碳酸铀酰铵溶液辐照法制备空心UO<sub>2</sub>纳米球的制作方法

文档序号:10677010阅读:333来源:国知局
碳酸铀酰铵溶液辐照法制备空心UO<sub>2</sub>纳米球的制作方法
【专利摘要】本发明公开了一种碳酸铀酰铵溶液辐照法制备空心UO2纳米球的方法,先配制含有自由基清除剂的低浓度UO2(CO3)34?碱性溶液;然后采用电子束或γ射线辐照,通过调控吸收剂量、剂量率等条件得到由纳米粒子自组装形成的具有不同直径、不同壁厚、不同空腔直径的空心UO2纳米球。本发明首次制备出铀氧化物空心纳米结构,将有助于铀氧化物纳米粒子用于核燃料和催化等领域的研究。
【专利说明】
碳酸铀酰铵溶液辐照法制备空心U〇2纳米球
技术领域
[0001] 本发明涉及铀氧化物材料的制备技术,具体涉及一种铀氧化物空心纳米结构的制 备方法。
【背景技术】
[0002] 铀氧化物,如1]〇2、1]3〇8、1]〇3,既是重要的核燃料,还是一类有效的催化剂。在近十来 年里,有研究表明,纳米级铀氧化物具有具有很低的烧结温度和很好的催化活性。因此,合 成具有特定尺寸和形貌的铀氧化物纳米材料引起广泛关注。目前,像准球形υ〇 2纳米颗粒、 U3〇8纳米花、U3〇8纳米棒、U3〇8纳米管/线及其他复杂结构的铀氧化物微/纳米材料已经通过 热化学及电化学法制备得到。此外,辐照法具有条件温和、不引入杂质等特点,已用于在酸 性环境中还原U〇2(N〇3)2制备U〇2纳米粒子。
[0003] 空心纳米材料基于其可控的结构和机械性质、巨大的表面积及渗透性质,在气体 贮藏、催化、核燃料制备等方面引起广泛关注。目前制备空心纳米材料的方法有硬模板法、 软模板法和基于Ki rkenda 11效应、Ga 1 van i C取代、Os twa 1 d熟化的无模板法等。气泡模板法 基于反应自己产生或导入的气泡作为模板,在气液界面通过纳米粒子的自组装生成空心纳 米颗粒,是一种特殊的软模板法,具有不引入杂质、简单方便等特点。目前该法已合成了空 心ZnS纳米球和纳米Ni n-QD空心结构等。至今,还没有关于铀氧化物空心纳米结构的报道。
[0004] 本课题组致力于辐照法调控制备无机纳米材料,目前已制备得到中孔BaS04微球、 八面体Cu20纳米晶、空心Cu20纳米立方体和PbS04微米棱柱。在此,我们发明了一种利用γ辐 照低浓度碳酸铀酰铵溶液的方法,首次得到了空心U0 2纳米球。

【发明内容】

[0005] 本发明的目的在于提供一种通过辐照法调控制备空心U02纳米结构的方法,由此 获得空心U02纳米球,以用于核燃料和催化等领域的研究。
[0006] 本发明利用γ射线或电子束辐照低浓度碳酸铀酰铵和甲酸铵混合溶液,通过调控 吸收剂量、剂量率和甲酸铵用量等条件得到由纳米粒子自组装形成的具有不同直径、不同 壁厚、不同空腔直径的空心U0 2纳米球。基于大量的实验结果,本发明提出了气泡模板法生 长机理。
[0007] 具体的,本发明的技术方案是:
[0008] -种空心U02纳米球的制备方法,包括以下步骤:
[0009] 1)配制含有自由基清除剂的U02(⑶3)341 咸性溶液,其中U02(⑶3)广的浓度为3~ 18mmo1 · L-S
[0010] 2)在惰性气氛下,对步骤1)的溶液用电子束或γ射线进行剂量大于6kGy的辐照, 产生黑色uo2沉淀或胶体,经离心、洗涤、干燥,得到空心uo2纳米球。
[0011] 上述步骤1)中,所述自由基清除剂可以是甲酸铵、甲酸或者醇类(例如异丙醇等); 所述自由基清除剂的加入量优选大于10倍铀的摩尔浓度。
[0012]步骤1)中所述υ〇2 (C〇3) 34-碱性溶液的pH彡8,其中υ〇2 (C〇3 )34-的浓度进一步优选为 5~15mmol · L-、
[0013] 优选的,步骤1)的溶液是将三碳酸铀酰铵(AUC)和自由基清除剂及碱性物质混合 配制而成,进一步优选的,是将AUC、HC00NH4和Na 2C〇3配制成混合溶液。其中,AUC是从铀原料 转化得到,所述铀原料可以包括六氟化铀UF6、硝酸铀酰U02(N0 3)2、U02(N03)2 · 2TBP和/或 U〇2F2等含U(VI)的各种原料,通过NH3和C02双气通法或者加入(順4)2⑶3及NH4HC0 3法制备得 到 AUC。
[0014] 步骤2)的辐照须在惰性气氛条件下进行,惰性气体例如氮气、氩气等;辐照源可以 是电子加速器或各类γ射线源。辐照剂量优选为6~50kGy。
[0015] 在本发明的一些优选实施方案中,步骤2)采用40~300Gy · mirT1的剂量率辐照20 ~1000min〇
[0016] 本发明典型的合成空心U〇2纳米球的过程是:配制含3~18mmol · L-lUCJ~ 54mmol · L-iNasCCb和50~180mmol · L-々(?ΟΝΗα的溶液;将溶液移入福照管中,通N2-段时间 后封管;以40~300Gy ?mirT1的剂量率辐照20~lOOOmin(剂量率由硫酸亚铁剂量计测定), 得黑色U02沉淀或胶体。
[0017] 上述方法制备的空心U〇2纳米球是由U〇2纳米粒子自组装形成的直径小于Ιμπι、壁厚 小于100nm的空心纳米球结构。典型的,其中所述U〇2纳米粒子的直径通常小于10nm( 1~5nm 左右),组装而成的空心纳米球的直径多在30~40nm,壁厚8~15nm,空腔直径在10~20nm〇
[0018] 下面以甲酸铵或甲酸为自由基清除剂为例,说明空心U02纳米球的形成机理。
[0019] 水福解可以产生水化电子eaq' · H、· 0H等活性物种(式1) jOXT可有效清除· 0H 和· Η(式2),其反应速率分别为3.2X109和2.1X108L · mol-1 · s-1。
[0020] h20 "U-lK丨丨、e-q, ·Η, ·ΟΗ, Η2, Η202, H3Q*?…·· (1)
[0021] HCOO~+ ·〇Η(·Η)---> ?(:?2+Η2〇(Η2) (2)
[0022] 而ea<T等还原性自由基则可以将U02(C03)广还原得到U(IV),U(IV)在碱性环境中反 应生成U(0H)4,其进一步脱水即可得到U〇2(式3)。
[0023] UO2(CO;0:,4- U{I¥) ?(〇Η)4 U02(s) (3)
[0024] 由于U(0H)4溶解度极低(pKsp = 52),所以可以快速形成纳米粒子的胶体溶液,并进 一步自组装形成聚集体。
[0025]目前文献报道关于空心纳米材料制备方法主要是硬模板法(如硅球和聚苯乙烯小 球等)和软模板法(如微乳液和嵌段共聚物胶束等)。而在本发明的方法中,没有添加任何添 加剂及常规模板。值得注意的是,在辐照过程中水辐解(式1)以及· Η与HC0(T的抽氢反应 (式2)均可产生H2,并且HC00NH4浓度及辐照时间的增加均有利于H 2的生成。在实验中,空心 纳米球的直径和壁厚随福照时间的增加而增大,而其空腔大小基本不变,这表明Ostwald熟 化过程在本发明方法中基本不起作用或仅仅起到次要作用。因此,我们推测可能是纳米粒 子在原位产生的出气泡的气一液界面上自组装导致了空心U0 2纳米球的形成,H2气泡起到了 模板作用,其机理参见图6。
[0026]通过本发明的方法制备得到由纳米粒子自组装形成的具有不同直径、不同壁厚、 不同空腔直径的空心U02纳米球。本发明首次制备出铀氧化物空心纳米结构,将有助于铀氧 化物纳米粒子用于核燃料和催化等领域的研究。
【附图说明】
[0027]图1.本发明典型合成过程制备的U02纳米粒子样品的TEM图像,其中B比A的放大倍 数高,A中的插图为相应样品的SAED图像。
[0028]图2.本发明典型合成过程制备的U02纳米粒子样品的XRD图谱(A)和EDS谱图(B)。 [0029 ] 图3.不同HC00NH4浓度下制备的U02纳米粒子样品的的??Μ图像,其中HC00NH4浓度: A为30mmol · L-1,R为50mmo1 · L-Sc为80mmol · L-为 120mmol · L-工。
[0030]图4.40Gy · min-1剂量率条件下不同福照时间下所得U〇2纳米粒子产物的TEM图像, 其中辐照时间:A为100min,B为200min。
[0031] 图5.吸收剂量为36kGy条件下不同剂量率辐照所得U02纳米粒子产物的TEM图像, 其中剂量率:A为 172Gy · min-为 120Gy · min-SC为70Gy · min-1。
[0032] 图6.本发明制备空心U02纳米球的反应机理解释模型。
【具体实施方式】
[0033] 下面通过实施例对本发明进一步详细阐述,但不以任何方式限制本发明的范围。 [0034] 一、实验试剂:
[0035] U〇2(N〇3)2 · 6H2〇,GR,Chemapol,Prague Czechoslovakia;
[0036] NH4HC03、Na2C03、甲酸铵(HC00NH4)均为分析纯,直接使用;
[0037] 实验用水为超纯水。
[0038]二、实验方法、结果及分析 [0039] 1.碳酸铀酰铵(AUC)的合成
[0040]根据参考文献[吴克明,碳酸铀酰铵溶解度.原子能科学技术,3(1961)148-156.], 将υ〇2(Ν〇3)2 · 6H20在马弗炉中350°C条件下灼烧3小时,得到黄色三氧化铀粉末。配制饱和 NH4HC03溶液,并缓慢滴加到盛有U0 3的圆底烧瓶中,在60°C水浴中加热直至黄色固体全部溶 解,趁热抽滤,将滤液转移到烧杯中冷却静置结晶。抽滤收集晶体,并用3wt % NH4HC03洗涤, 真空干燥得到三碳酸铀酰铵(AUC)。元素分析结果表明所得产物为(NH4) 4[U02(C03)3](Mr = 522.21)。元素分析结果(%):C 6·90,Η 3·09,Ν 10.73;理论值(%):C 6·87,Η 3·09,Ν 10.70。
[0041 ] 2.υ〇2纳米粒子的制备
[0042] 典型的合成U〇2纳米粒子的实验过程如下:配制含5mmol · L-lUC、15mmol · L- 120)3和lOOmmol · L-也00職的溶液。将溶液移入辐照管(? i5 mm)中,控制管中液面高 度约为5cm。通N2 20min后,封管。将样品置于钴源(3X104Ci)中剂量率为40Gy · mirT1的位 置进行辐照900min(剂量率由硫酸亚铁剂量计测定),得黑色沉淀。通过改变HC00NH4浓度、 剂量率和辐照时间来合成其它样品。
[0043] 3.产物表征
[0044] 将辐照后的混合物离心,沉淀用水充分洗涤,离心,干燥得到固体粉末。将固体粉 末分散在乙醇中,将其滴在铜网上,在室温下自然干燥制得电镜样品,用美国FEI公司的 Tecnai G2T20型透射电镜(TEM)观察其形貌并作选区电子衍射(SAED),工作电压为200kV。 用FEInanoSEM 430测其能谱(EDS)。粉末X射线衍射(XRD)通过Rigaku Dmax-2000衍射仪表 征(使用Cu Κα革巴,λ=〇·15418ηηι)。
[0045] 本发明典型合成过程制备的U02纳米粒子的ΤΕΜ图像如图1所示,从图中可以看出, 产物是粒径为30-50nm的纳米球;纳米球边沿颜色深黑、中间颜色较浅,表明其是空心的;空 心球的壁厚和空腔直径分别是8-15nm和10-20nm;粗燥的表面表明这些空心纳米球是由更 小的纳米粒子聚集形成的;从更高放大倍数的TEM图像(图1B)测得纳米粒子的直径约为 3nm〇
[0046] 对空心纳米球进行SAED分析(见图1A中的插图),出现了四个衍射环,对应的晶面 间距分别为0.320、0.281、0.198和0.16811111,分别对应1]02(111)、(200)、(220)、(311)晶面的 间距0.3153,0.2733,0.1933and 0.1647nm(JCPDS file No.41-1422),表明所制备的产物 是多晶立方U02。相应的XRD图谱(图2A)上出现四个明显的衍射峰。其中,2Θ为28.4、47.3和 56.4°的3个宽化的衍射峰分别对应于面心立方相U0 2的(111)、( 220)和(311)晶面,2Θ为 77.7°的宽峰为(331)与(420)衍射峰的复合峰,从而证实了立方U02的生成。对(111)衍射 峰,利用Scherrer公式计算,其平均粒径约为3nm,与TEM得到的结果相符。EDS (图2B)结果表 明产物中铀氧比为1:1.98,基本符合U02的化学计量比。以上结果表明,所制得的产物是多 晶空心U0 2纳米球。
[0047] 4.合成条件的影响
[0048] 为了进一步探索空心纳米粒子的形成机理,我们研究了 HC00NH4浓度、辐照时间及 剂量率对空心纳米球尺寸和形貌的影响。
[0049] 图3为不同HC00NH4浓度下所得产物的TEM图像。该实验中AUC浓度为5mmol · L一S Na2C03浓度为15mmol · L-S从图3可以看出,HC00NH4浓度为30和50mmol · L-1时,产物是纳米 粒子聚集体,没有明显空心结构(A和B);当HC00NH4浓度增大到80mmol · Γ1时,产物变为空 心纳米球(C);随着HC00NH4浓度的增加,产物保持空心结构(D)。这就是说HC00NH4量的增加 有利于空心纳米颗粒的形成。
[0050] 配制含5mmol · L-lUCUSmmol · L-ha〗⑶3和lOOmmol · L-hCOOM^的溶液,固定剂 量率40Gy · mirT1,研究福照的时间效应。福照lOOrnin和200min时,得到的均为黑色的胶体分 散液;辐照9 0 0 m i η时,得到黑色沉淀。图4为相应产物的T E Μ图像。由图4可以看出,辐照 lOOrnin所得产物是松散的纳米粒子聚集体(A);辐照200min时,空心结构开始出现(Β)。经测 量,空心纳米球的直径为20-30nm,壁厚为4-8nm,空腔直径为l〇-15nm。当福照时间达到 900min,空心纳米球的直径和壁厚分别增大到30-50nm和8-15nm,而空腔直径为10-20nm,与 辐照200min所得产物的基本一致。
[0051] 此外,固定吸收剂量为36kGy,研究剂量率改变对产物形貌的影响。如图5所示,所 得产物依然是由纳米粒子聚集形成的空心纳米球,即剂量率对产物形貌没有显著的影响。
[0052] 上述实验中,HC00NH4浓度及辐照时间的增加均有利于空心纳米球的形成,但剂量 率的影响不明显。跟据实验结果推测,可能是纳米粒子在原位产生的H 2气泡的气一液界面 上自组装导致了空心U02纳米球的形成,出气泡起到了模板作用。
[0053]最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但本领域的 技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改 都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利 要求书界定的范围为准。
【主权项】
1. 一种空心U〇2纳米球的制备方法,包括以下步骤: 1) 配制含有自由基清除剂的υ〇2 (⑶3 ) 341 咸性溶液,其中U02 (⑶3 ) 3^的浓度为3~ 18mmo1 · L-S 2) 在惰性气氛下,对步骤1)的溶液用电子束或γ射线进行剂量大于6kGy的辐照,产生 黑色1]〇2沉淀或胶体,经离心、洗涤、干燥,得到空心U0 2纳米球。2. 如权利要求1所述的制备方法,其特征在于,步骤1)中所述自由基清除剂是甲酸铵、 甲酸或者醇类,自由基清除剂的量大于10倍铀的摩尔浓度。3. 如权利要求1所述的制备方法,其特征在于,步骤1)中所述U02(C03)34li咸性溶液的pH 彡8,U〇2(C〇3)34-的浓度为5~15mmol · L-、4. 如权利要求1所述的制备方法,其特征在于,步骤1)的溶液是将三碳酸铀酰铵和自由 基清除剂及碱性物质混合配制而成。5. 如权利要求4所述的制备方法,其特征在于,步骤1)将三碳酸铀酰铵、HC00NH4和 Na2C03配制成混合溶液。6. 如权利要求4所述的制备方法,其特征在于,所述三碳酸铀酰铵是从铀原料转化得 到,所述铀原料为含U(VI)的原料,通过NH 3和C02双气通法或者加入(NH4)2C03及NH4HC0 3法制 备得到三碳酸铀酰铵。7. 如权利要求1所述的制备方法,其特征在于,步骤2)的辐照剂量为6~50kGy。8. 如权利要求1所述的制备方法,其特征在于,步骤2)采用40~300Gy · mirT1的剂量率 福照 20 ~lOOOmin。9. 如权利要求1所述的制备方法,其特征在于,步骤1)配制含3~ISmmol · I/1三碳酸铀 酰铵、9~54mmol · L-^120)3和50~180mmol · L-咕(:00順4的溶液;步骤2)将溶液移入辐照管 中,通N2-段时间后封管;以40~300Gy · min-1的剂量率辐照20~lOOOmin,得黑色U02沉淀 或胶体。10. -种空心U02纳米球,是由U02纳米粒子自组装形成的具有不同空腔大小的、直径小 于1 μπι的空心纳米球结构。11. 如权利要求10所述空心U〇2纳米球,其特征在于,所述U〇2纳米粒子的直径小于10nm, 组装而成的空心纳米球的直径小于1 Mi,壁厚小于100nm。
【文档编号】C01G43/025GK106044859SQ201610368394
【公开日】2016年10月26日
【申请日】2016年5月30日
【发明人】陈庆德, 沈兴海, 王永明
【申请人】北京大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1