路面标记、反射元件、微球以及制备微球的方法

文档序号:10712166阅读:735来源:国知局
路面标记、反射元件、微球以及制备微球的方法
【专利摘要】本申请涉及路面标记、反射元件、微球以及制备微球的方法。本文描述了诸如路面标记之类的逆反射制品,其包括部分嵌入粘结剂(如聚合物型)中的透明微球。文中还描述了微球(如玻璃?陶瓷)、制备微球的方法以及玻璃材料组合物和玻璃?陶瓷材料组合物。所述微球一般包含镧系氧化物、二氧化钛(TiO2)和任选的氧化锆(ZrO2)。
【专利说明】路面标巧、反射元件、微球从及制备微球的方法
[0001 ] 本申请是申请日为2009年8月21日、申请号为200980161926.6、发明名称为"路面 标记、反射元件W及制备微球的方法"的中国国家专利申请的分案申请。
技术领域
[0002] 本发明整体设及逆反射制品,包括逆反射路面标记、含微球的逆反射元件、制备微 球的方法、微球W及玻璃和玻璃-陶瓷材料的组合物。
【背景技术】
[0003] 透明玻璃微球和玻璃-陶瓷微球(即小珠)被用作用于逆反射标牌、服饰和路面标 记的光学元件。此类微球可通过例如烙融方法制备。所述烙融方法可包括使颗粒物形式的 原料混合物烙融。可将烙融颗粒在例如空气或水中泽火,从而得到固体小珠。任选地,经泽 火的颗粒可被粉碎成具有最终小珠所需的较小尺寸的颗粒。可将粉碎后的颗粒通过溫度足 W使运些颗粒烙融并球化的火焰。对于许多原料组合物,该溫度为约1500°C至约3000°C。作 为另外一种选择,可将烙融的原料组合物连续倾注到高速空气射流中。当射流与液体流发 生撞击时,形成烙滴。调节空气速度和烙体的粘度W便控制烙滴的尺寸。烙滴在例如空气或 水中被快速泽火,从而得到固体小珠。通过运种烙融方法形成的小珠通常由基本上完全无 定形(即非晶态)的玻璃质材料构成,因此,所述小珠通常被称作"玻璃质的"、"无定形的"小 珠或微球,或简称为"玻璃"小珠或"玻璃"微球。
[0004] 包含微球的路面标记在例如美国专利No. 3,946,130 (Tung)和美国专利No. 5,716, 706 (Morris)中有所描述,其中所述微球由包含氧化铜和二氧化铁的组合物制备。

【发明内容】

[0005] 在一个实施例中,描述了 一种标记路面的方法,其包括设置路面和在该路面上施 加路面标记。在另一个实施例中,路面标记包含微球,所述微球包含至少约45重量%的 Ti〇2;约0.5重量%和约10重量%之间的选自铜系元素氧化物的一种或多种金属氧化物;W 及至少约0.5重量%的化0。运些微球的一些实施例包含氧化巧作为唯一存在的碱上金属氧 化物,如果不计痕量的其他碱±金属氧化物(例如小于0.25重量% ),它们可能来源于W杂 质形式存在于任何原料中的其他碱±金属氧化物(即,此类微球优选地基本上不含氧化领、 氧化锁和氧化儀)。在至少一些包含微球的实施例中,所述微球的折射率可W为至少2.20、 至少2.30或至少2.40。所述微球优选地为透明的并且优选地具有至少2.3的折射率。
[0006] 在该实施例的一种优选实施方式中,所述微球包含约0.5重量%和约25重量%之 间的CaO。在该实施例的另一种优选实施方式中,所述微球包含至少约1.0重量%的化0。在 该实施例的另一种优选实施方式中,所述微球包含约45重量%和约80重量%之间的Ti化。 在该实施例的另一种优选实施方式中,所述微球包含至少约1.0重量%的选自铜系元素氧 化物的一种或多种金属氧化物。在该实施例的另一种优选实施方式中,所述微球包含至少 45重量%的^化;至少约0.5重量%并小于约10重量%的选自铜系元素氧化物的一种或多 种金属氧化物;W及至少约ο. 5重量%的化0。在所有运些实施例和实施方式中,所述微球可 W为例如透明的、玻璃的或玻璃-陶瓷的。
[0007]在另一个示例性实施例中,逆反射制品包含粘结剂W及具有玻璃-陶瓷结构的透 明微球。所述微球是烙凝的并且包含按微球的总重量计为至少约45重量%的二氧化铁、至 少约0.5重量%的化0、W及约0.5重量%和约10重量%之间的选自铜系元素氧化物的一种 或多种金属氧化物。在至少一些包含微球的实施例中,所述微球的折射率可W为至少2.20、 至少2.30或至少2.40。所述微球的折射率优选地为至少2.3。所述逆反射制品可W为例如路 面标记或逆反射元件。
[000引在该实施例的一种优选实施方式中,微球包含约0.5重量%和约25重量%之间的 化0。在该实施例的另一种优选实施方式中,微球包含至少约1.0重量%的化0。在该实施例 的另一种优选实施方式中,微球包含约45重量%和约80重量%之间的Ti化。在该实施例的 另一种优选实施方式中,微球包含至少约1.0重量%的选自铜系元素氧化物的一种或多种 金属氧化物。在所有运些实施例和实施方式中,微球可W为例如透明的、玻璃的或玻璃-陶 瓷的。
[0009] 在其他实施例中,描述了制造微球的方法。所述方法包括:提供本文所述的起始组 合物原料;用火焰溫度低于2700°c的火焰使原料烙融,从而形成烙滴;使烙滴冷却,从而形 成泽火的烙凝微球;并且任选地对经泽火的烙凝微球加热。
[0010] 在其他实施例中,描述了逆反射制品(如玻璃-陶瓷)微球W及玻璃组合物和玻璃- 陶瓷组合物。
【附图说明】
[0011] 图1为示例性逆反射元件的剖视图。
[001 ^ 图2为示例性路面标记的透视图。
[OOK]图3为示例性路面标记带的剖视图。
【具体实施方式】
[0014] 本文描述了诸如路面标记的逆反射制品,其包括至少部分地嵌入粘结剂(如聚合 物粘结剂)中的透明微球。文中还描述了微球(如玻璃-陶瓷)、制备微球的方法、W及玻璃材 料组合物和玻璃-陶瓷材料组合物。微球可包含多种碱±金属氧化物、铜系氧化物(如 La2〇3)、二氧化铁(Ti〇2) W及任选的氧化错(Zr〇2)。该基础组合物在本文将被称作乂LT"。包 含化T基础组合物的小珠将被称作乂 LT小珠"或乂 LT微球"。
[0015] 术语"小珠"和"微球"可互换使用并指大致球形的颗粒。
[0016] 术语"实屯、"是指小珠为非中空的(即基本上不含空腔或空隙)。为了将其用作透镜 元件,小珠优选地为球形并且优选地是实屯、(即非多孔的)的。实屯、小珠通常比空屯、小珠更 耐久。实屯、小珠还可比空屯、小珠更有效地聚光,从而形成更强的逆反射性。
[0017]本文所述的微球优选地为透明的。术语"透明的"是指当在光学显微镜(如在100倍 下)下观察时,小珠具有透射可见光线的性质,使得当将小珠和小珠之下的物体(例如与小 珠具有相同属性的物体)均浸没在其折射率与小珠的折射率大致相同的油中时,可透过小 珠清晰地看见小珠之下的物体。尽管所述油的折射率应接近小珠的折射率,但它们的折射 率不应接近到使小珠看起来似乎消失(运种现象在折射率完全匹配的情况下会发生)的程 度。小珠之下的物体的轮廓、周边或边缘可清晰辨别。
[0018] 端值内的所有数值范围的表述旨在包括归入该范围内的所有数字(即,1至10的范 围包括例如1、1.5、3.33、和10)。
[0019] 本文所述类型的小珠尤其可用作逆反射制品中的透镜元件。根据本发明的透明小 珠的折射率通常为至少2.10。对于在水或湿润环境中的逆反射应用而言,所述小珠优选地 具有至少2.20、优选地至少2.25、优选地至少2.30、优选地至少2.35 W及优选地至少约2.40 的折射率。
[0020] 尽管高折射率玻璃小珠已得到论证(例如美国专利No.3,493,403(Tung)),但是运 些组合物包含大量二氧化铁。此外,此类小珠是使用可提供(据报导)超过500(TF(276(rC) 的烙融溫度的等离子炬制备的。此外,此类小珠是由尺寸小于90微米的颗粒制备的。最后, 此类透明的烙凝小珠是通过在水中快速泽火而形成的。尺寸小于90微米的颗粒在等离子炬 中快速变热,并且其还W比更大的颗粒更快的速率泽火(运是由于热传递随着粒度的减小 而加快)。因此,可使用等离子炬并采用水泽火进行加热和泽火而形成直径小于90微米的透 明小珠的组合物通常不适于采用较低溫度的烙融设备和空气泽火来制备尺寸较大的透明 小珠。
[0021] 本发明的发明人曾关注经泽火的烙凝小珠的制备,其尺寸范围包括大于90微米的 小珠。对于实用的低成本的制造工艺而言,需要使用运样的组合物,其能够利用可提供低于 2760°C (如,低于2700°C、低于2600°C、低于2500°C、低于2400°C、低于2300°C、低于2200°C、 低于2100°C、低于2000°C)的烙融溫度的设备。另外,如果实屯、透明小珠可利用天然气与空 气燃烧产生的火焰来形成则是尤其有利的,所述火焰的特征在于绝热火焰溫度为约1980 °C。可能还需要使用仅提供空气泽火的设备。因此,本发明提供了运样的组合物,其具有优 异的烙融性和玻璃形成性,从而使得它们可用于通过采用燃烧火焰烙融工艺和空气泽火来 形成尺寸大于90微米(如,100微米、150微米和200微米)的小珠。
[0022] 除了可W便利地烙融和泽火W形成具有高折射率的透明小珠的优点外,具有高含 量氧化铜的小珠已知还能够提供高折射率、良好的烙融行为W及热处理时适宜的结晶。然 而,氧化铜可能昂贵并且可能包含诸如二氧化姉之类的杂质,所述杂质会赋予小珠 W不希 望有的颜色。较少量的氧化铜与一种或多种碱±金属结合使用,有时可提供烙融行为与其 他特性的理想组合。本发明的小珠与用作改性剂(CLT)的氧化巧(主要成分)和氧化铜组合 时能够非常好地烙融,并且对于给定的(AUT基础组合物能够提供意想不到的高折射率值。 氧化巧前体的成本相对较低,并且化T小珠在快速热处理过程中能够结晶成透明的纳米晶 小珠。
[0023] 本发明的制品具有共同的特征,即包括本文所述的化T小珠和/或包括含有至少部 分地嵌入忍体中的此类小珠的反射元件。所述化T小珠和/或反射元件的至少一部分露出于 制品(例如,路面标记)的观测表面上。微球和/或反射元件嵌入忍体中的深度优选地为其直 径的约30 %至约60 %。
[0024] 本发明的路面标记优选地包含粘结剂。在一些实施例中,粘结剂将微球(或包含微 球的元件)粘附于路面上。路面通常基本上为固体并通常包含占主要部分的无机材料。示例 性路面包括渐青、混凝±等等。粘结剂通常为例如油漆、热塑性材料、热固性材料或其他可 固化材料。示例性常见粘结剂材料包括聚丙締酸醋、甲基丙締酸醋、聚締控、聚氨醋、聚环氧 树脂、酪醒树脂和聚醋。对于反射路面标记漆而言,粘结剂可包含反射颜料。
[0025] 对于适用于反射标牌、服饰或其他用途的反射片材而言,粘附小珠的粘结剂通常 是透明的。透明粘结剂被施加到反射基底上或者可W被施加到带隔离涂层的支承体上,待 粘结剂固化后,将带有小珠的薄膜剥离,并且可随后将其施加到反射基底上或者为其赋予 反射涂层或锻层。
[0026] 本发明的包含微球的反射元件和/或微球通常涂敷有一种或多种表面处理剂,其 可W改变路面标记粘结剂的润湿性和/或改善包含微球的反射元件或微球在粘结剂中的粘 附性。反射元件优选地嵌入路面标记粘结剂中达到其直径的约20%至40%、更优选地达到 约30%,使得反射元件充分地露出。控制润湿性的表面处理剂包括多种含氣化合物衍生物, 例如商品名为"Kirtox 157FS",可购自Du Pont,Wilmington,DE。多种硅烷(例如那些可按 商品名"SiIquest A-1100"购自0SI Specialties,Danbury ,CT的硅烷)适于用作增粘剂。
[0027] 参照图1,逆反射元件200只包含部分地嵌入忍体202表面中的化T微球117,或包含 部分地嵌入忍体202表面中的微球117与低折射率小珠116的组合。忍体通常比小珠大得多。 例如,忍体的平均直径可W为约0.2毫米至约10毫米。
[0028] 忍体可包含无机材料。玻璃-陶瓷也可用作忍体材料。其晶相起到散射光的作用, 从而形成半透明或不透明的外观。作为另外一种选择,忍体可包含有机材料,例如热塑性树 脂忍体或粘合树脂忍体(如交联固化的树脂,例如环氧树脂、聚氨醋、醇酸树脂、丙締酸树 月旨、聚醋、酪醒树脂等)。多种环氧树脂、聚氨醋和聚醋在美国专利No.3,254,563(deVries) 和No.3,418,896(Rideout)中有概括性的描述。忍体可为包含无机颗粒的复合材料,其中所 述无机颗粒被涂敷W有机材料。在忍体为复合材料的情况下,有机材料用作粘结剂,从而将 小珠粘附到忍体的外表面上。
[0029] 尽管逆反射元件可由非漫反射式粘合树脂忍体与镜面反射微球(如,用侣蒸气涂 敷的微球)的组合制备,但是该方法由于使用了可能易受化学降解影响的金属而导致逆反 射元件的耐久性较差。将金属(如侣)渗入到忍体中也会导致逆反射元件的耐久性较差。在 优选的实施例中,逆反射元件包含至少一种分散在忍体中的非金属光散射材料。将反射元 件浸没在水中时,对于-4°的入射角和0.2°的观测角,反射元件的逆反射系数Ra通常为至少 约3(坎德拉/米2)/勒克斯,并且优选地为至少约7(坎德拉/米2)/勒克斯,更优选地为至少约 1〇(坎德拉/米2)/勒克斯,并且最优选地为至少约12(坎德拉/米2)/勒克斯。
[0030] 反射元件可通过已知的工艺制备,例如美国专利齡.5,917,652(1曰地6'3)和齡.5, 774,265(Mathers)W 及美国专利公布 No. 2005/0158461 (Bescup)中描述的工艺。
[0031] 在一些实施例中,小珠和/或反射元件被用于液态施加的标记(例如路面标记)应 用中。参照图2,小珠117和/或反射元件200依次或同时滴落在液化粘结剂10上或者混合在 被设置于路面20上的液化粘结剂10中。尽管图2示出一个路面标记中的小珠117W及单独路 面标记中的反射元件200,但是运仅仅是一种示例性实施方式。图2和本发明还旨在涵盖其 中小珠117和反射元件200处于同一个路面标记中的实施方式。另外,如果小珠117和元件 200包含在单独的路面标记中,那些路面标记也不必如图2具体示出的那样交替排列。
[0032] 在其他方面,小珠和/或反射元件被用于逆反射片材中,所述逆反射片材包括露出 式透镜片材、封装式透镜片材、嵌入式透镜片材或包封的透镜片材。代表性的路面标记片状 材料(带)在美国专利齡.4,248,932(化叫等人);齡.4,988,555化6化1〇111);齡.5,227,221 化e化lom) ;No. 5,777,79UHe化lom) W及No. 6,365,262化e化lom)中有所描述。
[0033] 路面标记片状材料通常包括背衬、粘结剂材料层和部分嵌入粘结剂材料层中的小 珠层。厚度通常小于约3毫米的背衬可由多种材料(包括例如聚合物薄膜、金属锥和纤维基 薄片)制成。合适的聚合物材料包括例如丙締腊-下二締聚合物、混炼型聚氨醋和氯下橡胶。 背衬也可W包括例如颗粒填料或防滑颗粒。粘结剂材料可包括多种材料,包括例如乙締基 聚合物、聚氨醋、环氧化物和聚醋,任选地含有诸如无机颜料(包括例如镜面反射颜料)之类 的着色剂。路面标记片材也可在背衬薄片的底部包含粘合剂,例如压敏粘合剂、触压粘合剂 或热烙粘合剂。
[0034] 路面标记通常呈现的根据ASTM E 1710-97的初始化为至少300毫坎德拉/米^勒克 斯、优选地至少500毫坎德拉/米^勒克斯、更优选地至少800毫坎德拉/米^勒克斯、甚至更 优选地至少1000毫坎德拉/米^勒克斯。
[0035] 图案化的逆反射(例如路面)标记有利地包括垂直或近似垂直的表面(例如,由凸 起限定的那些表面),其中部分地嵌入微球。因为光源发出的光通常W高入射角照在路面标 记上,因此包含嵌入微球的垂直表面为更有效的逆反射提供了条件。例如,图3示出图案化 的路面标记100,其包含聚合物基片1〇2(例如具有弹性的)和多个凸起104。为了进行示意性 的说明,仅仅一个凸起104被覆盖有微球和防滑颗粒。基片102具有后表面105和由其延伸出 凸起的前表面103。基片102通常为约1毫米(0.04英寸)厚,但是可根据需要而具有其他尺 度。任选地,标记100还可包含位于后表面105上的稀松布113和/或粘合剂层114。凸起104具 有顶表面106和侧面108,并且在一个示例性实施例中,凸起104为约2毫米(0.08英寸)高。可 根据需要使用具有其他尺寸的凸起。如图所示,侧面108与顶面106在圆顶部110处相交。侧 面108优选地在前表面103与侧面108的下部112相交处形成约70°的夹角Θ。凸起104涂敷有 包含颜料的粘结剂层115。多个化T微球117和多个第二微球116(其折射率优选地比化T微球 的折射率低)嵌入粘结剂层115中。任选地,防滑颗粒118可W嵌入粘结剂层115中。
[0036] 路面标记片材可通过多种已知的工艺来制备。运种工艺的代表性例子包括:将由 树脂、颜料和溶剂形成的混合物涂敷到背衬薄片上,将根据本发明的小珠滴落到背衬的润 湿表面上,并使该构造固化。然后将粘合剂层涂覆至背衬片材的底部。美国专利No.4,988, 541化e化lom)公开了一种制造图案化路面标记的优选方法。任选地,稀松布(如,织造的或 非织造的)和/或粘合剂层可根据需要附接到聚合物基片的背侧。
[0037] 在一些实施例中,采用了两种微球,其中一种为本文所述的化T小珠,第二种为折 射率例如约1.5至约2.0的"低折射率微球"。在一些方面,运两种微球中的一者较大一些。例 如,任选的低折射率微球的直径可为175至250微米,而化T微球的直径优选地为约50至100 微米。在运种情况下,较小的CLT微球可被设置在较大的低折射率微球之间。因此,CLT微球 被免于受到由反复的交通磨损导致的擦伤。然而,作为另外一种选择,可选用比任选的低折 射率微球大的化T微球。通常,较大的微球将覆盖路面标记表面积的逆反射部分的大于约 50%。
[0038] 任选的低折射率微球通常W占所用微球总量的至少25重量%、优选地为约35至约 85重量%的量存在。CLT微球通常W15至约75重量%的量存在。运些范围是优选的,运是因 为该范围可在干态逆反射性和湿态逆反射性之间提供良好的平衡并可提供良好的耐磨性。
[0039] 优选的是,将微球选择性地放置在凸起的侧面和顶表面上,而使得凸起之间的凹 处基本上不具有微球,从而使得所用的微球的量为最少,由此使制造成本最低。微球可W被 放置在凸起的顶表面和任意侧面上,从而实现有效的逆反射。
[0040] 图2和图3中的粘结剂层W及图1中所示的逆反射元件的忍体包含光透过性材料, 从而使得进入逆反射制品中的光不被吸收,而是W被光透过性材料中的颜料颗粒散射或反 射的方式被逆反射。乙締基类、丙締酸类、环氧树脂类和氨基甲酸醋类为合适介质的例子。 例如在美国专利齡.4,988,555化6化1〇111)中所公开的氨基甲酸醋至少对于路面标记而言是 优选的粘结剂介质。粘结剂层优选覆盖凸起的所选部分,从而使得基片保持为基本上不含 粘结剂。为了方便涂敷,介质优选地为在涂敷溫度下粘度小于10,000厘泊的液体。
[0041] 图2和图3中的粘结剂层W及图1中的忍体通常包含至少一种颜料,例如漫反射颜 料或镜面反射颜料。
[0042] 镜面反射颜料颗粒通常为薄片状,并且是粘结剂层、元件的有机忍体(基本上仅包 含有机粘结剂材料的忍体)或位于无机颗粒上的有机粘结剂涂层的一部分,其中位于无机 颗粒上的有机粘结剂涂层和该无机颗粒一起形成了元件的复合忍体。照射颜料颗粒的光W 与入射角度相等但与入射角相对的角度反射。用于本发明制品中的镜面反射颜料的合适例 子包括例如珠光颜料、云母W及珍珠颜料。通常,存在于粘结剂层中的镜面反射颜料的量小 于50重量%。优选的是,镜面反射颜料占粘结剂层的约15至40重量%,该范围为进行有效逆 反射所需的镜面反射颜料的最佳用量。珠光颜料颗粒通常由于色彩的真实性而优选。
[0043] 作为将反射(例如含颜料的)粘结剂和/或元件忍体与透明小珠结合运种方式的替 代或除了运种方式之外,小珠还可包括反射(例如金属的)涂层。优选的是,金属涂层不存在 于小珠的定向为接收将要被逆反射的光的外部表面部分,而是存在于小珠的定向为与将要 被逆反射的光的入射方向相背的外部表面部分。例如,在图1中,金属涂层可有利地被设置 在小珠117和忍体202之间的界面处。在图3中,反射层可有利地设置在小珠117和粘结剂115 之间的界面处,例如美国专利No. 6,365,262化e化1 om)中所示。可通过物理气相沉积法(例 如蒸发或瓣射)将金属涂层设置在小珠上。设置在小珠上的完全覆盖的金属涂层可通过化 学蚀刻而部分地被去除。
[0044] 小珠的成分被描述为氧化物(即,被假定为存在于完全加工好的玻璃和玻璃-陶瓷 小珠 W及逆反射制品中的各成分的形式,W及可正确地说明小珠中的化学元素及其比率的 形式)。用于制造小珠的原料质可包含一些除氧化物之外的化合物,如(举例来说)碳酸盐。 其他原料质在各成分的烙融期间变为氧化物的形式。由于运个原因,W理论氧化物为基础 对小珠的组成进行了讨论。本文所述的组合物是基于所用原料质的量W理论氧化物为基础 进行报告的。运些值不必考虑在烙融和球化工艺期间挥发掉的挥发性物质(例如挥发性中 间体)。
[0045] W理论氧化物为基础进行讨论的小珠的组成可通过将各成分与其在小珠中的重 量百分(重量%)浓度或摩尔百分(摩尔%)浓度一起列出来进行描述。列出各成分的摩尔% 浓度需要小屯、仔细,W明确了解应用所述摩尔%浓度数值的化学式。例如,在某些情况下, 用化学式La2〇3描述氧化铜是方便的;然而在其他情况下,用化学式La〇3/2描述氧化铜更为方 便。后一种表示方法是一例运样的方案,其中包含单金属的金属氧化物的化学式被调整为 每个化学式单元中具有一个金属原子,W及任何所需的准确反映金属氧化物的整体化学计 量关系的氧原子的量(即使w分数表示)。对于本文中采用w摩尔%为单位给出的金属氧化 物的浓度来表示的组成,摩尔%浓度的数值与包含单一一元金属原子的所述的化学式单元 有关。
[0046] 微球优选地包含至少45重量%的二氧化铁(如,46重量%、47重量%、48重量%、49 重量% ),更优选地为至少50重量%的二氧化铁(如,51重量%、52重量%、53重量%、54重 量%、55重量%、56重量%、57重量%、58重量%、59重量% )。用于微球的二氧化铁的量通常 小于80重量% (如,79重量%、78重量%、77重量%、76重量%、75重量%、74重量%、73重 量%、72重量%、71重量%)并且优选地不大于70重量%(如,69重量%、68重量%、67重 量%、66重量% )。二氧化铁在至少一些实施例中的量为60重量%至65重量% (例如61重 量%、62重量%、63重量%和64重量% )。二氧化铁为具有1840°C烙点的高折射率金属氧化 物,并且通常是由于其光学性质和电学性质而通常不是由于其硬度或强度而被使用。类似 于氧化错,二氧化铁为已知的使玻璃材料结晶的强效成核剂。尽管单独的二氧化铁具有较 高的烙点,但是作为某些氧化物混合物中的成分,二氧化铁可降低液相线溫度,同时显著提 高包含此类氧化物混合物的微球的折射率。包含二氧化铁和(任选地)氧化错的组合物,提 供了比较低的液相线溫度、极高的折射率值、适当热处理时的高结晶度、可用的机械性能W 及高透明度。
[0047] 在该实施例的一种优选实施方式中,微球包含约0.5重量%和约25重量%之间的 化0。在该实施例的另一种优选实施方式中,微球包含至少约1.0重量%的化0。运些微球的 一些实施方式包含CaO作为唯一存在的碱±金属氧化物,如果不计痕量的其他碱±金属氧 化物(例如小于0.25重量%),它们可能来源于W杂质形式存在于任何原料中的其他碱±金 属氧化物(即,此类微球优选地基本上不含氧化领、氧化锁和氧化儀)。在该实施例的另一种 优选实施方式中,微球包含约45重量%和约80重量%之间的Ti化。在该实施例的另一种优 选实施方式中,微球包含至少约1.0重量%的选自铜系元素氧化物的一种或多种金属氧化 物。在该实施例的另一种优选实施方式中,微球包含至少45重量%的11化;至少约0.5重 量%并小于约10重量%的选自铜系元素氧化物的一种或多种金属氧化物;W及至少约0.5 重量%的化0。在所有运些实施例和实施方式中,微球可W为例如透明的、玻璃的或玻璃-陶 瓷的。
[0048] 在另一个示例性实施例中,逆反射制品包含粘结剂;W及具有玻璃-陶瓷结构的微 球。所述微球是烙凝的并且包含按微球的总重量计为至少约45重量%的二氧化铁、至少约 0.5重量%的化0 W及约0.5重量%和约10重量%之间的选自铜系元素氧化物的一种或多种 金属氧化物。运些微球的一些实施例包含氧化巧作为唯一存在的碱±金属氧化物,如果不 计痕量的其他碱±金属氧化物(例如小于0.25重量% ),它们可能来源于W杂质形式存在于 任何原料中的其他碱±金属氧化物(即,此类微球优选地基本上不含氧化领、氧化锁和氧化 儀)。在至少一些包含微球的实施例中,微球的折射率可W为至少2.20、至少2.30或至少 2.40。微球的折射率优选地为至少2.3。逆反射制品可W为例如路面标记或逆反射元件。
[0049] 在该实施例的一种优选实施方式中,微球包含约0.5重量%和约25重量%之间的 化0。在该实施例的另一种优选实施方式中,微球包含至少约1.0重量%的化0。运些微球的 一些实施例包含氧化巧作为唯一存在的碱±金属氧化物,如果不计痕量的其他碱±金属氧 化物(例如小于0.25重量%),它们可能来源于W杂质形式存在于任何原料中的其他碱±金 属氧化物(即,此类微球优选地基本上不含氧化领、氧化锁和氧化儀)。在该实施例的另一种 优选实施方式中,微球包含约45重量%和约80重量%之间的Ti化。在该实施例的另一种优 选实施方式中,微球包含至少约1.0重量%的选自铜系元素氧化物的一种或多种金属氧化 物。在所有运些实施例和实施方式中,微球可W为例如透明的、玻璃的或玻璃-陶瓷的。
[0050] 在其他实施例中,描述了制造微球的方法。所述方法包括:提供本文所述的起始组 合物原料;用火焰溫度低于2700°C的火焰使原料烙融,从而形成烙滴;使烙滴冷却,从而形 成泽火的烙凝微球;并且任选地对经泽火的烙凝微球加热。
[0051] 在其他实施例中,描述了逆反射制品(如玻璃-陶瓷)微球W及玻璃组合物和玻璃- 陶瓷组合物。
[0化2] 在一些实施例中,本文所述的微球包含小于10重量% (例如,0.5重量%、1重量%、 2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量% )的氧化铜。一些 实施例包含约0.5重量%和约10重量%之间的选自铜系元素氧化物的一种或多种金属氧化 物。一些优选实施例的氧化铜的含量范围为2重量%至9重量%。在一些更优选实施例中氧 化铜的含量范围为约4重量%至约8重量%。在其他优选实施例中氧化铜的含量范围为大于 约5重量%至小于约10重量%。
[0053]铜为元素周期表的IIIB族中一组15个化学相关性元素(铜系)之一。铜系的名称和 原子序数如下:
[0化4]
[0055]尽管银为稀±元素,但据信此元素并不天然存在于±中。由于制造昂贵,所W氧化 银不太优选。类似地,铜和礼由于其较强的可用性而倾向于被优选。氧化铜、氧化及它 们的组合可代表大于75重量%的作为本文所述材料的铜系氧化物。在一些实施例中,氧化 铜、氧化及它们的组合相当于铜系氧化物的至少80重量%、至少85重量%、至少90重 量%、至少95重量%、甚至100%。
[0056] 在一些实施例中,微球可包含取代氧化铜或与氧化铜组合的其他铜系元素的氧化 物。因此,微球可包含选自铜系元素氧化物的一种或多种氧化物。可基于所选铜系氧化物的 组合的分子量来调节之前针对氧化铜的含量而提供的任何范围,从而提供相同的摩尔比。 一种优选的组合物包含:约1摩尔%至约6摩尔%的选自铜系元素氧化物的一种或多种氧化 物;约3摩尔%至约15摩尔%的氧化错;约2摩尔%至约20摩尔%的〔曰0; W及小于约73摩 尔%的二氧化铁。另一种优选的组合物包含:约2摩尔%至约5摩尔%的选自铜系元素氧化 物的一种或多种氧化物;约4摩尔%至约12摩尔%的氧化错;约3摩尔%至约15摩尔%的 化〇;W及小于约70摩尔%的二氧化铁。
[0057] 本文描述的微球任选地(然而通常也如此)包含至少0.5重量%的氧化错。氧化错 的量至多为40重量%。氧化错的量通常小于30重量%。在一个实施例中,氧化错的量为约 0.5重量%至约30重量%。在另一个实施例中,氧化错的量为约2重量%至约25重量%。在另 一个实施例中,氧化错的量为约5重量%至约15重量%。氧化错的量优选地为大于15重 量%。一般来讲,氧化错有助于化学和机械耐久性,并且对所优选小珠的高折射率有贡献。 如通常所已知的那样,氧化错常常包括一定含量的二氧化给化f〇2)杂质。此外,已知二氧化 给W及氧化社(Th〇2)可呈现与氧化错相似的物理及化学性质。因此,尽管本发明的小珠是 依据氧化错的含量进行描述的,但本领域的普通技术人员应当知道,二氧化给和氧化社可 部分或全部取代氧化错。
[0058] 据报道,氧化铜含量大于约10重量%的化T小珠体系可提供高折射率和高小珠品 质。然而,氧化铜可能费用很高,并且可能具有诸如二氧化姉之类的杂质,所述杂质会赋予 小珠 W不希望有的颜色。具有较低氧化铜含量并配W氧化巧W及另外的碱±金属的小珠也 有报道。
[0059] 本文所述微球可包含最多30重量% (例如,1重量%、2重量%、3重量%、4重量%、5 重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14 重量% )的其他金属氧化物。此类其他金属氧化物被选择成不会有损于微球的高折射率特 性。为了降低材料的烙点W便更容易加工,可另外选择添加其他金属氧化物。合适的其他金 属氧化物包括例如Li化、化2〇、K2〇、Al2化、ZnO、Si〇2W及化化。为了改善材料的机械性能,可另 外选择添加其他金属氧化物。但是,通常此类其他金属氧化物的量通常小于30重量%、小于 20重量%或者小于15重量%,W及小于10重量%。在一些优选的实施例中,所述组合物基本 上不含(小于1重量% )任何其他金属氧化物。
[0060] 本文所述的玻璃-陶瓷微球可包含一个或多个通常总计为至少5体积%的晶相。通 常,通过对无定形小珠进行热处理会产生一定的结晶度,但通过对烙滴进行泽火而形成的 某些玻璃-陶瓷小珠可包含晶体而无需进行二次热处理。运样的一个或多个晶相可包含比 较纯的二氧化铁(例如,锐铁矿、金红石)和/或氧化错(例如斜错石)的单成分金属氧化物 相。此外,运样的一个或多个晶相可包含比较纯的多成分金属氧化物相(如,Zdi〇4)。运样 的一个或多个晶相可包括与比较纯的单成分或多成分金属氧化物相为同构的晶体固溶液。 最终,依据晶体结构和/或组成,运样的一个或多个晶相可包括至少一个迄今未报导的晶 相。所述组合物呈现受控的结晶特性,使得它们在热处理后保持透明。
[0061 ] 着色剂也可包含在小珠中。此类着色剂包括例如Ce化、Fe2化、Co0、Cr2化、Ni0、Cu0、 Μη化、V2〇5等。通常,小珠包含W小珠总重量(W理论氧化物为根据)计的不超过约5重量% (如,1重量%、2重量%、3重量%、4重量% )的着色剂。此外,可任选地包含例如错、钦、館、 巧、镑、镜等稀±元素,W用于着色或发巧光。优选的是,微球基本上不含氧化铅(PbO)和氧 化儒(CdO)。
[0062] 本文所述的微球可由烙融工艺制备。由烙融工艺制备的微球在本文中描述为"烙 凝的"。为了便于制造,优选的是微球组合物呈现比较低的液相线溫度,例如低于约1700°C, 优选地低于约1600°C。通常液相线溫度低于约1500°C。一般来讲,包含处于或接近共晶组成 (如,二元或Ξ元共晶组成)的那些成分的制剂体系具有最低的烙点,并因此将尤其可用。
[0063] 最初由烙体形成的小珠基本上为无定形的,但仍可具有一定的结晶度。所述组合 物经泽火后优选形成清晰透明的玻璃微球。在进行进一步热处理时,小珠可形成玻璃-陶瓷 结构(即,其中晶体已在初始的无定形结构内长出的微结构)形式的结晶,并因此成为玻璃- 陶瓷小珠。在对泽火的小珠进行热处理时,小珠可形成纳米级的玻璃-陶瓷结构(即,其中尺 度小于约100纳米的晶体已在初始的无定形结构内长出的微结构)形式的结晶,并因此成为 玻璃-陶瓷小珠。纳米级的玻璃-陶瓷微结构是包含纳米级晶体的微晶玻璃-陶瓷结构。本发 明的范围还包括提供泽火后大部分直接形成晶体(即,大于50体积%的晶体)的透明微珠, 从而省略了热处理步骤。据信,在运种情况下,所采用的冷却速率不要高至足W保留无定形 结构的程度,但是要高至足W形成纳米晶体微结构的程度。
[0064] 对本发明来说,呈现出符合晶相存在时的X射线衍射图案的微球被认为是玻璃-陶 瓷微球。本领域的大致指导原则为:包含少于约1体积%的晶体的材料在常规粉末X射线衍 射测量中不能呈现出可检测的结晶度。此类材料通常被认为是气射线无定形"材料或玻璃 材料,而非陶瓷或玻璃-陶瓷材料。对本发明来说,其包含的晶体可通过X射线衍射测量进行 检测(通常为了进行检测需要存在的量为大于或等于1体积% )的微球被认为是玻璃-陶瓷 微球。可用飞利浦自动立式衍射仪(Philips Electronics Inshuments公司,Mahw址,New Jersey)收集X射线衍射数据,其中所述的飞利浦自动立式衍射仪装配有150 100 00型的宽 量程测角计、密封式铜祀X射线源、正比检测器、可变的接收狭缝、0.2°入射狭缝W及石墨衍 射束单色器,并且该衍射仪的测量设置为:源电压,45kV;源电流,35mA;步长,0.04%滞留时 间,4秒。同样,本文所用的"玻璃微球"是指晶体少于1体积%的微球。优选的是,玻璃-陶瓷 微球包含大于10体积%的晶体。更优选地,玻璃-陶瓷微球包含大于25体积%的晶体。最优 选地,玻璃-陶瓷微球包含大于50体积%的晶体。
[0065] 在优选的实施例中,微球通过热处理形成微晶玻璃-陶瓷结构并仍保持透明。为了 得到良好的透明性,优选的是微球包含很少或不包含尺度大于约100纳米的晶体。优选的 是,微球包含少于20体积%的尺度大于约100纳米的晶体,更优选地为包含少于10体积%的 尺度大于约100纳米的晶体,最优选地为包含少于约5体积%的尺度大于约100纳米的晶体。 优选的是,晶相中晶体的尺寸在其最大晶边长度上小于约20纳米(0.02微米)。该尺寸的晶 体通常不能有效地散射可见光,因此不会显著地降低透明性。
[0066] 可W多种尺寸制备和使用小珠。尽管故意形成直径小于10微米的小珠并不常见, 但一部分直径小至2微米或3微米的小珠有时会作为制造较大珠子的副产物形成。因此,小 珠优选地为至少20微米(例如,至少50微米、至少100微米和至少150微米)。一般来讲,使用 高折射率的小珠要求其直径小于约2毫米,并且最常见为直径小于约1毫米(如,小于750微 米,小于500微米和小于300微米)。
[0067] 玻璃微球可通过烙凝工艺制备,例如在美国专利No. 3,493,403(Tung等人)中公开 的工艺。在一种可用的工艺中,原料W颗粒形式按量配给,每种原料的尺寸优选地为约0.01 微米至约50微米,并紧密地混合在一起。起始原料包括在烙融或热处理时形成氧化物的化 合物。运些化合物可包括氧化物(如,二氧化铁、氧化错和碱±金属氧化物)、氨氧化物、酷基 氯、氯化物、硝酸盐、簇酸盐、硫酸盐、醇盐等等、W及它们的各种组合。此外,也可使用诸如 铁酸铜(LasTiOs)和铁酸领处aTi化)的多成分金属氧化物。
[0068] 作为另外一种选择,玻璃微球可通过其他传统工艺制备,例如在美国专利No . 2, 924,533(McMullen等人)和美国专利No.3,499,745(Plumat)中公开的工艺。氧化物的混合 物可在燃气炉或电炉中烙融,直至所有原料为液体形式为止。可将液体批料倾注到高速空 气射流中。理想尺寸的小珠直接在所得的液流中形成。在该方法中,调节空气的速度,从而 使得所形成的一定比例的小珠具有理想的尺度。通常,此类组合物具有足够低的粘度和足 够高的表面张力。通过该方法制备的小珠的代表性尺寸为十分之几毫米到3至4毫米。
[0069] 原料的烙融通常通过在约1500°C至约1900°C范围内的溫度下(并且通常在例如约 1700°C的溫度下)加热来实现。使用氨-氧燃烧器或乙烘-氧燃烧器的直接加热方法或者使 用弧像炉、太阳能炉、石墨炉或氧化错炉的炉加热方法可用于烙融原料。
[0070] 作为另外一种选择,将烙融的原料在水中泽火、干燥并粉碎,从而形成具有最终小 珠所需尺寸的颗粒。可将粉碎的颗粒过筛W确保其在合适的尺寸范围内。然后,可W使粉碎 的颗粒通过其溫度足W使颗粒再烙融并球化的火焰。
[0071] 在一种示例性的优选方法中,原料首先成型为较大的进料颗粒。将该进料颗粒直 接送入诸如氨-氧燃烧器、乙烘-氧燃烧器或甲烧-空气燃烧器之类的燃烧器中,接着在水 (例如W水幕或水浴的形式)中泽火。进料颗粒可通过对原料进行烙融和研磨、使原料团聚 或对原料进行烧结而形成。可使用尺寸(最大维度的长度)最大为约2000微米的团聚颗粒, 但是尺寸最大为约500微米的颗粒是优选的。团聚颗粒可通过多种熟知的方法制备,例如通 过与水混合、喷雾干燥、造粒等。可对原料(特别是团聚物形式的原料)进行分类W更好地控 制所得小珠的粒度。无论原料是否团聚,都可W将其送入燃烧器的火焰为水平取向的燃烧 器中。通常,将进料颗粒加进火焰底部。运种水平取向是理想的,运是因为其可W生产出很 高产率(例如,100 % )的具有所需透明度的球形颗粒。
[0072] 用于冷却烙滴的工序可设及气冷或急冷。急冷可通过例如将原料的烙滴滴入到诸 如水或冷却油之类的冷却介质中实现。此外,可采用其中将烙滴喷雾到诸如空气或氣气之 类的气体中的方法。所得泽火的烙凝小珠通常足够透明,从而足W用作逆反射制品中的透 镜元件。对于某些实施例,所述小珠也足够坚固、强硬和坚初,从而足W直接用于逆反射制 品中。后续的热处理步骤可改善小珠的机械性能。此外,热处理和结晶使得折射率增大。
[0073] 在一个优选的实施例中,可形成小珠前体并随后进行加热。如本文所用,"小珠前 体"是指通过使小珠起始组合物烙融和冷却而形成小珠形状的材料。运种小珠前体在本文 中也被称为泽火的烙凝小珠,并且如果小珠前体的机械性能、折射率和透明度为所需的程 度,则该小珠前体可适于使用而无需进一步加工。小珠前体通过如下步骤形成:使包含规定 量的原料(如,铁原料及任选的原料)的起始组合物烙融,形成预定粒度的烙滴,W及使所述 的烙滴冷却。制备起始组合物,使得所得小珠前体包含预定比例的所需金属氧化物。烙滴的 粒度通常为约10微米至约2,000微米。小珠前体的粒度w及最终的透明烙凝小珠的粒度可 受到烙滴的粒度的控制。
[0074] 在某些优选的实施例中,小珠前体(即,泽火的烙凝小珠)随后被加热。优选的是, 该加热步骤在低于小珠前体的烙点的溫度下进行。通常,此溫度为至少约750°C。优选地,此 溫度为约850°C至约1000°C,前提条件是它不超出小珠前体的烙点。如果加热小珠前体的溫 度过低,则增大所得小珠的折射率或增强其机械性能的效果将不足。反之,如果加热溫度过 高,则小珠的透明度会由于较大晶体发生光散射而降低。尽管对加热步骤(用于增大折射 率、形成结晶和/或改善机械性能)进行的时间没有具体限制,但是加热至少约1分钟通常是 足够的,并且加热应优选进行约5分钟至约100分钟。此外,热处理之前在约600°C至约800°C 的溫度下进行预热(如约1小时)可能是有利的,因为运样可进一步增大小珠的透明度并增 强其机械性能。通常且优选地,热处理步骤在空气或氧气中进行。运样的气氛通常有益于改 善小珠的颜色特性,使得它们更白。本发明的范围还包括在除了空气或氧气之外的气氛中 进行热处理。
[0075] 后一预热方法也适于在无定形相内W均匀分散的状态生长细晶相。在由烙体形成 小珠时(即,未进行后续加热),也可在包含高含量的氧化错或二氧化铁的组合物中形成包 含错、铁等的氧化物的晶相。值得注意的是,通过包含高组合浓度(例如,大于70%的组合浓 度)的二氧化铁和氧化错,晶相更容易形成(或者直接由烙体形成,或者在后续热处理时形 成)。
[0076] 由烙融工艺制成的微球的特征在于为"烙凝的"。完全玻璃质的烙凝微球包含致密 的、实屯、的、原子水平上均匀的玻璃网络,纳米晶体可在后续的热处理期间从所述玻璃网络 成核并生长。
[0077] 小珠的抗碎强度值可根据在美国专利No. 4,772,511 (Wood)中描述的测试工序进 行测定。采用该工序,小珠显示出的抗碎强度优选地为至少约350M化、更优选地为至少约 700MPa〇
[0078] 小珠的耐久性可根据在美国专利4,758,469 (Lange)中描述的测试工序将小珠露 出于压缩空气驱动的沙流中而被证实。采用该工序,小珠保持了最初逆反射亮度的约30% 至约60%,由此证明,小珠耐断裂、耐破碎和耐磨损。
[0079]
[0080] W下参照实例和比较例对本发明进行说明。应该理解,本发明绝不局限于运些实 例。除非另外指明,否则所有百分比均为基于组合物总重量的重量百分比。
[0081 ] 测试方法
[0082] 1.使用逆反射亮度计测定湿试片亮度值。所述逆反射亮度计装置引导白光W与设 置在白色背衬材料上的平面单层微球的法线成固定入射角的方式入射到所述单层微球上。 逆反射亮度(试片亮度)通过光电探测器W与入射角成固定的扩张角(观测角)的方式进行 测量,其单位为(坎德拉/米2)/勒克斯。本文所报导的数据是在入射角为-4°、观测角为0.2° 的条件下测量的。为了比较不同组成的小珠的亮度,进行逆反射亮度测量。通过将运些值除 W-个大于最大测量值的常数因子来进行规一化。所有测量均在小珠的顶部直接附有厚度 为约1毫米的水层的样品上进行。
[0083] 2.微球的折射率根据T.Yamaguchi的"Refractive Index Measurement of High Refractive Index Beads"(高折射率小珠的折射率测量)(Applied Optics(应用光学)第 14卷,第5期,第1111至1115页(1975))进行测量。
[0084] 实例1-13
[0085] 歴
[0086] 在实例中采用W下原料:
[0087] 氧化错-商品名为"CF-化 US-HM",可购自 Z-TECH division, Carpenter Engineering Products,Bow,New Hampshire;
[0088] 二氧化铁-商品名为"KRONOS 1000",可购自KRONOS Inco巧orated,Cranbu巧,New Jersey;
[0089] 碳酸领-商品名为 "Type S",可购自 Chemical Products Corporation , Cartersvilie,Georgia;
[0090] 碳酸锁-商品名为 "Type B",可购自 Chemical Products Corporation , Cartersvilie,Georgia;
[0091 ]氧化铜-商品名为。氧化铜La2〇3,99.9%",可购自 Treibacherjndushie Inc., Toronto,Ont曰rio,C曰η曰ds;
[oow] 微球的制备
[0093] 在各实例中,将如下表1中指定克数的各金属氧化物与3g簇甲基纤维素钢(商品名 为"CMC 7L2C",可购自Aqualon Division,Hercules Inco;rporated,Hopewell,VA)、大约 350g的水和大约1600g直径为1cm的氧化错研磨介质在1夸脱的瓷瓶研磨机中混合。
[0094] 通过W大约每分钟100转的转速旋转上述组件大约24小时来研磨所得浆液,然后 使所得浆液在100°c下干燥过夜W得到各成分均匀分布的混合粉饼。用研鉢和研巧对干燥 颗粒进行研磨之后,通过使其过筛进行筛分。将颗粒(直径<212微米)送入下文称为 巧ethlehem燃烧器"的氨/氧火炬(商品名为"Bethlehem Bench Burner PM2D Mode]_-B",可 购自 Beth 1 ehem Apparatus Company, He 11 ertown, PA)的火焰中。Beth 1 ehem燃烧器 W 如下 速率输送氨气和氧气,单位为标准升/分钟(SLPM):
[0095]
[0096] 将所得颗粒采用火焰烙融并传送至水冷容器中,从而得到烙凝微球。将泽火颗粒 干燥,随后第二次通过Bethlehem燃烧器的火焰,在Bethlehem燃烧器的火焰中,所述颗粒被 再次烙融,然后被传送至水冷容器中。按照W下方式对一部分泽火微球进行热处理,所述方 式为将所述微球Wl〇°C/分钟的速率加热至850°C,在850°C下保持1小时,然后随炉冷却。
[0097] 表2记载了每个实例的理论上的小珠组成,其考虑了原料批料中发生的任何碳酸 盐的分解。表2还记录了 i)经火焰成形后和ii)经炉热处理后的泽火微球的折射率值。最后, 表2还记录了过筛至直径小于106微米的经热处理的微球的湿试片亮度值。
[00側表1.批量
[OW。表1I I.小珠的实例组成
[0103]
[0104] 讨论了对本公开设及的示例性实施例并提及本公开范围内可能的变型。对于本领 域的技术人员来说,在不偏离本公开范围的前提下,本公开的运些变化和其他变化W及修 改形式将是显而易见的,而且应当理解,本公开不受限于本文阐述的示例性实施例。因此, 本公开仅受限于下面提供的权利要求书。
【主权项】
1. 一种微球,包含: 至少约45重量%的1102; 大于0.5重量%至小于10重量%的氧化镧; 除氧化镧以外的一种或多种镧系金属氧化物; 约0.5重量%和约25重量%之间的CaO; 其中所述微球的折射率为至少2.3,以及 其中氧化钙作为在所述微球中唯一存在的碱土金属氧化物,如果不计痕量的小于0.25 重量%的其它碱土金属氧化物。2. 根据权利要求1所述的微球,包含约45重量%到约80重量%之间的T i 02。3. 根据权利要求1所述的微球,包含大于5重量%的氧化镧。4. 根据权利要求1所述的微球,包含小于8重量%的氧化镧。5. 根据权利要求1所述的微球,其中所述镧系金属氧化物是氧化钆。6. 根据权利要求1所述的微球,包含至少约1.0重量%的CaO。7. 根据权利要求1所述的微球,其中所述微球为透明的。8. 根据权利要求1所述的微球,其中所述微球为玻璃的。9. 根据权利要求1所述的微球,其中所述微球为玻璃-陶瓷的。10. 根据权利要求1所述的微球,其中所述微球形成逆反射制品。11. 根据权利要求10所述的微球,其中所述逆反射制品是路面标记。12. 根据权利要求10所述的微球,其中所述逆反射制品是逆反射元件。13. -种微球,包含: 至少约45重量%的1102; 大于0.5重量%至小于10重量%的氧化镧; 氧化钆; 约0.5重量%到约25重量%之间的CaO; 其中所述微球的折射率至少为2.3;且 其中氧化钙作为在所述微球中唯一存在的碱土金属氧化物,如果不计痕量的小于0.25 重量%的其它碱土金属氧化物。14. 根据权利要求13所述的微球,包含大于5重量%的氧化镧。15. 根据权利要求13所述的微球,包含小于8重量%的氧化镧。
【文档编号】F21V7/22GK106082683SQ201610391025
【公开日】2016年11月9日
【申请日】2009年8月21日 公开号201610391025.8, CN 106082683 A, CN 106082683A, CN 201610391025, CN-A-106082683, CN106082683 A, CN106082683A, CN201610391025, CN201610391025.8
【发明人】肯顿·D·巴德, 马修·H·弗雷, 克雷格·W·林赛
【申请人】3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1