Cf/Hf<sub>x</sub>Zr<sub>1-x</sub>C-SiC复合材料及其制备方法

文档序号:10642014阅读:681来源:国知局
Cf/Hf<sub>x</sub>Zr<sub>1-x</sub>C-SiC复合材料及其制备方法
【专利摘要】本发明公开了一种Cf/HfxZr1?xC?SiC复合材料及其制备方法,该复合材料包括碳纤维预制件、SiC基体和HfxZr1?xC基体,其中0<x<1,所述HfxZr1?xC基体和SiC基体均匀填充于所述碳纤维预制件的孔隙中。一种制备方法包括以下步骤:(1)制备Cf/HfxZr1?xC素坯;(2)制备Cf/HfxZr1?xC?SiC复合材料。另一种制备方法包括以下步骤:(1)制备Cf/HfxZr1?xC素坯;(2)制备Cf/HfxZr1?xC?C素坯;(3)制备Cf/HfxZr1?xC?SiC复合材料。该Cf/HfxZr1?xC?SiC复合材料具有成本低、耐烧蚀、力学和抗氧化性能优异等优点,同时制备方法简单、基体含量易于控制。
【专利说明】
Cf/Hf xZn-xC-S i C复合材料及其制备方法
技术领域
[0001 ]本发明属于涉及陶瓷基复合材料领域,尤其涉及一种Cf/Hf xZn-xC-SiC复合材料 及其制备方法。
【背景技术】
[0002] 超高声速飞行器鼻锥、机翼前缘、火箭发动机燃烧室等部件的热防护系统正面临 着日益恶劣的工作环境,亟需新的耐超高温材料的开发和应用。现有的耐高温材料如难熔 金属、石墨材料、C/C、Cf/SiC复合材料已不能满足应用要求,所以开发出耐超高温、耐烧蚀、 抗氧化的新材料体系对新型航天器的发展有着重要的意义。因此,研究者们把目光投向了 超高温陶瓷材料。超高温陶瓷(UHTC)是指熔点超过3000 °C的过渡金属碳化物、硼化物、以及 氮化物,如ZrB2、Hf B2、TaC、Hf C、NbC、ZrC、Hf N等,然而陶瓷材料固有的脆性导致其断裂韧性 低、断裂应变小、抗热震性能较差,单独使用时抗氧化性能差,从而限制了其在航空航天领 域的应用。纤维增强耐超高温陶瓷基复合材料能很好地克服陶瓷脆性及抗热震性能差等缺 点,而且还具有密度低,性能可设计等优点,正成为新型航天器热防护系统最有前途的候选 材料之一。Cf/ZrC-SiC,Cf/HfC-SiC陶瓷基复合材料将HfC和ZrC超高温陶瓷高熔点,耐烧蚀 性能优良的特点以及SiC力学性能优良与良好的抗氧化性能结合起来,有望成为新一代超 高温热防护材料。

【发明内容】

[0003] 本发明要解决的技术问题是克服现有技术的不足,提供一种成本较低、耐烧蚀、力 学和抗氧化性能优异的Cf/HfxZri- xC-SiC(0<x<l)复合材料,还提供一种工艺简单、基体 含量易于控制的Cf/Hf xZn-xC-Si C (0 < X < 1)复合材料的制备方法。
[0004] 为解决上述技术问题,本发明采用以下技术方案:
[0005] -种Cf/HfxZn-xC-SiC复合材料,包括碳纤维预制件和SiC基体,还包括HfxZn- xC基 体,其中〇<χ<1,所述HfxZn-XC基体和Si C基体均勾填充于所述碳纤维预制件的孔隙中。
[0006] 作为一个总的发明构思,本发明还提供一种Cf/HfxZn-xC-SiC复合材料的制备方 法,其中〇<χ<1,包括以下步骤:
[0007] (1)制备0以^^打^(:素坯:
[0008] (1.1)将碳纤维预制件在HfxZn-xC陶瓷先驱体溶液中真空浸渍,裂解,重复浸渍-裂解过程,得到Cf/Hf xZn-xC复合材料中间体;
[0009] (1.2)将步骤(1.1)所得Cf/HfxZn-XC复合材料中间体在真空条件下热处理,得到 Cf/HfxZn-XC 素坯;
[0010] (2)制备0以此2打-{-3扣复合材料:将步骤(1.2)所得的0以此2打-{素坯在3比陶 瓷先驱体溶液中真空浸渍,裂解,重复浸渍-裂解过程,得到Cf/HfxZri-xC-SiC复合材料。
[0011] 上述的Cf/HfxZn-xC-SiC复合材料的制备方法,优选的,
[0012] 所述步骤(2)中,所述真空浸渍的时间为3h~12h,真空度为50Pa~500Pa;所述裂 解气氛为氩气气氛,温度为1100 °C~1200 °C,裂解时间为0.5h~2h,所述浸渍-裂解过程重 复次数为2次~8次。
[0013]作为一个总的发明构思,本发明还提供另一种Cf/Hfxzri-xC-SiC复合材料的制备 方法,其中〇<χ<1,包括以下步骤:
[0014] (1)制备0以^^^^(:素坯:
[0015] (1.1)将碳纤维预制件在HfxZr1-XC陶瓷先驱体溶液中真空浸渍,裂解,重复浸渍- 裂解过程,得到Cf/Hf xZri-xC复合材料中间体;
[0016] (1.2)将步骤(I. 1)所得Cf/HfxZn-xC复合材料中间体在真空条件下热处理,得到 Cf/HfxZn-XC 素坯;
[0017] (2)制备0以^^^1(:-(:素坯:将0以^^^1(:素坯在树脂溶液中真空浸渍,裂解,重 复浸渍-裂解过程,得到Cf/Hf xZri-xC-C素坯;
[0018] (3)制备0以^^^1(:-3丨(:复合材料:采用气相渗硅方法将0以!1匕2^1(:-(:素坯进行 反应烧结,得到Cf/HfxZn- xC-SiC复合材料。
[0019] 上述的Cf/HfxZn-xC-SiC复合材料的制备方法,优选的,
[0020] 所述步骤(2)中,所述真空浸渍的时间为3h~12h,真空度为50Pa~500Pa;所述裂 解气氛为氩气气氛,温度为900°C~1100°C,裂解时间为0.5h~2h,所述浸渍-裂解过程重复 次数为〇次~4次。
[0021] 进一步地,所述步骤(2)中,所述树脂溶液包括酚醛树脂的乙醇溶液、沥青的喹啉 溶液或呋喃树脂溶液。
[0022]所述步骤(3)中,所述气相渗硅方法的具体过程为:将Cf/HfxZri- XC-C素坯和硅粉 置于高温炉内,在温度为1600°C~1800°C、真空度为IOPa~90Pa的条件下高温反应烧结Ih ~5h〇
[0023]上述的Cf/HfxZri-xC-SiC复合材料的制备方法,优选的,所述步骤(I. 1)中,所述 HfxZri-xC陶瓷先驱体溶液的制备过程为:
[0024]将金属源混合物、一水合柠檬酸、乙二醇与蒸馏水进行混合,搅拌,得到HfxZn-xC 陶瓷先驱体溶液;所述金属源混合物为含Zr4+的无机盐和含Hf 4+的无机盐。
[0025]上述的Cf/HfxZri-xC-SiC复合材料的制备方法,优选的,所述金属源混合物为 ZrOCl2 · 8H20和HfOCl2 · 8H20的混合物,将ZrOCl2 · 8H20和HfOCl2 · 8H20的总摩尔数归化为 1,则两种盐的构成为:I=X(HfC)Cl2 · 8H20) + (1-x) (ZrOCl2 · 8H20)。
[0026]上述的Cf/HfxZri-xC-SiC复合材料的制备方法,优选的,所述金属源混合物、一水 合朽1檬酸、乙二醇与蒸馏水的摩尔比为:1 :〇.5~6:0.5~10:60~600。
[0027]上述的Cf/HfxZri-xC-SiC复合材料的制备方法,优选的,所述步骤(I. 1)中,所述真 空浸渍的时间为3h~12h,真空度为50Pa~500Pa;所述裂解气氛为氩气气氛,温度为600°C ~IHKTC,裂解时间为0.5h~2h,所述浸渍-裂解过程重复次数为10次~16次。
[0028]上述的Cf/HfxZri-xC-SiC复合材料的制备方法,优选的,所述步骤(1.2)中,所述热 处理温度为1200°C~1600°C,时间为Ih~3h,真空度为IPa~lOOPa。
[0029] 上述的0;^!1;^21'11〇3;[(:复合材料的制备方法,进一步地,所述步骤(1)之前,还包 括将碳纤维预制件进行改性处理,具体过程为:采用化学气相沉积工艺,以丙烯为前驱体, 在温度为900°C~IlOOtC,压强为IkPa~3kPa条件下对碳纤维预制件进行热解碳涂层改性 处理。
[0030] 与现有技术相比,本发明的优点在于:
[0031] 1、本发明的Cf/HfxZr1-XC-SitX(XxSl)复合材料,包括碳纤维预制件、SiC基体和 HfxZr1-XC基体,其中0<χ<1,Η?·χΖη- XC基体和SiC基体均匀填充于碳纤维预制件的孔隙中。 HfxZri-xC基体为耐烧蚀组兀,可以提尚复合材料的耐烧蚀性能;SiC基体可以提尚复合材料 的力学性能,同时改善复合材料的抗氧化性能,但烧蚀性能不佳,因此Hf xZn-xC和SiC的组 成的双基体可以保证Cf/HfxZn-xC-SiCXCXx^)复合材料具备优异的综合性能。HfC虽然 具有优异的耐烧蚀性能,然而单独使用HfC成本高昂。元素 Zr比Hf丰度大、储量高,本发明以 HfxZri-xC固溶体陶瓷产物作为基体,Hf和Zr可以以任意化学计量比形成碳化物固溶体陶 瓷,以Zr代替部分Hf,不仅可以降低成本,同时还可以提供优异的耐烧蚀性能。
[0032] 2、本发明的一种Cf/Hf xZr卜XC-S i C (0 < X < 1)复合材料的制备方法中,先后分别通 过先驱体浸渍裂解工艺在碳纤维预制件中引入Hf xZri-xC、SiC两种基体,避免了两种基体同 时引入时须Hf xZrXC、S i C两种陶瓷先驱体混溶的难题,且制备工艺简单,Hf xZrXC和S i C的 含量也易于控制。此外,HfxZri-xC先驱体经裂解,热处理后呈现多孔状,因此Cf/Hf xZri-xC素 坯开孔率较高(25-35% ),然而通过先驱体浸渍裂解引入SiC基体,可以提高材料的致密度, 大大地降低复合材料的开孔率(10-18% ),这有助于改善复合材料的力学性能。
[0033] 3、本发明的另一种Cf/HfxZn-xC-SiC(0<x<l)复合材料的制备方法中,为先驱体 浸渍裂解工艺(PIP)和气相渗硅工艺(GSI)的联用。先通过先驱体浸渍裂解工艺引入超高温 陶瓷基体HfxZri-xC,该工艺采用真空辅助手段,压力低,操作简便,随后通过相同工艺引入 热解碳制备得到0以批2^^(:-(:素坯,最后通过气相渗硅工艺一步得到0以!1匕2^1(:-31(:(0 <χ<1)复合材料。这既利用了PIP工艺简单,易于实现,引入的Cf/Hf xZn-xC含量高(可达 20vol % ),且分布均匀的特点,也联合了气相渗硅工艺可一次实现坯体高致密度复合成型 的优点。
[0034] 4、进一步地,在联用工艺中,HfxZri-xC先驱体经裂解后,须经过热处理完成碳热还 原反应才能得到HfxZri-xC基体,热处理后得到Cf/Hf xZri-xC素坯呈现多孔状,这是因为,在热 处理过程中发生了碳热还原反应,Cf/HfxZri-XC复合材料中间体中的无定型碳被消耗,因此 闭孔被打开,Cf/Hf xZn-XC素坯呈现多孔状,使得Cf/Hf xZn-XC素坯开孔率达25-35 %,这些开 孔正好为后续硅的真空浸渗及气相渗硅烧结提供了通道。气相硅渗透深度大(超过100mm), 可深入到Cf/Hf xZr PxC-C素坯的内部,渗入的气相硅即与Cf/Hf xZr PxC-C素坯内部的C基体反 应得到SiC基体。因而本发明在先驱体浸渍裂解得到Cf/HfxZri- xC复合材料中间体后,再采 用"热处理+真空浸渍裂解制备Cf/HfxZri- XC-C素坯+气相渗硅工艺",可引入大量且分布均 匀的SiC基体,进而提高材料的致密度,大大地降低复合材料的开孔率(2-10% )。因此,与单 一PIP工艺制备的Cf/HfxZn-xC-SiCXCXx^)复合材料相比,采用该联用工艺制备的Cf/ HfxZri-xC_SiC(0<x<l)复合材料的开孔率低更低,力学性能虽有所降低,但热导率大大提 尚。
[0035] 5、本发明的两种Cf/Hf xZrXC-S i C (0 < X < 1)复合材料的制备方法中,制备Hf xZr !- XC陶瓷先驱体的原料来源广泛、环保低毒、且成本低廉;先驱体溶液的粘度为20-80mPa · s, PIP工艺性能好,陶瓷产率较高,相较于浆料浸渍工艺浸渍效率高,可以实现HfxZn-xC基体 的大量引入;最后,Hf xZri-xC陶瓷先驱体制备过程简单,且以蒸馏水为溶剂,经济环保。
【附图说明】
[0036]图1为本发明实施例1的Cf/Hf o. 5Zr〇. 5C_SiC复合材料的断口显微结构图。
[0037]图2为本发明实施例2的Cf/HfQ.7Zr〇.3C-SiC复合材料的断口显微结构图。
[0038]图3为对比例1的Cf/HfC-SiC复合材料抛光断口显微结构图。
[0039]图4为对比例2的Cf/ZrC-SiC复合材料抛光断口显微结构图。
【具体实施方式】
[0040]以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而 限制本发明的保护范围。
[0041 ] 实施例1:
[0042] 一种本发明的Cf/HfQ.5ZrQ. 5C_SiC复合材料,包括碳纤维预制件、SiC基体和 Hfo. sZro. 5C基体,该Hf 〇. 5Zr〇. 5C基体和SiC基体均匀填充于碳纤维预制件的孔隙中。
[0043]本实施例中,HfQ.5Zr〇.5C基体的体积分数为16%,SiC基体的体积分数为20%,开孔 率为 14·4νο1%。
[0044]上述本实施例的Cf/Hf o. 5Zr〇. 5C_SiC复合材料的制备方法,包括以下步骤:
[0045] (1)配制Hf 〇. 5Zr〇. 5C和SiC陶瓷先驱体溶液:
[0046]将摩尔比为1:1:4:200的金属源、一水合柠檬酸、乙二醇与蒸馏水进行混合并在室 温下搅拌溶解,溶解完毕后,制备得到Hf〇.5Zn).5a^瓷先驱体溶液,其中,金属源为ZrOCl 2 · 8H20和HfOCl2 · 8H20混合物,将ZrOCl2 · 8H20和HfOCl2 · 8H20的总摩尔数归化为1,则两种盐 的构成为:l=x(Hf〇Cl2 · 8H20)+(l-x)(Zr0Cl2 · 8H20),其中χ=0·5;
[0047]将质量比为1:1的聚碳硅烷(PCS)和二甲苯在室温下搅拌,待聚碳硅烷完全溶解后 得到SiC陶瓷先驱体溶液。
[0048] 步骤二:采用先驱体浸渍裂解工艺制备Cf/Hfo.sZro.sC素坯:
[0049] 首先,采用化学气相沉积工艺,以丙烯为前驱体,在1000 tC,2kPa压强下对碳纤维 预制件进行热解碳涂层改性处理;
[0050] 其次,将热解碳涂层改性处理的碳纤维预制件在Hfo.5Zro.5C陶瓷先驱体溶液中真 空浸渍,真空度为50Pa,浸渍时间为4h,在氩气气氛下1000 tC裂解lh,随后重复浸渍-裂解过 程14次,得到Cf/Hf 〇. 5Zr〇. 5C复合材料中间体;
[0051 ]最后,将得到的Cf/HfQ.5Zn).5C复合材料中间体在1600°C,在IPa真空条件下热处理 2h得到Cf/Hfo. 5Zr〇. 5〇素还,素还开孔率为30.5 %。
[0052] 步骤三:采用先驱体浸渍裂解工艺制备Cf/HfQ.5Zr〇. 5C-SiC复合材料:
[0053]将经过热处理的Cf/Hf o.sZro.sC素坯在SiC陶瓷先驱体溶液中真空浸渍,真空度为 50Pa,浸渍时间为4h,在氩气气氛下1200°C裂解lh,随后重复浸渍-裂解过程4次,得到Cf/ Hfo.sZro.5C-SiC复合材料,开孔率为14 · 4%。
[0054]本实施例所制备的Cf/HfQ.5Zr〇.5C-SiC复合材料的性能测试结果见表2。图1为本实 施例的Cf/HfQ.5Zn).5C-SiC复合材料断口显微结构,可以观察到复合材料断口有大量的纤维 拔出,且拔出的长度较长,这有助于提高复合材料的断裂韧性。
[0055] 实施例2:
[0056] -种本发明的Cf/HfQ.7ZrQ.3C-SiC复合材料,包括碳纤维预制件、SiC基体和 Hfo. 7Zr〇. 3C基体,该Hf 〇. 7Zr〇. 3C基体和SiC基体均匀填充于碳纤维预制件的孔隙中。
[0057]本实施例中,Hfo.7Zr〇.3C基体的体积分数为14%,SiC基体的体积分数为22%,开孔 率为 13·5νο1%。
[0058]上述本实施例的Cf/Hf 〇. 7Zr〇. 3C_SiC复合材料的制备方法,包括以下步骤:
[0059] (1)配制Hf 〇. 7Zr〇. 3C和SiC陶瓷先驱体溶液:
[0060]将摩尔比为1:2:2:100的金属源、一水合柠檬酸、乙二醇与蒸馏水进行混合并在室 温下搅拌溶解,溶解完毕后,制备得到HfuZnoC陶瓷先驱体溶液,其中,金属源为ZrOCl2 · 8H20和HfOCl2 · 8H20混合物,将ZrOCl2 · 8H20和HfOCl2 · 8H20的总摩尔数归化为1,则两种盐 的构成为:l=x(Hf〇Cl2 · 8H20)+(l-x)(Zr0Cl2 · 8H20),其中χ=0·7;
[0061]将质量比为1:1的聚碳硅烷(PCS)和二甲苯在室温下搅拌,待聚碳硅烷完全溶解后 得到SiC陶瓷先驱体溶液。
[0062] (2)采用先驱体浸渍裂解工艺制备Cf/Hfo.7Zn).3C素坯:
[0063] (2.1)采用化学气相沉积工艺,以丙烯为前驱体,在1000°C,2kPa压强下对碳纤维 预制件进行热解碳涂层改性处理;
[0064] (2.2)将热解碳涂层改性处理的碳纤维预制件在Hfo.7Zr〇.3C陶瓷先驱体溶液中真 空浸渍,真空度为200Pa,浸渍时间为4h,在氩气气氛下1000 tC裂解lh,随后重复浸渍-裂解 过程12次,得到Cf/Hf 〇. 7Zr〇. 3C复合材料中间体;
[0065] (2.3)将得到的0〇批〇.72^).3(:复合材料中间体在1300°(:,在1(^真空条件下热处 理3h得到Cf/Hfo. 7Zr〇. 3C素坯,素坯开孔率为32.5 %。
[0066] (3)采用先驱体浸渍裂解工艺制备Cf/HfQ.7Zr〇.3C-SiC复合材料:
[0067]将经过热处理的Cf/Hf o.7Zn).3C素坯在SiC陶瓷先驱体溶液中真空浸渍,真空度为 200Pa,浸渍时间为4h,在氩气气氛下1200°C裂解lh,随后重复浸渍-裂解过程6次,得到Cf/ Hfo.7Zr〇.3C-SiC复合材料,开孔率为13.5%。
[0068]本实施例所制备的Cf/HfQ.7Zr〇.3C-SiC复合材料的性能测试结果见表1、2。图2本实 施例的Cf/HfQ.7Zr〇.3C-SiC复合材料断口显微结构,可以观察到纤维拔出较长,且表面光滑, 表明碳涂层很好的保护了碳纤维,有助于改善复合材料力学性能。
[0069] 实施例3:
[0070] -种本发明的Cf/HfQ.5ZrQ. 5C_SiC复合材料,包括碳纤维预制件、SiC基体和 Hfo. sZro. 5C基体,该Hf 〇. 5Zr〇. 5C基体和SiC基体均匀填充于碳纤维预制件的孔隙中。
[0071] 本实施例中,Hfo.sZro.5C基体的体积分数为16 %,SiC基体的体积分数为28%,开孔 率为 4.5vol%。
[0072] 上述本实施例的Cf/Hf o. 5Zr〇. 5C_SiC复合材料的制备方法,包括以下步骤:
[0073] (1)配制Hfo.sZro.sC陶瓷先驱体溶液:
[0074]将摩尔比为1:1:4:200的金属源、一水合柠檬酸、乙二醇与蒸馏水进行混合并在室 温下搅拌溶解,溶解完毕后,制备得到Hf〇.5Zn).5a^瓷先驱体溶液,其中,金属源为ZrOCl 2 · 8H20和HfOCl2 · 8H20混合物,将ZrOCl2 · 8H20和HfOCl2 · 8H20的总摩尔数归化为1,则两种盐 的构成为:l=x(Hf〇Cl2 · 8H20)+(l-x)(Zr0Cl2 · 8H20),其中χ=0·5。
[0075] (2)采用先驱体浸渍裂解工艺制备Cf/Hfo.sZro.sC素坯:
[0076] (2.1)采用化学气相沉积工艺,以丙烯为前驱体,在1000°C,2kPa压强下对碳纤维 预制件进行热解碳涂层改性处理;
[0077] (2.2)将热解碳涂层改性处理的碳纤维预制件在肌.^5(:陶瓷先驱体溶液中真 空浸渍,真空度为50Pa,浸渍时间为4h,在氩气气氛下1000 tC裂解lh,随后重复浸渍-裂解过 程14次,得到Cf/Hf 〇. 5Zr〇. 5C复合材料中间体;
[0078] (2.3)将得到的0以肌.命().5(:复合材料中间体在1600°(:,在1?&的真空条件下热处 理 2h 得到 Cf/Hfo. 5Zr〇. 5C 素坯。
[0079] (3)制备Cf/HfQ.5Zr〇.5C-C素坯:将Cf/Hf Q.5Zr〇.5C素坯在呋喃树脂溶液中真空浸渍, 真空度为IOOPa,浸渍时间为6h,在氩气气氛下1000 °C裂解Ih,得到Cf/Hfo. 5Zr〇. 5C-C素坯;
[0080] (4)制备Cf/HfQ.5ZrQ. 5C-SiC复合材料:采用气相渗硅方法将Cf/HfQ.5ZrQ.5C-C素坯 进行反应烧结,气相渗硅具体过程为:将Cf/Hfo. 5Ζπ).5C-C素坯和硅粉置于高温炉内,在1650 。(:,真空度为30Pa的条件下高温反应烧结2h,得到Cf/Hfo. 5Zr〇.5C-SiC复合材料。
[0081 ] 实施例4:
[0082] 一种本发明的Cf/HfQ.7ZrQ.3C-SiC复合材料,包括碳纤维预制件、SiC基体和 Hfo. 7Zr〇. 3C基体,该Hf 〇. 7Zr〇. 3C基体和SiC基体均匀填充于碳纤维预制件的孔隙中。
[0083]本实施例中,HfQ.7ZrQ.3C基体的体积分数为14%,SiC基体的体积分数为26%,开孔 率为2 .Ovol %。
[0084]上述本实施例的Cf/Hf 〇. 7Zr〇. 3C_SiC复合材料的制备方法,包括以下步骤:
[0085] (1)配制HfQ.7ZrQ.3C陶瓷先驱体溶液:
[0086]将摩尔比为1:2:2:100的金属源、一水合柠檬酸、乙二醇与蒸馏水进行混合并在室 温下搅拌溶解,溶解完毕后,制备得到HfuZnoC陶瓷先驱体溶液,其中,金属源为ZrOCl2 · 8H20和HfOCl2 · 8H20混合物,将ZrOCl2 · 8H20和HfOCl2 · 8H20的总摩尔数归化为1,则两种盐 的构成为:l=x(Hf〇Cl2 · 8H20)+(l-x)(Zr0Cl2 · 8H20),其中χ=0·7。
[0087] (2)采用先驱体浸渍裂解工艺制备Cf/Hfo.sZro.sC素坯:
[0088] (2.1)采用化学气相沉积工艺,以丙烯为前驱体,在1000°C,2kPa压强下对碳纤维 预制件进行热解碳涂层改性处理;
[0089] (2.2)将热解碳涂层改性处理的碳纤维预制件在批〇.72^).3(:陶瓷先驱体溶液中真 空浸渍,真空度为200Pa,浸渍时间为4h,在氩气气氛下1000 tC裂解lh,随后重复浸渍-裂解 过程12次,得到Cf/Hf 〇. 7Zr〇. 3C复合材料中间体;
[0090] (2.3)将得到的0〇批〇.72^).3(:复合材料中间体在1300°(:,在1(^的真空条件下热 处理3h得到Cf/Hfo. 7Zr〇. 3C素坯。
[0091] (3)制备Cf/Hf 0.7ZrQ. 3C-C素坯:将Cf/Hf 0.7ZrQ. 3C素坯在50wt · %酚醛树脂的乙醇溶 液中真空浸渍,真空度为l〇〇Pa,浸渍时间为8h,在氩气气氛下1000Γ裂解lh,得到Cf/ Hfo. 7Zr〇. 3C-C素还;
[0092] (4)制备Cf/HfQ.7ZrQ.3C-SiC复合材料:采用气相渗硅方法将Cf/Hf Q.7ZrQ.3C-C素坯 进行反应烧结,气相渗硅具体过程为:将Cf/Hfo.7Zr〇.3C-C素坯和硅粉置于高温炉内,在1700 。(:,真空度为20Pa的条件下高温反应烧结3h,得到Cf/Hfo.7ZrQ.3C-SiC复合材料。
[0093] 对比例1:
[0094] 一种本对比例的Cf/Hf C-SiC复合材料的制备方法,包括以下步骤:
[0095] (I)配制Hf C和SiC陶瓷先驱体溶液:
[0096] 将摩尔比为1:2:2:100的HfOCl2 · 8H20、一水合柠檬酸、乙二醇与蒸馏水进行混合 并在室温下搅拌溶解,溶解完毕后,制备得到HfC陶瓷先驱体溶液;
[0097]将质量比为1:1的聚碳硅烷(PCS)和二甲苯在室温下搅拌,待聚碳硅烷完全溶解后 得到SiC陶瓷先驱体溶液。
[0098] (2)采用先驱体浸渍裂解工艺制备Cf/HfC素坯:
[0099] (2.1)采用化学气相沉积工艺,以丙烯为前驱体,在1000°C,2kPa压强下对碳纤维 预制件进行热解碳涂层改性处理;
[0100] (2.2)将热解碳涂层改性处理的碳纤维预制件在步骤(1)所得的HfC陶瓷先驱体溶 液中真空浸渍,真空度为200Pa,浸渍时间为4h,在氩气气氛下1000 tC裂解lh,随后重复浸 渍-裂解过程12次,得到Cf/Hf C复合材料中间体;
[0101] (2.3)将得到的Cf/HfC复合材料中间体在1300°C,在IOPa真空条件下热处理3h得 至Ij Cf/HfC素坯。
[0102] (3)采用先驱体浸渍裂解工艺制备Cf/HfC-SiC复合材料:
[0103]将经过热处理的Cf/HfC素坯在步骤(1)所得的SiC陶瓷先驱体溶液中真空浸渍,真 空度为200Pa,浸渍时间为4h,在氩气气氛下1200°C裂解lh,随后重复浸渍-裂解过程6次,得 至Ij Cf/HfC-S i C复合材料。
[0104]本对比例所制备的Cf/HfC-SiC复合材料的性能测试结果见表1。图3本对比例的 Cf/HfC-SiC复合材料断口显微结构,可以看到复合材料的丝束间区域仍有一些孔洞,然而 丝束内部较为致密。
[0105] 对比例2:
[0106] -种本对比例的Cf/ZrC-SiC复合材料的制备方法,包括以下步骤:
[0107] (1)配制ZrC和SiC陶瓷先驱体溶液:
[0108] 将摩尔比为1:2:2:100的ZrOCl2 · 8H20、一水合柠檬酸、乙二醇与蒸馏水进行混合 并在室温下搅拌溶解,溶解完毕后,制备得到ZrC陶瓷先驱体溶液;
[0109] 将质量比为1:1的聚碳硅烷(PCS)和二甲苯在室温下搅拌,待聚碳硅烷完全溶解后 得到SiC陶瓷先驱体溶液。
[0110] (2)采用先驱体浸渍裂解工艺制备Cf/ZrC素坯:
[0111] (2.1)采用化学气相沉积工艺,以丙烯为前驱体,在1000°C,2kPa压强下对碳纤维 预制件进行热解碳涂层改性处理;
[0112] (2.2)将热解碳涂层改性处理的碳纤维预制件在ZrC陶瓷先驱体溶液中真空浸渍, 真空度为200Pa,浸渍时间为4h,在氩气气氛下1000 tC裂解lh,随后重复浸渍-裂解过程12 次,得到Cf/ZrC复合材料中间体;
[0113] (2.3)将得到的Cf/ZrC复合材料中间体在1300°C,在IOPa真空条件下热处理3h得 到Cf/Zr C素坯。
[0114] (3)采用先驱体浸渍裂解工艺制备Cf/ZrC-SiC复合材料:
[0115] 将经过热处理的Cf/ZrC素坯在SiC陶瓷先驱体溶液中真空浸渍,真空度为200Pa, 浸渍时间为4h,在氩气气氛下1200°C裂解lh,随后重复浸渍-裂解过程6次,得到Cf/ZrC-SiC 复合材料。
[0116] 本对比例所制备的Cf/ZrC-SiC复合材料的性能测试结果见表1。图4本对比例的 Cf/ZrC-SiC复合材料断口显微结构,可以看到复合材料丝束内部基体分布均匀,虽然有少 量微孔存在,但整体较为致密。
[0117] 对比例3:
[0118] -种本对比例的Cf/SiC复合材料的制备方法,包括以下步骤:
[0119] (1)配制SiC陶瓷先驱体溶液:
[0120] 将质量比为1:1的聚碳硅烷(PCS)和二甲苯在室温下搅拌,待聚碳硅烷完全溶解后 得到SiC陶瓷先驱体溶液。
[0121] (2)采用先驱体浸渍裂解工艺制备Cf/SiC复合材料:
[0122] 将碳纤维预制件在SiC陶瓷先驱体溶液中真空浸渍,浸渍时间为4h;在氩气气氛下 1200°C裂解lh,随后重复浸渍-裂解过程19次,得到Cf/SiC复合材料。
[0123] 本对比例所制备的Cf/SiC复合材料的氧乙炔焰烧蚀性能测试结果见表2。
[0124] 表1实施例1~4及对比例1~2的复合材料的性能
[0128] 表1为制备得到的Cf/Hf xZr hC-S i C (0 < X < 1)复合材料性能,可以看到Cf/Hf χΖη 一 {-5似0<1<1)复合材料具有较高的密度,与0切1版命().3(:素坯(32.5%)相比具有较低 的开孔率,且有着优良的力学性能。与Cf/ZrC-SiC复合材料相比,弯曲强度和弹性模量均得 到提高;与采用昂贵Hf原料制备的Cf/HfC-SiC复合材料相比,虽然弯曲强度和断裂韧性有 所下降,但成本降低。另外,通过观察表1可以知道,采用联合工艺(实施例4)制备的Cf/ Hf〇.7ZrQ.3C-SiC复合材料与单一PIP工艺(实施例2)相比,密度更高,开孔率更低,热导率大 大提高,这主要是由于联合工艺制备的复合材料致密度提高所致,然而联合工艺制备的SiC 基体和Hfo.7Zro.3C基体热膨胀失配,因此基体中有微裂纹存在,导致力学性能有所下降。从 表2可以知道,Cf/Hf xZn-xC-SiC复合材料与Cf/SiC相比,无论是质量烧蚀率还是线烧蚀率 都大大地降低,这主要是由于Hf xZri-xC耐烧蚀组元的加入提高了复合材料的耐烧蚀性能。 从图1 -图4可以看到,采用本发明的制备方法得到的Cf/Hf xZrXC-S iC(0彡X彡1)复合材料 中存在一些微孔,但其余部分较为致密,且可以观察到纤维丝束和纤维单丝的拔出,可以预 见在复合材料断裂过程中,纤维拔出、桥联,裂纹偏转等增韧机制可以提高该复合材料的断 裂韧性。
[0129]以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施 例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域 的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应 视为本发明的保护范围。
【主权项】
1. 一种Cf/HfxZn-xC-SiC复合材料,包括碳纤维预制件和SiC基体,其特征在于,还包括 HfxZr 1-XC基体,其中0 < X < 1,所述Hf xZr 1-XC基体和Si C基体均勾填充于所述碳纤维预制件的 孔隙中。2. -种Cf/Hf xZrXC-S i C复合材料的制备方法,其中0<χ<1,包括以下步骤: (1) 制备Cf/HfxZn-XC 素坯: (1.1) 将碳纤维预制件在HfxZri-xC陶瓷先驱体溶液中真空浸渍,裂解,重复浸渍-裂解过 程,得到Cf/Hf xZn-XC复合材料中间体; (1.2) 将步骤(1.1)所得Cf/HfxZri-xC复合材料中间体在真空条件下热处理,得到Cf/ HfxZri-XC素还; (2) 制备Cf/HfxZn-xC-SiC复合材料:将步骤(1.2)所得的Cf/HfxZn- XC素坯在SiC陶瓷先 驱体溶液中真空浸渍,裂解,重复浸渍-裂解过程,得到Cf/HfxZ ri-xC-SiC复合材料。3. 根据权利要求2所述的Cf/HfxZn-xC-SiC复合材料的制备方法,其特征在于, 所述步骤(2)中,所述真空浸渍的时间为3h~12h,真空度为50Pa~500Pa;所述裂解气 氛为氩气气氛,温度为ll〇〇°C~1200°C,裂解时间为0.5h~2h,所述浸渍-裂解过程重复次 数为2次~8次。4. 一种Cf/Hf xZr hC-S i C复合材料的制备方法,其中0<χ<1,包括以下步骤: (1) 制备Cf/HfxZn-XC 素坯: (1.1) 将碳纤维预制件在HfxZri-xC陶瓷先驱体溶液中真空浸渍,裂解,重复浸渍-裂解过 程,得到Cf/Hf xZn-XC复合材料中间体; (1.2) 将步骤(1.1)所得Cf/HfxZri-xC复合材料中间体在真空条件下热处理,得到Cf/ HfxZri-XC素还; (2) 制备Cf/Hf xZn-XC-C素坯:将Cf/Hf xZn-XC素坯在树脂溶液中真空浸渍,裂解,重复浸 渍-裂解过程,得到Cf/HfxZri-xC_C素还; (3) 制备Cf/HfxZn-xC-SiC复合材料:采用气相渗硅方法将Cf/HfxZn- XC-C素坯进行反应 烧结,得到Cf/HfxZn-xC-SiC复合材料。5. 根据权利要求4所述的Cf/HfxZn-xC-SiC复合材料的制备方法,其特征在于, 所述步骤(2)中,所述真空浸渍的时间为3h~12h,真空度为50Pa~500Pa;所述裂解气 氛为氩气气氛,温度为90(TC~1KKTC,裂解时间为0.5h~2h,所述浸渍-裂解过程重复次数 为0次~4次; 所述步骤(3)中,所述气相渗硅方法的具体过程为:将Cf/HfxZri-XC-C素坯和硅粉置于高 温炉内,在温度为1600°C~1800°C、真空度为lOPa~90Pa的条件下高温反应烧结lh~5h。6. 根据权利要求2~5任一项所述的Cf/HfxZn-xC-SiC复合材料的制备方法,其特征在 于,所述步骤(1.1)中,所述Hf xZri-xC陶瓷先驱体溶液的制备过程为: 将金属源混合物、一水合柠檬酸、乙二醇与蒸馏水进行混合,搅拌,得到HfxZri-xC陶瓷先 驱体溶液;所述金属源混合物为含Zr4+的无机盐和含Hf4+的无机盐。7. 根据权利要求6所述的Cf/HfxZri-xC-SiC复合材料的制备方法,其特征在于,所述金属 源混合物为ZrOCl 2 · 8H20和HfOCl2 · 8H20的混合物,将ZrOCh · 8H20和HfOCl2 · 8H20的总摩 尔数归化为1,则两种盐的构成为:l=x(Hf〇Cl2 · 8H20)+(l-x)(Zr0Cl2 · 8H20)。8. 根据权利要求7所述的Cf/HfxZri-xC-SiC复合材料的制备方法,其特征在于,所述金属 源混合物、一水合梓檬酸、乙二醇与蒸馏水的摩尔比为:1:0.5~6:0.5~10:60~600。9. 根据权利要求8任一项所述的Cf/HfxZn-xC-SiC复合材料的制备方法,其特征在于,所 述步骤(1.1)中,所述真空浸渍的时间为3h~12h,真空度为50Pa~500Pa;所述裂解气氛为 氩气气氛,温度为600°C~1100°C,裂解时间为0.5h~2h,所述浸渍-裂解过程重复次数为10 次~16次。10. 根据权利要求9任一项所述的Cf/HfxZn-xC-SiC复合材料的制备方法,其特征在于, 其特征在于,所述步骤(1.2)中,所述热处理温度为1200°C~1600°C,时间为lh~3h,真空度 为IPa~lOOPa。
【文档编号】C04B35/571GK106007759SQ201610312895
【公开日】2016年10月12日
【申请日】2016年5月12日
【发明人】刘荣军, 严春雷, 曹英斌, 张长瑞, 王衍飞, 龙宪海, 王思青, 李斌
【申请人】中国人民解放军国防科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1