八1203粉的质量与纳米€^1203粉和微米氧化铝粉的质量之和的比为50 :100,氧化镁和三 氧化二钇的质量之和与纳米a_Al203粉和微米氧化铝粉的质量之和的比为1:100。其中,微米 氧化铝粉的粒径为0.2~0.6微米,纳米氧化铝粉粒径为50~100纳米。
[0074] (3)将陶瓷浆料抽真空除气30分钟,接着在陶瓷浆料中加入接着在陶瓷浆料中加 入质量百分含量为50%的N,N,N',N'_四甲基乙二胺的水溶液和质量百分含量为10%的过 硫酸铵,注入模具中,凝胶化20分钟,脱膜后得到湿坯。其中,N,N,N',N'_四甲基乙二胺与丙 烯酰胺的质量比为2:100;过硫酸铵与丙烯酰胺的质量比为2:100。
[0075] (4)将湿坯于室温下阴干5天,接着在烘箱中于100 °C保温10小时,然后以60 °C /小 时的升温速率升温至600°C保温2小时,再以100°C/小时的升温速率升温至1100°C,接着以 60°C/小时的升温速率升温至1650°C保温2小时,得到氧化铝陶瓷。
[0076] 采用实施例1相同的测试方法得到本实施例的氧化铝陶瓷的相对密度、平均晶粒、 最大晶粒和刻蚀速率见表1。
[0077] 对比例1
[0078]对比例1的氧化铝陶瓷的制备过程如下:
[0079] (1)将丙烯酰胺、N,N'_亚甲基双丙烯酰胺和聚丙烯酸铵加去离子水搅拌混合,使 用氨水调节至pH值至9,得到预配液,其中,在预配液中,丙烯酰胺的质量百分含量为15%, 聚丙烯酸铵的质量百分含量为3%,丙烯酰胺与N,N'_亚甲基双丙烯酰胺的质量比为25:1。 [0080] (2)将0.5微米的微末氧化铝粉、氧化镁和氧化铝加入到预配液中,经球磨混合15 小时,得到固相的体积百分含量为50%、粘度低于IPa ? s的陶瓷浆料,其中,纳米a-Al203粉 的质量与纳米a_Al2〇3粉和微米氧化错粉的质量之和的比为30:100,氧化儀的质量与纳米a-Al2〇 3粉和微米氧化铝粉的质量之和的比为0.5:100。其中,微米氧化铝粉的粒径为0.2~0.4 微米。
[0081 ] (3)将陶瓷浆料抽真空除气20分钟,接着在陶瓷浆料中加入质量百分含量为50% 的N,N,N',N ' -四甲基乙二胺的水溶液和质量百分含量为10 %的过硫酸铵,注入模具中,凝 胶化15分钟,脱膜后得到湿坯。其中,N,N,N',N'_四甲基乙二胺与丙烯酰胺的质量比为1: 100;过硫酸铵与丙烯酰胺的质量比为1:100。
[0082] (4)将湿坯于室温下阴干3天,接着在烘箱中于95 °C保温15小时,然后在高温炉中 以45°C/小时的升温速率升温至600°C保温1.5小时,再以100°C/小时的升温速率升温至 1100°C,接着以60°C/小时的升温速率升温至1500°C保温2小时,得到氧化铝陶瓷。
[0083]采用实施例1相同的测试方法得到对比例1的氧化铝陶瓷的相对密度、平均晶粒、 最大晶粒和刻蚀速率见表1。
[0084]表1为实施例1~3及对比例1的氧化铝陶瓷的相对密度、平均晶粒、最大晶粒和耐 等离子体腐蚀性能。
[0085]表 1
[0087] 从表1中可以看出,实施例1~3的氧化铝陶瓷具有更小的平均粒径和最大粒径,且 实施例1~3的氧化铝陶瓷的刻蚀速率最多仅为1.2纳米/分钟,而对比例1的氧化铝陶瓷的 刻蚀速率为3.9纳米/分钟,远远高于实施例1和实施例3,显然,本申请的氧化铝陶瓷具有更 好的耐等离子体腐蚀性能。
[0088] 以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实 施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存 在矛盾,都应当认为是本说明书记载的范围。
[0089] 以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并 不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来 说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护 范围。因此,本发明专利的保护范围应以所附权利要求为准。
【主权项】
1. 一种氧化铝陶瓷的制备方法,其特征在于,包括如下步骤: 将有机单体、交联剂和分散剂加水混合,并调节pH值至9~10,得到预配液; 将纳米氧化铝粉、微米氧化铝粉和抑制晶粒长大剂加入到所述预配液中,经混合,得到 固相的体积百分含量为45~55%、粘度低于IPa · s的陶瓷浆料,其中,所述纳米氧化铝粉的 粒径为10~100纳米,所述微米氧化铝粉的粒径为0.2~0.6微米,且所述纳米氧化铝粉的质 量与所述纳米氧化铝粉和所述微米氧化铝粉的质量之和的比为5:100~50:100; 在所述陶瓷浆料中加入催化剂和引发剂,经凝胶化,得到湿坯; 将所述湿坯干燥,再经烧结,得到氧化铝陶瓷。2. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,所述有机单体为丙烯酰 胺、甲基丙烯酰胺或羟甲基丙烯酰胺;所述交联剂为Ν,Ν'-亚甲基双丙烯酰胺;所述分散剂 选自聚丙烯酸铵、柠檬酸氨及聚乙二醇中的一种。3. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,在所述预配液中,所述 有机单体的质量百分含量为10~20%,所述分散剂的质量百分含量为2~5%,所述有机单 体与所述交联剂的质量比为10:1~40:1。4. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,所述抑制晶粒长大剂的 质量与所述纳米氧化铝粉和所述微米氧化铝粉的质量之和的比为〇. 1:100~1:100;所述抑 制晶粒长大剂选自氧化镁及三氧化二钇中的至少一种。5. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,所述引发剂为过硫酸 铵,所述催化剂为Ν,Ν,Ν',Ν'-四甲基乙二胺。6. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,在所述陶瓷浆料中加入 所述催化剂和所述引发剂的步骤之前,还包括将所述陶瓷浆料抽真空除泡的步骤。7. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,将所述湿坯干燥的步骤 为:将所述湿坯于室温下干燥1~5天,接着于90~100°C保温10~20小时。8. 根据权利要求1所述的氧化铝陶瓷的制备方法,其特征在于,所述烧结的步骤为:以 30~60°C/小时的升温速率升温至500~600°C保温1~2小时,再以100°C/小时的升温速率 升温至1000~1100°C,接着以30~60°C/小时的升温速率升温至1400~1650°C保温1~5小 时。9. 根据权利要求1~8任意一项所述的氧化铝陶瓷的制备方法制备的氧化铝陶瓷,其特 征在于,所述氧化铝陶瓷的相对密度大于99.5%,平均晶粒小于1微米,最大晶粒小于2微 米。10. -种等离子体刻蚀设备,其特征在于,含有如权利要求9所述的氧化铝陶瓷。
【文档编号】C04B35/622GK105967665SQ201610512221
【公开日】2016年9月28日
【申请日】2016年6月30日
【发明人】伍尚华, 谭毅成, 林勇钊, 向其军, 蒋强国, 朱祖云
【申请人】广东工业大学, 深圳市商德先进陶瓷有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1