氧化铝烧结体的制法以及氧化铝烧结体的制作方法

文档序号:10641944阅读:455来源:国知局
氧化铝烧结体的制法以及氧化铝烧结体的制作方法
【专利摘要】本发明提供一种氧化铝烧结体的制法以及氧化铝烧结体。该制法包含:(a)获得成形体的工序,将包含Al2O3粉末、MgO粉末、MgF2粉末、溶剂、分散剂以及凝胶化剂的浆料投入成形模具中,在成形模具内使凝胶化剂进行化学反应而使浆料凝胶化,然后脱模,获得成形体,(b)获得预烧体的工序,将该成形体干燥后脱脂,并预烧,获得预烧体,(c)获得陶瓷烧结体的工序,对预烧体在1150~1350℃热压煅烧,获得陶瓷烧结体。在工序(a)中,在调制浆料时,作为Al2O3粉末使用纯度为99.9质量%以上的Al2O3粉末,相对于Al2O3粉末100质量份使用0.1~0.2质量份的MgO粉末、0.13质量份以下的MgF2粉末。
【专利说明】
氧化铝烧结体的制法以及氧化铝烧结体
技术领域
[0001 ]本发明涉及氧化铝烧结体的制法以及氧化铝烧结体。
【背景技术】
[0002] -直以来,在对半导体晶片实施成膜、蚀刻等表面处理时,有时会使用静电卡盘。 作为静电卡盘,已知有在圆板状的氧化铝基板中埋设静电电极,使氧化铝基板的一面成为 晶片载置面的静电卡盘。若在该静电卡盘的晶片载置面载置有半导体晶片的状态下对静电 电极进行通电,则在静电电极与半导体晶片之间产生静电,半导体晶片通过该静电而被吸 附保持于晶片载置面。另外,在氧化铝基板中,有时也会与静电电极一同埋设加热电极。在 该情况下,若在晶片载置面载置有半导体晶片的状态下对加热电极进行通电,则半导体晶 片由加热电极加热。作为在这样的静电卡盘中使用的氧化铝基板的制法,已知有专利文献1 中记载的方法。根据该方法,首先,制作包含纯度99.7 %的氧化铝粉末、少量的MgO原料粉、 粘合剂、水以及分散剂的浆料。接着,对该浆料进行喷雾干燥,在500°C去除粘合剂来制作氧 化铝颗粒。将该氧化铝颗粒填充于金属模具,进行冲压成形而制成成形体。将该成形体设置 于碳制的承烧钵,通过热压煅烧而制成氧化铝烧结体。热压煅烧例如在l〇〇kg/cm 2的加压 下、氮气气氛(150kPa)中,在1600°C保持2小时这样的条件下进行。对由此获得的氧化铝烧 结体进行磨削加工,制成氧化铝基板。
[0003] 现有技术文献 [0004] 专利文献
[0005] 专利文献1:日本特开2008-53316号公报

【发明内容】

[0006] 但是,上述静电卡盘存在在高温下的脱附响应性的偏差大这样的问题。已知脱附 响应性与体积电阻率、耐电压具有相关性。因此,人们期望开发出一种与以往相比在高温下 的体积电阻率、耐电压高且每生产批次的体积电阻率、耐电压的偏差小的氧化铝烧结体。
[0007] 本发明是为了解决这样的课题而完成的,其主要目的在于,提供一种在高温下的 体积电阻率、耐电压高且每生产批次的体积电阻率、耐电压的偏差小的氧化铝烧结体。
[0008] 本发明的氧化铝烧结体的制法包含如下工序:
[0009] (a)获得成形体的工序,通过将包含Al2O3粉末、MgO粉末、MgF 2粉末、溶剂、分散剂以 及凝胶化剂的浆料投入至成形模具中,在前述成形模具内使前述凝胶化剂进行化学反应而 使前述浆料凝胶化,然后进行脱模,从而获得成形体,
[0010] (b)获得预烧体的工序,通过将该成形体干燥后进行脱脂,并进一步进行预烧,从 而获得预烧体,
[0011] (C)获得陶瓷烧结体的工序,通过对前述预烧体在1150~1350 °C进行热压煅烧,从 而获得陶瓷烧结体,
[0012] 在前述工序(a)中,在调制前述浆料时,作为Al2O3粉末,使用纯度为99.9质量%以 上的Al2O3粉末,相对于Al2O3粉末100质量份,使用0.1~0.2质量份的MgO粉末、0.13质量份 以下的MgF2粉末。
[0013] 根据该氧化铝烧结体的制法,可获得在高温下的体积电阻率、耐电压高且每生产 批次的体积电阻率、耐电压的偏差小的氧化铝烧结体。可获得这样的氧化铝烧结体的原因 在于,在浆料中,作为烧结助剂而发挥功能的MgF 2粉末与作为颗粒生长抑制剂而发挥功能 的MgO粉末的添加量为适当的范围。若MgF2粉末过多,则粒径变得过大,成为诸特性恶化的 原因,若过少,则变得难以烧结。若MgO粉末过少,则粒径变得过大,成为诸特性恶化的原因。 若MgO粉末、MgF 2粉末过多,则在氧化铝中生成电导率比较高的异相(MgAl2O4等),因而体积 电阻率变低。另外,通过该制法而获得的氧化铝烧结体的在高温下的体积电阻率、耐电压与 生产批次无关,很稳定。特性稳定的原因在于,由于采用了所谓的凝胶注模成型法(使浆料 凝胶化而成型的方法),因此Al 2O3粉末、MgF2粉末、MgO粉末容易均匀地分散。
[0014] 予以说明的是,若考虑在高温下的脱附响应性,则氧化铝烧结体在400°C的体积电 阻率优选为1.〇Χ1〇15Ω · cm以上,耐电压优选为130kV/mm以上。平均粒径优选为0.5~10μ m。粒径的3σ(σ为标准偏差)优选为1~20μπι。作为组成,优选含有0.09~0.17质量%的1%元 素、0.03~0.04质量%的?元素。本发明的制法适于制造这样的氧化铝烧结体。
【附图说明】
[0015] 图1为半导体制造装置用构件1的剖面图。
[0016] 图2为表示静电卡盘10的制造步骤的工序图。
【具体实施方式】
[0017] 以下,参照【附图说明】本发明的适合的实施方式。图1为半导体制造装置用构件1的 剖面图。
[0018] 半导体制造装置用构件1具备:能够吸附要实施等离子体处理的硅制的晶片W的静 电卡盘10、以及配置于该静电卡盘10的背面的作为支撑台的冷却板18。
[0019] 静电卡盘10具备:圆盘状的氧化铝基板12、以及埋设于该氧化铝基板12的加热电 极14和静电电极16。氧化铝基板12的上表面成为晶片载置面12a。以在氧化铝基板12的整面 进行配线的方式按照例如一笔画的要领图形形成加热电极14,若施加电压则会发热而对晶 片W进行加热。该加热电极14是钼与氧化铝的混合物。可以通过从冷却板18的背面分别到达 加热电极14的一端以及另一端的棒状端子(未图示)而对加热电极14施加电压。静电电极16 是可通过未图示的外部电源来施加直流电压的平面状的电极。若对该静电电极16施加直流 电压,贝 1J晶片W通过库仑力(Coulomb ' s force)或约翰逊-拉别克力(Johnsen-Rahbeck force)而被吸附固定于晶片载置面12a,若解除直流电压的施加,则晶片W在晶片载置面12a 上的吸附固定被解除。
[0020] 冷却板18是金属制(例如铝制)的圆盘构件,介由未图示的接合层接合到与静电卡 盘10的晶片载置面12a相反侧的面上。该冷却板18具有由未图示的外部冷却装置冷却的制 冷剂(例如水)进行循环的制冷剂通道20。以使制冷剂通过冷却板18的整面的方式按照例如 一笔画的要领形成该制冷剂通道20。
[0021] 接着,对由此构成的半导体制造装置用构件1的使用例进行说明。半导体制造装置 用构件1配置于未图示的腔室内,用于通过在该腔室内产生的等离子体对晶片W的表面进行 蚀刻。此时,通过调节供给于加热电极14的电量,或者调节在冷却板18的制冷剂通道20中循 环的制冷剂的流量,从而将晶片W的温度控制为恒定。
[0022] 接着,对构成半导体制造装置用构件1的静电卡盘10的制造步骤进行说明。以下, 一边说明静电卡盘10的制造步骤,一边也说明氧化铝基板12的制造步骤。
[0023] 1.成形体的制作(参照图2(a),本发明的工序(a)的一个例子)
[0024]制作第1~第3成形体51~53。关于成形体51~53,首先,向各自的成形模具(第1~ 第3成形模具)中投入包含Al2O3粉末、作为颗粒生长抑制剂的MgO粉末、作为烧结助剂的MgF 2 粉末、溶剂、分散剂以及凝胶化剂的浆料,在成形模具内使凝胶化剂进行化学反应而使浆料 凝胶化,然后进行脱模来制作。
[0025] 作为溶剂,只要是溶解分散剂以及凝胶化剂的溶剂,就没有特别限定,可列举例如 烃系溶剂(甲苯、二甲苯、溶剂石脑油(so I vent naphtha)等)、醚系溶剂(乙二醇单乙醚、丁 基卡必醇、丁基卡必醇乙酸酯等)、醇系溶剂(异丙醇、1-丁醇、乙醇、2-乙基己醇、松油醇、乙 二醇、甘油等)、酮系溶剂(丙酮、甲乙酮等)、酯系溶剂(乙酸丁酯、戊二酸二甲酯、三乙酸甘 油酯等)、多元酸系溶剂(戊二酸等)。特别优选使用多元酸酯(例如,戊二酸二甲酯等)、多元 醇的酸酯(例如,三乙酸甘油酯等)等具有2个以上的酯键的溶剂。
[0026] 作为分散剂,只要是使Al2O3粉末均匀地分散于溶剂中的分散剂,就没有特别限定。 可列举例如聚羧酸系共聚物、聚羧酸盐、山梨聚糖脂肪酸酯、聚甘油脂肪酸酯、磷酸酯盐系 共聚物、磺酸盐系共聚物、具有叔胺的聚氨酯聚酯系共聚物等。特别优选使用聚羧酸系共聚 物、聚羧酸盐等。通过添加该分散剂,能够使成形前的浆料为低粘度且具有高流动性的浆 料。
[0027] 作为凝胶化剂,可以例如为包含异氰酸酯类、多元醇类以及催化剂的凝胶化剂。其 中,作为异氰酸酯类,只要是具有异氰酸酯基作为官能团的物质则没有特别限定,可列举例 如甲苯二异氰酸酯(TDI)、二苯甲烷二异氰酸酯(MDI)或它们的改性体等。予以说明的是,在 分子内也可含有除了异氰酸酯基以外的反应性官能团,进一步地,也可如多异氰酸酯那样 含有多个反应官能团。作为多元醇类,如果是具有2个以上能够与异氰酸酯基反应的羟基的 物质则没有特别限定,可列举例如乙二醇(EG)、聚乙二醇(PEG)、丙二醇(PG)、聚丙二醇 (PPG)、聚四亚甲基二醇(PTMG)、聚六亚甲基二醇(PHMG)、聚乙烯醇(PVA)等。作为催化剂,只 要是促进异氰酸酯类与多元醇类的氨酯化反应的物质则没有特别限定,可列举例如三乙烯 二胺、己二胺、6-二甲基氨基-1 -己醇等。
[0028]在该工序中优选的是,首先,以预定的比例将溶剂和分散剂添加于Al2O3粉末、MgO 粉末与MgF2粉末中,将它们混合预定时间,由此调制浆料前体,其后,向该浆料前体中添加 凝胶化剂,进行混合、真空脱泡而制成浆料。关于Al 2O3粉末,使用纯度为99.9质量%以上的 Al2O3粉末,相对于Al2O3粉末100质量份,使用0.1~0.2质量份的MgO粉末、0.13质量份以下 (优选为〇. 09~0.13质量份)的MgF2粉末。调制浆料前体、浆料时的混合方法没有特别限定, 可使用例如球磨机、自转公转式搅拌、振动式搅拌、螺旋桨式搅拌等。予以说明的是,由于向 浆料前体中添加凝胶化剂而得到的浆料伴随时间的推移而开始进行凝胶化剂的化学反应 (氨酯化反应),因此优选迅速地使其流入成形模具内。对于流入成形模具中的浆料,通过浆 料中所含的凝胶化剂进行化学反应而使其凝胶化。凝胶化剂的化学反应是指,异氰酸酯类 与多元醇类发生氨酯化反应而成为聚氨酯树脂(聚氨酯)的反应。利用凝胶化剂的反应使浆 料凝胶化,并且,聚氨酯树脂作为有机粘合剂而发挥功能。
[0029] 2.预烧体的制作(参照图2(b),本发明的工序(b)的一个例子)
[0030] 通过对第1~第3成形体51~53干燥后进行脱脂,进一步进行预烧,从而获得第1~ 第3预烧体61~63。成形体51~53的干燥是为了使成形体51~53中所含的溶剂蒸发而进行 的。关于干燥温度、干燥时间,根据使用的溶剂而适当地设定即可。但是,注意避免干燥中的 成形体51~53产生裂纹而设定干燥温度。另外,气氛可以是大气气氛、非活性气氛、真空气 氛中的任一个。干燥后的成形体51~53的脱脂是为了将分散剂、催化剂、粘合剂等有机物分 解、去除而进行的。关于脱脂温度,根据所包含的有机物的种类而适当地设定即可,可设定 为例如400~600 °C。另外,气氛可以是大气气氛、非活性气氛、真空气氛中的任一个。脱脂后 的成形体51~53的预烧是为了提高强度并易于操作而进行的。预烧温度没有特别限定,可 设定为例如750~900°C。另外,气氛可以是大气气氛、非活性气氛、真空气氛中的任一个。
[0031] 3.电极用糊剂的印刷(参照图2(c))
[0032] 在第1预烧体61的一面上印刷加热电极用糊剂71以形成预定的加热电极用图形, 在第3预烧体63的一面上印刷静电电极用糊剂72以形成预定的静电电极用图形。两糊剂71、 72均为包含氧化铝粉末和钼粉末的糊剂。作为粘合剂,可列举例如纤维素系粘合剂(乙基纤 维素等)、丙烯酸酯系粘合剂(聚甲基丙烯酸甲酯等)、乙烯基系粘合剂(聚乙烯醇缩丁醛 等)。作为溶剂,可举出例如松油醇等。关于印刷方法,可举出例如丝网印刷法等。
[0033] 4.热压煅烧(参照图2(d),本发明的工序(c)的一个例子)
[0034] 以夹着印刷好的加热电极用糊剂71的方式叠合第1预烧体61与第2预烧体62,并且 以夹着印刷好的静电电极用糊剂72的方式叠合第2预烧体62与第3预烧体63,在该状态下进 行热压煅烧。由此,加热电极用糊剂71经烧成而成为加热电极14,静电电极用糊剂72经烧成 而成为静电电极16,将各预烧体61~63烧结使其一体化而制成氧化铝基板12,获得静电卡 盘10。在热压煅烧中,至少在最高温度(烧成温度),优选将冲压压力设为30~300kgf/cm 2, 更优选设为50~250kgf/cm2。另外,关于最高温度,由于在AI2O3粉末中添加有作为烧结助剂 的MgF 2粉末,因此与没有添加 MgF2粉末的情况相比,设定为低温(1150~1350°C)即可。气氛 从大气气氛、非活性气氛、真空气氛之中适当地选择即可。予以说明的是,若将最高温度设 定为低于1150°C,则Al 2O3粉末的烧结进行得不充分,因而不优选,若设定成超过1350Γ,则 氧化铝烧结粒变得过大而诸特性恶化,因而不优选。
[0035] 在以上详述的本实施方式中,所获得的氧化铝基板12成为在高温下的体积电阻 率、耐电压高的氧化铝基板。获得这样的氧化铝基板12的原因在于,在浆料中,作为烧结助 剂而发挥功能的MgF 2粉末与作为颗粒生长抑制剂而发挥功能的MgO粉末的添加量为适当的 范围。另外,这样操作而获得的氧化铝基板12的在高温下的体积电阻率、耐电压与生产批次 无关,很稳定。特性稳定的原因在于,由于采用了所谓的凝胶注模成型法(使浆料凝胶化而 成型的方法),因而Al 2〇3粉末、MgO粉末、MgF2粉末容易均匀地分散。
[0036]若考虑在高温下的脱附响应性,则氧化铝烧结体12在400 °C下的体积电阻率优选 为1.0Χ1015Ω · cm以上,耐电压优选为130kv/mm以上。平均粒径优选为0.5~ΙΟμL?。粒径的3 σ(〇是标准偏差)优选为1~20μπι。关于组成,优选含有0.09~0.17质量%的1%元素、0.03~ 0.04质量%的?元素。上述的制法适合于制造这样的氧化铝烧结体12。
[0037] 予以说明的是,不言而喻,本发明不受上述实施方式的任何限定,只要属于本发明 的技术范围就可通过各种方式来实施。
[0038] 例如,上述实施方式中,例示了将加热电极14和静电电极16埋设于氧化铝基板12 而得到的静电卡盘10,但是也可仅将加热电极14和静电电极16中的任一方埋设于氧化铝基 板12,也可替代它们或与它们一起埋设等离子体产生用的高频电极。
[0039]上述实施方式中,在第1预烧体61的一面印刷加热电极用糊剂71,在第3预烧体63 的一面印刷静电电极用糊剂72,然后在层叠有第1~第3预烧体61~63的状态下进行热压煅 烧,但也可采用以下的步骤。即,在第1成形体51的一面印刷加热电极用糊剂,在第3成形体 53的一面印刷静电电极用糊剂72。接着,可以通过将第1~第3成形体51~53干燥后进行脱 月旨,进一步进行预烧,从而制成第1~第3预烧体,将它们层叠进行热压煅烧。
[0040]在上述实施方式中,示出了静电卡盘10的制法的一个例子,但也可以省略加热电 极14与静电电极16,形成没有内置电极的氧化铝基板的制法。在该情况下,可对层叠3个预 烧体而得的层叠体进行热压煅烧,但也可仅对1个成形体进行干燥、脱脂、预烧,然后进行热 压煅烧,从而制造氧化铝基板。
[0041 ] 实施例
[0042]以下,对本发明的实施例进行说明。予以说明的是,以下的实施例对本发明没有任 何限定。
[0043][实验例1]
[0044]按照上述的制造步骤(参照图2),如以下那样制作出静电卡盘10。
[0045] (a)成形体的制作
[0046] 称量Al2O3粉末(平均粒径0·5μπι,纯度99.99%) 100质量份、MgO粉末0.1质量份、 MgF2粉末0.09质量份、作为分散剂的聚羧酸系共聚物3质量份、作为溶剂的多元酸酯20质量 份,利用球磨机(滚筒筛)将它们混合14小时,制成浆料前体。对该浆料前体,加入凝胶化剂, 即作为异氰酸酯类的4,4'_二苯甲烷二异氰酸酯3.3质量份、作为多元醇类的乙二醇0.3质 量份、作为催化剂的6_二甲基氨基-1-己醇0.1质量份,利用自转公转式搅拌机混合12分钟, 获得浆料。使所获得的浆料分别流入在实施方式1.中所使用的第1~第3成形模具。然后,通 过在22°C放置2小时,从而在各成形模具内使凝胶化剂进行化学反应,使浆料凝胶化,然后 进行脱模。由此,从第1~第3成形模具分别获得第1~第3成形体51~53(参照图2(a))。 [0047] (b)预烧体的制作
[0048] 将第1~第3成形体51~53在100°C干燥10小时后,在最高温度550°C、在大气气氛 下进行1小时得脱脂,进一步在最高温度820°C、在大气气氛下进行1小时的预烧,从而获得 第1~第3预烧体61~63(参照图2(b))。
[0049] (c)电极用糊剂的印刷
[0050]对钼粉末与Al2O3粉末,使氧化铝含量成为10质量%并加入作为粘合剂的聚甲基丙 烯酸甲酯和作为溶剂的松油醇进行混合,从而调制电极用糊剂。将该电极用糊剂应用于静 电电极用途、加热电极用途双方。而且,在第1预烧体61的一面丝网印刷加热电极用糊剂71, 在第3预烧体63的一面丝网印刷静电电极用糊剂72(参照图2(c))。
[0051] (d)热压煅烧
[0052]以夹着加热电极用糊剂71的方式叠合第1和第2预烧体61、62,并且以夹着静电电 极用糊剂72的方式叠合第2和第3预烧体62、63。接着,在该状态下进行热压煅烧。由此,将加 热电极用糊剂71进行烧成而形成加热电极14,将静电电极用糊剂72进行烧成而形成静电电 极16,对各预烧体61~63进行烧成并使其一体化而形成氧化铝基板12(参照图2(d))。通过 在真空气氛下,在压力250kgf/cm 2、最高温度1260°C下保持2小时来进行热压煅烧。其后,利 用金刚石磨石对陶瓷烧结体表面进行平面磨削加工,将从静电电极16到晶片载置面12a为 止的厚度设为350μπι,将从加热电极14到静电卡盘10的与晶片载置面12a相反的表面为止的 厚度设为750μπι。其后,实施侧面加工、开孔加工,安装端子,获得内置有加热电极14以及静 电电极16的直径300mm的静电卡盘10。
[0053]对于所获得的静电卡盘10中的氧化铝基板12,测定以下的特性。将其结果示于表 1。予以说明的是,根据特性,按照与实验例1相同的制造步骤另外制作氧化铝试验片(无电 极)。
[0054] ?相对密度
[0055] 假设在制造时混合的各原料(Al203、Mg0、MgF2)全部在氧化铝烧结体内以原样的状 态残存,并根据各原料的理论密度和各原料的用量(质量份)来求出烧结体的理论密度。然 后,用阿基米德法求出的体积密度除以烧结体的理论密度,对其乘以100,将所得到的值设 为烧结体的相对密度(% )。因此,如果各原料的用量相同,则体积密度越大,相对密度就越 大。
[0056] ?强度
[0057]按照JIS R1601进行4点弯曲试验,算出强度。
[0058] ?平均粒径以及3〇
[0059] 通过线段法来求出。具体而言,利用电子显微镜观察各烧结体的断面而获得SEM照 片,对该SEM照片画出任意条数的线,求出平均截线长度。由于与线相交的颗粒的数量越多 则精度越高,因而虽然其条数根据粒径而不同,但画出使大致60个左右的颗粒与线相交的 程度的条数。根据其平均截线长度来推定平均粒径。另外,根据在推定平均粒径时所使用的 各粒径来求出标准偏差σ,对其乘以3而求出3〇。
[0060] ?体积电阻率
[0061] 利用按照JIS C2141的方法,在大气中、在400°C进行测定。将试验片形状设为口 50mm(50mm见方)X厚度0· 2mm,由银形成各电极,以使主电极的直径为20mm、保护电极的内 径为30mm、外径为40mm,施加电极的直径为40mm。将施加电压设为2kV/mm,读取电压施加后 30分钟时的电流值,根据该电流值算出体积电阻率。另外,制作5个实验例1,求出它们在400 °C的体积电阻率的标准偏差。
[0062] ?耐电压
[0063] 将试验片形状设为□ 50mm X厚度0.2mm。使用该试验片,按照JIS C2110测定耐电 压。另外,制作5个实验例1,求出它们的耐电压的标准偏差。
[0064] ?化学分析
[0065] 根据电感耦合等离子体(ICP)发光光谱分析来求出Mg的含量。予以说明的是,Mg含 量的测定下限为lppm。另外,通过热水解分离-离子色谱法来求出(JIS R9301-3-ll)F的含 量。予以说明的是,F含量的测定下限为lOppm。
[0066] 表 1
[0068][实验例2~9]
[0069] 在实验例2~9中,如表1所示更改MgO粉末以及MgF2粉末相对于Al2O3粉末100质量 份的质量份,除此以外,与实验例1同样地操作而制作静电卡盘10。另外,与实验例1同样地 操作,测定实验例2~9的氧化铝基板12的各特性。将其结果示于表1。
[0070] [实验例10]
[0071] 在实验例10中,制作没有埋设电极的氧化铝基板。首先,以相对于氧化铝100质量 份,使MgO粉末为0.05质量份、CaO粉末为0.03质量份的方式将纯度99.5 %的Al2O3粉末与MgO 粉末、CaO粉末混合。向该混合粉末中添加作为粘合剂的聚乙烯醇(PVA)、水以及分散剂,利 用滚筒筛混合16小时而制作浆料。使用喷雾干燥器对该浆料进行喷雾干燥,其后,在450°C 保持5小时以去除粘合剂,制作平均粒径约80μπι的氧化铝颗粒。将该氧化铝颗粒填充于金属 模具,在200kg/cm2的压力下进行冲压成形,获得了成形体。接着,将该成形体设置于碳制的 承烧钵,使用热压煅烧法进行烧成。在l〇〇kg/cm 2的加压下且在氮气加压气氛(150kPa)进行 烧成,以300°C/h升温,在1620°C保持2小时,获得氧化铝烧结体。对该氧化铝烧结体进行磨 削加工,制作(p300mm、厚度6mm的氧化铝基板。与实验例1同样地操作,测定实验例10的氧 化铝基板的各特性。将其结果示于表1。
[0072] [评价]
[0073] 在实验例1、2、5、6中,获得了在400°C的体积电阻率为高至1.0Χ1015Ω · cm以上、 耐电压为高至130kV/mm以上的氧化铝基板。另外,关于实验例1、2、5、6,可知在制作了多个 的情况下,它们的特性的标准偏差的值小,因而生产批次间的偏差也小。氧化铝烧结粒的平 均粒径为1~2μηι,粒径的3σ(σ为标准偏差)为1~2μηι。在这些实验例中,作为AI2O3粉末,使用 了纯度为99.9质量%以上的Al 2O3粉末,相对于Al2O3粉末100质量份,使用了0.1~0.2质量 份的MgO粉末、0.13质量份以下的MgF 2粉末。
[0074]另一方面,在实验例3、4、7、8中,由于作为烧结助剂的MgF2粉末的用量多,因而颗 粒生长过度进行,使得氧化铝烧结粒的平均粒径成为8μπι以上,过于变大,在400°C下的体积 电阻率、耐电压降低。另外,生产批次之间的偏差也变大。
[0075]在实验例9中,由于作为颗粒生长抑制剂的MgO的用量多,因而虽然氧化铝烧结粒 的平均粒径小,但相对密度无法充分提高,在400°C的体积电阻率、耐电压降低。另外,生产 批次之间的偏差也变大。
[0076] 实验例10中,作为成形方法,采用冲压成形而未采用凝胶注模成型法,在高温进行 烧成,因而在400°C的体积电阻率、耐电压降低。另外,生产批次之间的偏差也变大。氧化铝 烧结粒的平均粒径也超过15μπι,而且3σ大,由此可知粒度分布的宽度扩大。
[0077] 予以说明的是,实验例1、2、5、6相当于本发明的实施例,其他实验例相当于比较 例。
[0078]本申请以2015年3月26日申请的日本国专利申请第2015-063671号为优先权主张 的基础,通过引用将其全部内容包含在本发明中。
[0079] 产业上的可利用性
[0080]本发明可用作半导体制造装置用构件。
【主权项】
1. 一种氧化铝烧结体的制法,其包含如下工序: (a) 获得成形体的工序,通过将包含Al2〇3粉末、MgO粉末、MgF2粉末、溶剂、分散剂以及凝 胶化剂的浆料投入成形模具中,在所述成形模具内使所述凝胶化剂进行化学反应而使所述 浆料凝胶化,然后进行脱模,从而获得成形体, (b) 获得预烧体的工序,通过将该成形体干燥后进行脱脂,并且进一步进行预烧,从而 获得预烧体, (c) 获得陶瓷烧结体的工序,通过对所述预烧体在1150~1350Γ进行热压煅烧,从而获 得陶瓷烧结体, 在所述工序(a)中,在调制所述浆料时,作为Al2〇3粉末,使用纯度为99.9质量%以上的 Al2〇3粉末,相对于Al2〇3粉末100质量份,使用0.1~0.2质量份的MgO粉末、0.13质量份以下 的MgF 2粉末。2. 如权利求要求1所述的氧化铝烧结体的制法,所述工序(a)中,使用0.09~0.13质量 份的所述MgF2粉末。3. -种氧化铝烧结体,其含有0.09~0.17质量%的1^元素,0.03~0.04质量%的?元 素,在400°C的体积电阻率为1.0 X 1015 Ω · cm以上,耐电压为130kV/mm以上,平均粒径为0.5 ~1 Ομπι,粒径的3〇为1~20μηι,其中,σ为标准偏差。4. 如权利求要求3所述的氧化铝烧结体,其平均粒径为1~2μηι,粒径的3〇为1~20μηι。
【文档编号】C04B41/88GK106007683SQ201610178014
【公开日】2016年10月12日
【申请日】2016年3月25日
【发明人】曻和宏, 木村拓二
【申请人】日本碍子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1