从分支杆菌中提取的用于刺激免疫功能,治疗免疫相关性疾病,过敏性皮炎和/或保护正...的制作方法

文档序号:3576173阅读:295来源:国知局
专利名称:从分支杆菌中提取的用于刺激免疫功能,治疗免疫相关性疾病,过敏性皮炎和/或保护正 ...的制作方法
技术领域
本发明涉及从分支杆菌中提取的用于操纵免疫反应的寡核苷酸,根据治疗用途该寡核苷酸可刺激免疫反应并维持免疫反应平衡并且对如过敏性皮炎等的各种与免疫相关的疾病有治疗效果。特别地,本发明涉及参与刺激免疫反应的寡核苷酸,该寡核苷酸具有三个CpG基序,其功效依据DNA序列的修饰而变化,并且该寡核苷酸通过形成磷酸二酯的寡脱氧核苷酸刺激免疫反应(辅助剂),并维持Th1/Th2免疫反应的平衡用于治疗各种免疫相关疾病和过敏性皮炎,并在放射治疗时,还具有增加细胞存活率的作用。
背景技术
免疫系统,通常通过先天的免疫系统起始,应当得到精巧的控制以维持其平衡。也就是说,在免疫和耐受之间,在第一型辅助性T细胞(Th1)和第二型辅助性T细胞(Th2)免疫反应之间,以及在炎症和无应答之间的该平衡必须得到精巧的控制。然而,不幸的是,如与自体免疫性相关的疾病,过敏性疾病,慢性炎症等,由于迄今为止开发的治疗免疫相关疾病的许多药物不能充分地调控免疫系统而使其得以传播。然而,先天性的免疫系统的机制是当病原体入侵时,免疫细胞通过识别外来物质的结构差异(病原体相关分子模式,PAMP)被激活,并随后传递信号以起始免疫系统的级联反应,从而消灭病原体。因而,在准确理解了应用先天免疫系统的有益和有害机制后,所研发的治疗免疫相关疾病的药剂必须能减少有害机制。
18世纪90年代,威廉.B.葛雷(William.B.Coley)观察到一个令人惊奇的结果,病原微生物的感染可以对癌症病人产生抗癌效果,因此发现如果将其施用到900例癌症病人中,改进的细菌疗法具有约40%的疗效。19世纪80年代,日本研究人员从一个新的不同方面验证了葛雷毒素的有效性,证明卡介苗(BCG)的一个活性片段表现出抗癌效果,并确认BCG的抗癌活性来自于DNA序列的固有特性。1995年柯瑞格(Kreig)等人在研究反义寡核苷酸抑制B细胞基因期间,证明一段特定的包括未甲基化的胞嘧啶和鸟嘌呤的合成寡脱氧核苷酸(ODNs)的DNA序列可以诱导免疫细胞的活化。从柯瑞格的观点来看,首次提出日本研究人员在其文献中证明的BCG的抗癌效果源于其未甲基化的BCG DNA的特性,而且这种细菌DNA的免疫激活使脊椎动物的免疫系统能识别自身DNA和非自身的DNA。
细菌免疫激活和调控的早期研究集中于诱导产生抗体的葛雷毒素一类的蛋白抗原。然而,许多研究报导到在微生物的组分中存在更有力的免疫激活诱发剂。同时也证明细菌DNA易于诱导产生有力的免疫激活,以及对每一种抗原(6,7)产生确切的免疫应答。包括两种核酸序列的CpG二核苷酸是免疫激活和调控的关键所在,并且近期的研究显示脊椎动物也可以识别自身的DNA和细菌的DNA以激活免疫细胞。这种CpG基序大量存在于细菌中,但不存在于脊椎动物中。很显然,包含这种CpG基序的寡脱氧核苷酸(CpG-寡脱氧核苷酸,CpG-ODN)可以激活宿主的各种防御机制,包括先天性免疫应答和获得性免疫应答(Akdis,CA.Curr Opin Immunol.,12641-646,2000)。
近来,人们开发出一种CpG-ODN,其主链被修饰以增加CpG-ODN的可用性。这种具有磷酸二酯主链,称为DNA基链的CpG-ODN,因为对核酸酶敏感,很容易在体内分解。因而,这种CpG-ODN在体内诱导毒性的风险较低。但是,显示具有这种磷酸二酯主链的CpG-ODN的活性低于其它主链的CpG-ODN(Kwon,HJ.等人.,Biochem.Biophys.Res.Commun.,311129-138,2003)。另一方面,具有硫代磷酸酯主链的CpG-ODN是通过修饰其结构可被人工合成,以使其在体内不能被核酸酶分解。同磷酸二酯主链的CpG-ODN相比,硫代磷酸酯主链的CpG-ODN在体内具有良好的稳定性和很好的激活B细胞的能力。因而,修饰成硫代磷酸酯主链的CpG-ODN近来得到广泛的应用。然而,由于这种ODN对许多蛋白的非特异性结合的增加,因此硫代磷酸酯主链的CpG-ODN不容易在体内分解而诱发毒性。并且,有报告指出,硫代磷酸酯主链的CpG-ODN能诱导关节炎并加剧其症状(Deng GM等人.,Arthritis & Rheumatism,43(2)356-364,2000),还可引发如SLE(系统性红斑狼疮)之类的自体免疫相关疾病(Tanaka,T.等人.,J Exp.Med.175597-607,1992)。
通过在疫苗中加入作为辅剂的各种物质制成制剂,自本世纪初以来,将这种制剂设计成使疫苗的效果最大化。但现在只有铝盐(矾,Al2O3)被认可用作辅剂加入疫苗中。近期的研究发现,和仅单独采用矾做辅剂相比,将重组肝炎表面抗原和矾及CpG-ODN共同混合后用药于小白鼠,疫苗的有效性极大提高(Davis H L.等人.,J.Immunol.160870-876,1998)。显然矾通过诱导Th2免疫反应能轻微诱导细胞介导的免疫反应,而CpG-ODN通过诱导Th1细胞因子的表达强烈诱导体液和细胞介导的免疫反应。然而,问题是这个例子中使用的CpG-ODN由于具有硫代磷酸酯主链会引起副作用。
同时,皮肤疾病是指动物包括人类在内的皮肤上出现的所有不正常症状。其中,过敏性皮炎具有选自于包括严重的皮肤瘙痒症、干皮症和湿疹皮炎组中的如慢性/皮肤炎症疾病的典型主要症状(Rudikoff,D.等人.,Lancet.3511715-1721,1998)。一般说来,过敏性皮炎倾向于具有遗传性,依据个体的不同,往往伴有过敏性哮喘,过敏性鼻炎,过敏性结膜炎或荨麻疹。据报道过敏性皮炎的患者中会出现一系列的变态免疫反应,包括增加IgE的产量,减少CD8+抑制型/毒杀型T淋巴细胞(CD8+suppressor/cytotoxicT lymphocytes)的数量和破坏其功用,减少分泌IFN-gamma的Th1(第一型辅助性T细胞)细胞的数量等。同时,在过敏性皮炎的异常皮肤中,具有组织学的CD4+表型的T淋巴细胞,浸润性单细胞/巨噬细胞,肥大细胞和嗜酸性粒细胞的数目增加,并且在过敏性皮炎的异常皮肤中,树突细胞(DCs)和表皮的朗格罕氏细胞也增加了(Imokawa,G.,et al.,J.Invest.Dermatol.,96523-526,1991)。
许多研究人员开发出用X-射线杀死癌细胞治疗癌症的方法。但是在用放射疗法治疗癌症时,癌组织和相邻的免疫细胞都不可避免地受到辐射的伤害,结果降低了患者的免疫功能。据报道免疫细胞如B细胞(Ashwell JD等人.,J.Immunol.1363649-3656,1986),T细胞(Prosser JS Int.J.Radiat.Biol.Relat.Stud.Phys.Chem.Med.30459-465,1976)和巨噬细胞(Yoshihisa K等人.,J.Radiat Res.45205-211,2004)等都会被辐射杀死(凋亡)。因而,在用放射疗法治疗癌症一类的疾病时,需要癌细胞以外的正常免疫细胞得以存活以维持正常的免疫反应。
本发明涉及从牛分支杆菌卡介苗中提取寡核苷酸用于操纵免疫反应。该寡核苷酸可以通过刺激免疫反应(辅剂)和维持免疫反应平衡用于治疗各种免疫相关疾病,并且该寡核苷酸还具有治疗过敏性皮炎和在放射时能提高细胞存活率的效果。

发明内容
因此,本发明提供一种从牛分支杆菌BCG(MB-ODN)中分离的CpG寡脱氧核苷酸,其存在于以下的通式中,所构成的DNA序列包含至少两段未甲基化的CpG基序,其中所述CpG寡脱氧核苷酸可用于刺激免疫反应(辅剂),维持Th1/Th2免疫反应的平衡,从而治疗各种免疫相关疾病,并且在用放射疗法治疗癌症等疑难疾病时,保护正常的免疫细胞,还提供了一种治疗或预防皮肤疾病的方法。
HKCGTTCRTGTCSGM(SEQ ID NO1)其中,R表示A或G;S表示C或G;H表示A,T或C;K表示G或T;M表示C或A。
在本发明中,寡核苷酸进一步优选在5’-末端和3’-末端包含五个核苷酸,被表示在下面通式中[通式]DKMHKCGTTCRTGTCSGMYK(SEQ ID NO2)其中,R表示A或G;S表示C或G;H表示A,T或C;K表示G或T;D表示A,G或T;M表示C或A;M表示C或A;以及Y表示C或T。
在本发明中,术语“CpG基序”是指一段包含由磷酸二酯键(磷酸键)连接的未甲基化的胞嘧啶-鸟嘌呤二核苷酸(称作未甲基化的胞嘧啶-磷酸-鸟嘌呤二核苷酸)的DNA序列,并可活化免疫反应。同时,术语“CpG寡脱氧核苷酸(以下称为‘CpG-ODN’)”是指一种包含至少两段CpG基序的寡脱氧核苷酸。
同样在本发明中,术语“受试者”指哺乳动物,特别是包括人在内的动物。受试者可以是一个需要治疗的病人。
在本发明中,寡核苷酸优选选自包括下列的组5’-AGCAGCGTTCGTGTCGGCCT-3’(SEQ ID NO3),5’-AGCAGCGTTCGTGTGCGCCT-3’(SEQ ID NO4),5’-AGCAGCGTTCATGTCGGCCT-3’(SEQ ID NO5),5’-AGCAGCGTTCGTGTCCGCCT-3’(SEQID NO6),5’-GTATTCGTTCGTGTCGTCCT-3’(SEQ ID NO7),以及5’-TGACTCGTTCGTGTCGCATG-3’(SEQ ID NO8)。
本发明的MB-ODN可以从自然资源(如牛分支杆菌BCG染色体DNA)中分离出来,也可化学合成或重组制备。本发明的MB-ODN可以用本领域中所知的各种合成核酸的技术和设备进行合成(Ausubel等人,Current Protocols in Molecular Biology,Chs 2.and 4(Wiley Interscience,1989);Maniatis,等人,Molecular CloningALaboratory Manual(Cold Spring Harbor Lab.,New York,1982);and U.S Patent No.4,458,066)。
本发明的MB-ODN优选具有磷酸二酯主链。这种磷酸二酯主链,又称DNA基链诱导体内毒性的风险较低,因为其可以容易地被体内核酸酶所分解。本发明的MB-ODN的特征在于,和其它常规的CpG-ODNs不同,尽管具有磷酸二酯主链,但在体内和体外其具有极好的免疫活性。本发明的MB-ODN也可以包括修饰过的主链。已经证实在CpG-ODN给活体用药时,对寡核苷酸主链进行修饰可使CpG ODN活性和/或稳定性增加。在本发明的MB-ODN中,对主链的修饰优选包括将主链修饰成硫代磷酸酯,阻止其分解。可以将末端修饰成硫代磷酸酯,如5’或3’末端的最后的两或三个核苷酸可以用硫代磷酸键连接。而且,可将本发明的MB-ODN修饰成具有二级结构(如茎-环结构)以阻止其分解。优选的,可将本发明的MB-ODN修饰成具有部分硫代磷酸酯-修饰的主链。硫代磷酸酯可以通过使用化学方法由磷酰胺或H-磷酸酯自动技术合成(S.E.Beaucage等人.,Tetrahedron Lett.,221859,1981;Froehler et al.,Nucl.Acid.Res.,145399-54)。另一个修饰的实例是芳基和烷基磷酸酯可采用如美国专利No.4,469,863所公开的方法合成,烷基磷酸三酯(美国专利No.5,023,243和欧洲专利No.092,574公开的一种带电氧残基被烷基化)可以使用商业可获得的试剂自动固相合成制成。还有另一个使MB-ODN对分解的敏感性降低的修饰实例,包括乙酰化-和硫化-以及对腺苷、胞嘧啶、鸟嘌呤、胸腺嘧啶和尿苷及非典型碱基如次黄苷和quesine进行的类似的修饰。具有二醇的CpG-ODN,如末端有四乙二醇(tetraethylglycol)和六乙二醇也有较强的抗分解性。更进一步说,本发明的CpG-ODN还包含磷酸二酯和硫代磷酸酯的组合,磷酸三酯,磷酰胺,磷酸甲酯,硫代磷酸甲酯,二硫代磷酸酯及其组合物(Khorana等人.,J.Molec.Biol.,72209,1972;Goodchild,J.Bioconjugate Chem.,4165,1990)。如上所述,主链被修饰过的CpG-ODN通过提高抗核酸酶,增加细胞和蛋白质的摄取和/或改变细胞间定位等而具有更强的免疫效果。
本发明的MB-ODN的主链优选磷酸二酯(以下称为O-型)或硫代磷酸酯(以下称为S-型)主链,并且最优选的主链是O-型主链,它不容易在活体内分解而诱发副作用。
显然本发明的MB-ODN可通过诱导Th1细胞因子表达而强烈诱导体液免疫反应,并具有改善疫苗效果的辅助活性。其特定的生理活性如下1)从小鼠和小鼠脾脏提取的免疫细胞中的IL-12产量增加。
2)树突状细胞被激活而诱导IL-12的表达。
3)当HEL和MB-ODN分别用作抗原和辅剂时,抗体的产量增加。同时证实当CFA用作抗原时,作为Th1免疫反应的结果,IgG2a的产量有更大的增加。
通过上述的活性,本发明的MB-ODN具有改善疫苗功效的作用。与现有技术所知的常规的CpG-ODNs不同,本发明的MB-ODN的特点在于,与主链的型式无关,其具有几乎相同的活性。在本发明中,证实修饰成O-型主链的本发明CpG-ODN和修饰成S-型主链的CpG-ODN具有几乎相同的活性。并且,由于已经证实可以通过诱导Th1细胞因子表达而强烈诱导体液免疫反应,因此本发明的CpG-ODN可以作为一种有效的疫苗辅剂。
本发明的MB-ODN通过抑制Th2细胞因子(如IL-4),和/或诱导Th1细胞因子(如IL-12)具有调控Th1/Th2免疫反应的平衡的生理活性。其特定的生理活性如下1)巨噬细胞被激活从而激活IL-12启动子;2)树突状细胞被激活从而诱导IL-12表达;3)小鼠体内的IL-12产量增加;4)小鼠脾脏内的免疫细胞中的IL-12产量增加;5)由Th2淋巴细胞介导的细胞因子(IL-4和IL-10)的表达得到抑制;6)在过敏性皮炎的损伤部位,CD4+和CD8+淋巴细胞的细胞数量减少;7)血清中的IgE水平降低。
本发明的MB-ODN通过上述的活性而具有治疗皮肤疾病或改善其症状的效果。与现有技术所知的常规的CpG-ODNs不同,本发明的CpG-ODN的特点在于,与主链的型式无关,其具有几乎相同的活性。在本发明中,证实修饰成O-型主链的本发明CpG-ODN和修饰成S-型主链的CpG-ODN具有几乎相同或更优越的活性。因而本发明的MB-ODN可用于治疗或预防各种皮肤疾病。另外,由于可以通过诱导Th1细胞因子表达而维持Th1/Th2免疫反应的平衡,因此本发明的CpG-ODN可以作为一种有效的药物治疗因Th1/Th2免疫反应失衡导致的免疫相关疾病(如,哮喘病)。
本发明的MB-ODN具有增加免疫细胞存活率的效果。MB-ODN具有刺激巨噬细胞从而增加Bcl-xs/L表达的作用,从而抑制因放射造成的细胞凋亡。MB-ODN还具有抑制因放射造成的B细胞的凋亡的作用。因而在采用放射疗法治疗癌症之类的疑难疾病时,本发明的MB-ODN通过增加正常免疫细胞的存活率有效地使免疫功能正常化。MB-ODN特定的生理活性如下1)巨噬细胞的Bcl-xs/L表达增加;2)使用放射时,巨噬细胞的存活率增加;以及3)使用放射时,B-细胞的存活率增加。
附图概述本发明的上述和其他的特点,以及优选实施例的优点将通过结合附图在下面详细描述中得到更充分的说明,通过参考将其整体在此合并。附图中

图1是用计算机程序对大肠杆菌(E.coli)和牛分枝杆菌BCG染色体DNA序列的分析结果。对在两个末端为CG二核苷酸的所有DNA序列(CpG基序)进行了分析。如图1所示,分析结果确认,有更大数量的CpG基序存在于牛分枝杆菌BCG的染色体中。
图2是在DNA序列中在20个碱基对中有三段CpG基序的DNA序列的分析结果,其中所述的DNA序列存在于牛分枝杆菌BCG染色体DNA中。在这些CpG基序中,寡核苷酸在碱基C和C(-CGXXCGXXXCG-,MB-ODN 4/5)之间有4和5个碱基空位以及每5个碱基空位处于碱基C和C(-CGXXXCGXXXCG-,MB-ODN 5/5)之间。已经证实在牛分枝杆菌BCG的染色体DNA中有395个寡核苷酸以(-CGXXCGXXXCG-)型式存在,354个寡核苷酸以(-CGXXXCGXXXCG-)型式存在。
图3的表列出了选用的并合成的用于调控免疫反应的71个候选寡核苷酸用于检测候选序列。
图4表示用调控免疫反应的71寡核苷酸处理RAW264.7细胞,细胞中IL-8和IL-12启动子激活的情况,所述71寡核苷酸是在图3中所示的以磷酸二酯键的形式合成的。图4a是比较MB-ODN4/5形式的35个合成的寡核苷酸激活巨噬细胞中IL-8启动子的倍数的结果。图4b是比较MB-ODN4/5形式的35个合成的寡核苷酸激活巨噬细胞中IL-8启动子的结果。图4c是比较MB-ODN5/5形式的35个合成的寡核苷酸激活巨噬细胞的IL-8启动子的倍数的结果。
图5列出了选出的17个寡核苷酸的结果,这17个寡核苷酸存在于牛分枝杆菌BCG染色体DNA中,在DNA序列的20个碱基对中具有MB-ODN4/5#31的核心链CGTTCGTGTC,并且在核心链CGTTCGTGTC的5’端和3’端都具有5个不同的DNA序列(图5a)。然后合成具有磷酸二酯主链的寡核苷酸以比较这17个寡核苷酸激活巨噬细胞中IL-8启动子的倍数(图5b)。
图6列出了寡核苷酸MB-ODN4/5#31(M),#31-CG和#31-A,B,C,D激活巨噬细胞中IL-8启动子的倍数的比较结果(图6b)。其中所述的MB-ODN4/5#31的碱基数减少到15个碱基对,所述的#31-CG中的CG序列替换为GC序列,所述的#31-A,B,C,D中CG序列的G分别独立被A,T或C(图6a)取代。
图7表示MB-ODN4/5#31和#31.14的主链是以磷酸二酯和硫代磷酸酯的形式合成的,以比较它们对小鼠巨噬细胞系RAW264.7细胞中的IL-8和IL-12启动子激活的影响程度。图7a和图7b表示以磷酸二酯和硫代磷酸酯形式合成的MB-ODN4/5#31的主链激活IL-8启动子与浓度有关。图7c和图7d的图表表示MB-ODN4/5#31和#31.14的主链是以磷酸二酯和硫代磷酸酯形式合成的以比较它们对IL-8和IL-12启动子激活的影响程度。
图8表示当RAW264.7细胞系被磷酸二酯和硫代磷酸酯主链的MB-ODN4/5#31激活时,NF-κB被激活的情况。图8a是一张共焦显微镜照片,显示了RAW264.7细胞经过MB-ODN4/5#31(10μg/ml)处理和固定30分钟后,接着使用NF-κB p65特异抗血清进行间接免疫萤光分析(EMSA),确定了NF-κB的位置。图8b显示的是电泳迁移率变动分析(EMSA)的结果,其中RAW264.7细胞经过MB-ODN4/5#31(10μg/ml)处理30分钟后,分离核蛋白以确定NF-κB结合到NF-κB的共有结合部位。
图9表示MB-ODN4/5#31的主链是以磷酸二酯和硫代磷酸酯形式合成的以比较它们对经鸡蛋溶菌酶(HEL)进行腹部免疫的Balb/c小鼠体液免疫反应的影响程度。
图10是电泳图,比较了本发明的MB-ODN4/5#31和常规的1826CpG-ODN及无-CpG-ODN(2041)对树突状细胞中IL-12表达的影响。
图11比较了本发明的MB-ODN4/5#31的修饰过的主链和常规的1826CpG-ODN及无-CpG-ODN(2041)的修饰过的主链对IL-12 p40产生的影响。图11a确定了用MB-ODN4/5#31对Balb/c小鼠进行腹部免疫后,血清中产生IL-12 p40的量。图11b表示了从Balb/c小鼠中分离出来的脾脏免疫细胞用MB-ODN4/5#31处理后,所产生的IL-12p40水平。
图12的照片显示了给动物模型1施用本发明的O-型MB-ODN4/5#31.14治疗过敏性皮炎。
图12a的照片显示了NC/Nga小鼠背部的过敏性皮炎伤害部位用本发明的O-型MB-ODN4/5#31处理后,在第5和第7天肉眼观察到的结果。图12b的照片显示的是将O-型MB-ODN4/5#31施用到NC/Nga小鼠背部皮肤,其中所述背部皮肤上的过敏性皮炎已经消退(break out),被切下来,并用H&E染色后的照片。图中,“”棘皮症的损害部位,“→”表示过度角化的损害部位。
图13是一张组织化学分析结果的显微照片,显示了NC/Nga小鼠的背部皮肤用本发明O-型的MB-ODN4/5#31给药后,在皮肤上观察到的细胞因子(IL-2和INF-gamma)表达的水平。图中,箭头表示细胞因子表达的位点。
图14是一张组织化学分析结果的显微照片,显示了NC/Nga小鼠的背部皮肤用本发明O-型MB-ODN4/5#31给药后,在皮肤上观察到的CD4+和CD8+淋巴细胞的数目。
图15显示了NC/Nga小鼠用本发明O-型MB-ODN4/5#31给药后,其血清中IgE的水平。图中“AD”表示未用药组。
图16表示了用蛋白质印迹法显示的用本发明O-型MB-ODN4/5#31处理后,巨噬细胞系的RAW264.7的Bcl-xs/L表达增加。
图17显示了用MTT分析法表示的用MB-ODN4/5#31预先处理RAW264.7细胞后,RAW264.7细胞经射线照射时,RAW264.7细胞的存活率增加。
图18显示了用PI染色后,用流式细胞分析表示的用MB-ODN4/5#31预先处理RPMI8226细胞后,RPMI8226细胞经射线照射时,RPMI8226细胞的存活率增加。
图19显示了用Annexin v染色后,用流式细胞分析表示的用MB-ODN4/5#31处理RPMI8226细胞后,B细胞系RPMI8226经射线照射时RPMI8226细胞存活率增加。
本发明的最佳实施例以下参考附图将详细描述本发明的优选实施方案。
因此,在此公开的描述仅仅是优选的实施例仅用于说明的目的,不能限制本发明的范围。
实施例1大肠杆菌(E.coli)和牛分枝杆菌卡介苗(M.bovis BCG)染色体DNAs的DNA序列分析<1-1>大肠杆菌(E.coli)和牛分枝杆菌卡介苗(M.bovis BCG)染色体DNAs中CpG基序的DNA序列分析本发明人采用计算机程序分析了大肠杆菌和牛分枝杆菌染色体DNA序列。对存在于大肠杆菌和牛分枝杆菌卡介苗染色体DNAs中的包括6种核苷酸的DNA序列的频率用计算机程序进行计算。发现,在染色体DNA中,DNA序列XXCGXX出现的理论概率是1/46,而实际上在大肠杆菌和牛分枝杆菌卡介苗染色体DNAs中序列XXCGXX出现的概率要大的多。同时还证实序列XXCGXX出现在牛分枝杆菌卡介苗染色体DNA中的频率大大高于其在大肠杆菌染色体DNA出现的频率(图1)。
<1-2>牛分枝杆菌卡介苗染色体DNA中的CpG ODN的DNA序列的分析从牛分枝杆菌卡介苗染色体DNA中随机选择包括20个碱基对的寡核苷酸,然后挑选出其中包含三个XXCGXX基序的寡核苷酸。
如,GACGTTGAGTCGTTAACGAG对在C和C(-CGXXCGXXXCG-,MB-ODN 4/5,图2a)之间有4和5个碱基空位的寡核苷酸,以及在碱基C和C(-CGXXXCGXXXCG-,MB-ODN 5/5图2b)之间都具有5个碱基空位寡核苷酸进行分析,其结果如图2所示。显示有395个寡核苷酸以-CGXXCGXXXCG-型式,354个寡核苷酸以-CGXXXCGXXXCG-型式存在于牛分枝杆菌卡介苗的染色体DNA中。如图1所示,包括20个碱基对的寡核苷酸按照其包含基序XXCGXX的频率高得分高的次序列出。将CG出现在包括20个碱基对的寡核苷酸的5’或3’末端的寡核苷酸排除在外,然后选出71个候选寡核苷酸用于调控免疫反应,将其合成后用于探测候选物质。
实施例2具有免疫活性的MB-ODN的检测<2-1>被合成的候选MB-ODNs的免疫反应检验实施例<1-2>中制备的MB-ODNs和其各种替代物能否激活巨噬细胞中IL-8和IL-12启动子。
a)小鼠巨噬细胞的培养将RAW264.7细胞(ATCC,Manassas,VA)在含有10%FBS(Gibco,BRL)的DMEM培养基中进行培养。细胞的培养是在37℃、5%CO2的培养箱(Forma)中进行的。
b)IL-8和IL-12启动子Luc报道质粒的设计为扩增IL-8启动子区(从-135bp到+46bp),采用人类基因组DNA作模板,采用下列引物进行PCR反应。

将扩增的IL-8启动子区的片段插入到能被限制酶BglII和HindIII.消化的pGL3-Basic质粒(Promega)中。因此构建了IL-8启动子Luc报道质粒(Wu G.D.等人,J.Biol.Chem.,2722396-2403,1997)。
与此同时,为扩增IL-12启动子区(从-373bp到+52bp),采用人类基因组DNA作模板,采用下列引物进行PCR反应。

将扩增的IL-12启动子区的片段插入到能被限制酶Sac I和Xho I消化的pGL3-Basic质粒(Promega)中。因此,构建了IL-12启动子Luc报道质粒(Wu G.D.etal.,J.Biol.Chem.,2722396-2403,1997)。
c)启动子活性分析萤光素酶活性分析将RAW264.7细胞(ATCC,Rockviller,MID)以5×104细胞/孔的浓度加入到12孔板中并在37℃、5%CO2的培养箱中孵育24小时。这些细胞用在b)中构建的IL-8启动子Luc报道质粒或IL-12启动子Luc报道质粒以及pRL-null质粒(Promega)共转染。转染后的细胞在37℃、5%CO2的培养箱中孵育24小时。每个孔用图3所示的MB-ODNs(10μg/孔)处理,并在37℃、5%CO2的培养箱中孵育6-12小时。与此同时,对照组用PBS处理。然后,将双萤光素酶报告检测系统的PLB裂解液(passive lysis buffer)以100μl/孔的浓度加入到每个孔中使细胞匀化。将细胞溶解产物进行离心分离,将所得到的上清液(15μl)用于进行萤光素酶分析。萤光素酶的活性用TD-20/20(Turner公司设计)荧光光度计进行检测。每个经MB-ODNs处理过的启动子的活性用对照组的相对活性来表示。也就是说,如果对照组的活性设为1,实验组的活性用对照组活性的倍数表示。
结果证实MB-ODN4/5#31的DNA序列激活了IL-8启动子,如图4所示。
<2-2>与MB-ODN4/5#31同源的寡核苷酸对IL-8启动子的激活对存在于牛分枝杆菌卡介苗染色体DNA中并与MB-ODN4/5#31同源的包括20个碱基对的寡核苷酸进行了分析。除了具有MB-ODN4/5#31DNA序列所具有的,可激活IL-8启动子的CGTTCGTGTCG序列外,这些同源的寡核苷酸具有不同的DNA序列,如实施例<2-1>中所示。结果表明存在17个与MB-ODN4/5#31同源的寡核苷酸,如图5a所示。然后,重复实施例<2-1>中相同的方法,以检测IL-18启动子的活性。
结果显示激活IL-8启动子的能力依DNA序列而变化,如图5b所示。由此可见除了本发明的MB-ODN4/5#31外,MB-ODN4/5#31.14也有高活性。
<实施例3>
寡核苷酶MB-ODN4/5#31 DNA序列的修饰和免疫反应<3-1>寡核苷酸MB-ODN4/5#31DNA序列的修饰将寡核苷酸MB-ODN4/5#31的DNA进行修饰以合成图6所示的DNA序列。将MB-ODN4/5#31中的每个CG序列换为GC序列(#31-CG-1,#31-CG-2,#31-CG-3)。此外,将第一CG和第二CG换为GC序列(#31-CG-4)。将第二CG和第三CG换为GC序列(#31-CG-5)。以及将第一CG和第三CG改变为GC序列(#31-CG-5)。将CG序列中的每个G碱基分别改为A,T和C,如图6a所示。此外,将第一和第二CG改为CA序列,并且将第二和第三CG改为CA序列,以及将第一和第三CG改为CA序列。
<3-2>对MB-ODN4/5#31修饰得到的寡核苷酸的免疫反应测定将5×104细胞/孔的RAW264.7细胞分布在12孔板中,在37℃、5%CO2的培养箱中孵育24小时。共转染IL-8启动子报道质粒和pRL-null质粒后,在37℃、5%CO2的培养箱中孵育24小时。每孔用合成的寡核苷酸以10μg/孔处理,并在37℃、5%CO2的培养箱中孵育6小时。然后重复实施例<2-1>中的相同方法,以测定IL-18启动子的活性。
萤光素酶分析法用来测定具有任何修饰过的DNA序列的合成的寡核苷酸激活巨噬细胞中IL-8启动子的程度。结果表明,IL-8启动子被寡核苷酸5’-AGCAGCGTTCGTGTGCGCCT-3’,5’-AGCAGCGTTCATGTCGGCCT-3’,5’-AGCAGCGTTCGTGTCCGCCT-3’高度激活(图6b)。其它合成的寡核苷酸和对照组相比,显示出较低的激活IL-8启动子的活性。在激活IL-8启动子的的寡核苷酸中,甚至检测到具有第二CpG基序TTCGTG的变体的“TTCATG”的寡核苷酸对IT-8启动子的激活活性,其中TTCATG不是CpG基序。显示出当对第三CpG基序“GTCGGC”进行修饰时,重复出现在CpG基序中的序列GTGCGC和GTCCGC可能激活IL-8启动子(图6)<实施例4>
主链修饰过的MB-ODN4/5#31和MB-ODN4/5#31.14寡核苷酸的免疫反应检测<4-1>主链修饰的MB-ODN4/5#31和MB-ODN4/5#31.14对RAW264.7细胞的激活用在实施例<2-1>步骤b中构建的IL-8-Luc启动子报道载体或IL-12-Luc启动子报道载体和pRL-null质粒(Promega)共转染RAW264.7细胞。转染后的细胞用O型(磷酸二酯主链)和S-型(硫代磷酸酯主链)的MB-ODN4/5#31和MB-ODN4/5#31.14处理(0或10μg/ml),并分别孵育8小时。然后,重复实施例<2-1>中相同的方法,检测IL-8启动子和IL-12启动子的活性。检测结果如图7所示,与主链的型式(O-型和S-型)无关,本发明的MB-ODN4/5#31和MB-ODN4/5#31.14具有最高的活性。
<4-2>主链修饰的MB-ODN4/5#31和MB-ODN4/5#31.14对NF-κB的激活将玻璃罩盖在24孔板上,RAW264.7细胞以5×105个细胞/ml的浓度加入孔板中。在37℃、5%CO2的培养箱中孵育24小时。每孔用5μg/孔的MB-ODN4/5#31和MB-ODN4/5#31.14的寡核苷酸处理。30分钟后,细胞用3.7%的甲醛固定,而后用包含0.2%的Triton-X100的PBS缓冲液透析。细胞在加入了1%驴血清包的含有0.2%的Tween-20的PBS(PBST)缓冲液中阻断30分钟,然后将0.5μl/孔的鼠抗-p65(滴度1∶500)抗体加入PBST中,室温保存2小时。细胞用PBST洗涤后,用驴-抗鼠-IgG-FITC抗体(滴度1∶250)处理2小时。用共焦显微镜观察NF-κB进入细胞核的过程(Lee,Y.,et.al.,(2002)Blood 99,4307-4317)。
图8a是一张照片,显示NF-κB用免疫染色法染色和用共焦显微镜观察NF-κB转移进入细胞核的过程。NF-κB存在于未经处理的对照组或无CpG基序的对照组(无-CpG-ODN 2041)的细胞质中。巨噬细胞用MB-ODN4/5#31和MB-ODN4/5#31.14处理时,NF-κB转移到细胞核内。本发明的MB-ODN4/5#31和MB-ODN4/5#31.14寡核苷酸都转移到细胞核内,而与主链的型式(O-型和S-型)无关。
图8b是电泳图,显示了用电泳迁移改变分析法(EMSA)分析的用MB-ODN4/5#31和MB-ODN4/5#31.14处理的RAW264.7细胞系中的NF-κB被激活的情况。将5×105个细胞/孔的RAW264.7细胞加入每一个6孔板中,并在37℃、5%CO2的培养箱中孵育24小时。每一孔用5μg/孔的MB-ODN4/5#31和MB-ODN4/5#31.14寡核苷酸处理。30分钟后,细胞在细胞核萃取缓冲液中反应,然后离心分离获取核蛋白用于进行ESMA。具有NF-κB结合位点的探针(5’-AGTTGAGGGGACTTTCCCAGGC-3’)(SEQ ID NO13)用32P标记以进行EMSA。32P标记的探针和20μg的核蛋白在缓冲液(10mM HEPES,pH 7.9,65mM NaCl,1mM二硫代苏糖醇,0.2mM EDTA,0.02%NP-40,50mg/ml聚(dIdC)聚(dIdC)and8%甘油)中混合,然后在室温下反应30分钟。反应溶液在含有0.5xTBE(1xTBE是89mMTris硼酸盐和1mM EDTA,ph8.0)和2.5%的甘油的4%的。聚丙烯酰胺凝胶中进行电泳。将探针(5’-AGTTGAGGGGACTTTCCCAGGC-3’)(SEQ ID NO13)(Santa Cruz生物技术公司,Santa Cruz,加拿大)用作NF-κB的竞争剂,并将细胞预处理50次以进行ESMA。NF-κB抗体胶移动检验通过预处理的细胞和1μg的NF-κB抗体在4℃下反应30分钟来进行,然后进行EMSA。在图8中,从EMSA看出,RAW264.7细胞中的MB-ODN4/5#31和MB-ODN4/5#31.14激活了NF-κB。通过EMSA证实了本发明的MB-ODN4/5#31和MB-ODN4/5#31.14激活了NF-κB,而与主链型式(O-型和S-型)无关。
<实施例5>
MB-ODN4/5#31对体液免疫反应的诱导<5-1>免疫将鸡卵溶菌酶(HEL,50mg/头)和MB-ODN4/5#31(100mg/头)的混合物对4周龄的Balb/c小鼠腹腔给药。一周后,将HEL和MB-ODN4/5#31的混合物以相同的剂量再次对其给药。一周后,用心脏穿刺的方法抽取血液,离心使红细胞沉淀以获得血清。用ELISA实验检测所得到的血清中抗-HEL抗体(所有的IgG,IgG1,IgG2a)的滴度。
<5-2>ELISA实验将所得到的血清用按1∶10用PBS/0.2%叠氮钠稀释,并-20℃下储存。将HEL(10μg/ml碳酸氢钠缓冲液,pH9.6)加入到96孔酶标板中(Nunc),并在4℃保存16小时以固定酶标板的底部的HEL。酶标板用PBST(PBS/0.05%Tween-20)洗涤,并加入1%牛血清蛋白(BSA)以阻断细胞,并在室温保存1小时。血清连续用PBS以1∶3的比例稀释,顺序加入酶标板中,4℃保存16小时,再用PBST洗涤。碱性磷酸酶偶联探测抗体和PBST混合后加入酶标板中,并在室温下保存2小时。将1∶2000的山羊抗鼠Ig(H+L)(南方生物技术协会)抗体用于检测Ig的总量。加入1-StepTM ABTS(PIERCE)用于固定颜色,用多功能酶标仪(Labsystems)测量450nm处的吸收(Chu,R.S.,et.al.,(1997)J.Exp.Med.186,1623-1631)。
将MB-ODN4/5#31和鸡蛋溶菌酶(HEL)共同给Balb/c小鼠腹腔用药以检测体液免疫反应。证实MB-ODN4/5#31片段在体液免疫反应方面具有辅助作用,因为同单独使用HEL给药的小鼠相比,HEL和MB-ODN4/5#31共同给药的小鼠体内抗体水平有较高的增加(图9)。Frenund辅剂是用石蜡油和分歧杆菌提取物的混合物制成的试剂,作为一种典型的辅剂已应用了60余年,但是这种辅剂具有不能显示细胞介导的免疫刺激作用的问题,并且不能用于人类。发现MB-ODN4/5#31可能会用作一种新型辅剂,因为其作为辅剂不仅可以刺激体液免疫反应,而且还可以刺激免疫细胞从而诱导细胞介导的免疫反应。还显示MB-ODN4/5#31可以有效地用于产生Th1免疫反应的特异的IgG2a抗体。
<实施例6>
MB-ODN4/5#31诱导产生细胞因子<6-1>树突状细胞内细胞因子的表达a)树突状细胞的分离和用MB-ODN4/5#31对它的处理祖细胞是从4周龄的Balb/c小鼠的大腿骨髓中分离出来的。使分离后的祖细胞与RBC裂解液(150mMNH4Cl,10mM的碳酸钾,0.1mM的EDTA,pH7.4)反应,然后将其收集。将细胞以2×106个细胞/孔的密度分到在6孔板(Nunc)中。向含有10%PBS的RPMI培养基中分别加入密度为10ng/ml的IL-4和GM-CSF(BioSonrce),将所得到的混合物加入每个孔中以使骨髓祖代细胞分化成树突状细胞(Ghosh,M.,J Immunol.1705625-5629,2003)。细胞在37℃、5%CO2的培育箱中孵育6天,同时每两天用新鲜的培养基更换使用过的培养基。然后细胞用本发明的O型MB-ODN4/5#31,CpG-ODN1826和无-CpG-ODN2041以10μg/ml的量进行处理。
b)树突状细胞中IL-12的表达经本发明的O-型MB-ODN4/5#31处理过的树突状细胞中的IL-12表达水平用RT-PCR实验进行检测。
首先,在实施例<6-1a>中从Balb/c小鼠中分离出来的树突状细胞在一定时间(0,0.5,1,2,4和8小时)用O型MB-ODN4/5#31处理。对照组分别用O-型CpG-ODN1826和无-CpG-ODN 2041处理。
接下来,树突状细胞的全部RNA用TRIzol试剂(Invitrogen)分离出来。然后,全部的RNA(5μg)用M-MLV逆转酶(Invitrogen)处理以构建cDNA。将所得到的cDNA作为模板,用下列特异的引物进行PCR。

PCR扩增通过在95℃、使DNA变性重复25个循环,时间为30秒得以实现,引物在57℃下退火40秒,然后在72℃下延伸1分钟。PCR扩增完成后,在1%的琼脂糖凝胶中鉴定所扩增的PCR产物。结果表明,仅本发明的O-型MB-ODN4/5#31诱导了IL-12的表达(图10)。与此同时,与S型1826CpG-ODN高度诱导IL-12表达的报告(Lee,KW.等人,Mol.Immunol.41955-964,2004)相反,S型1826CpG-ODN未能诱导IL-12的表达。
<6-2>MB-ODN4/5#31处理后小鼠中IL-12的表达免疫后,进行ELISA实验以检验用本发明MB-ODN4/5#31处理后小鼠体内IL-12p40的表达水平。
a)免疫对4周龄的Balb/c小鼠分别用O型和S型的MB-ODN4/5#31和无-CpG-ODN2041(以100μg/鼠)腹腔给药。24小时后采用心脏穿刺的方法提取血液,离心使血细胞沉淀以获得血清。
b)EILSA检验首先,如实施例<5-2>中所述,进行EILSA实验以检测用MB-ODN4/5#31免疫过的Balb/c小鼠中分离出来的血清中的抗-IL-12p40和抗-IL-4抗体的滴度。
对Balb/c小鼠用MB-ODN4/5#31腹腔给药,以比较IL-12p40和IL-4的产生水平。结果表明,本发明的MB-ODN4/5#31诱导IL-12p40的产生,但不影响IL-4的产生水平,见图11a。以及,S型的MB-ODN4/5#31使IL-12p40的产生水平增加到一个更高的水平。由此可见,本发明的MB-ODN4/5#31通过诱导IL-12p40的产生具有改善Th1免疫反应的作用。
<6-3>MB-ODN4/5#31在小鼠脾脏免疫细胞中诱导IL-12的表达从小鼠脾脏中提取免疫细胞,并以5×105细胞/孔的密度分配到孔板的每个孔中。然后,每个孔用O型或S型的MB-ODN4/5#31及无-CpG-ODN2041(0或10μg/ml)处理,并孵育24个小时。孵育完成后,对细胞培养物进行分离。为检测细胞培养物中细胞因子的水平,如实施例<5-2>所述,使用每一种商购的抗-IL-12P40和IL4抗体(R&Dsystem,Minneapolis,Minn.)进行夹心酶联免疫吸附测试法(sandwich ELISA)实验。
结果表明,如图11b所示,本发明的MB-ODN4/5#31,不管其主链型式如何,都高度增加脾脏免疫细胞中的IL-12p40的表达水平。并且,本发明的MB-ODN4/5#31不影响IL-4的表达水平。特别地,诱导Th1/Th2免疫反应中的Th1免疫反应的代表性细胞因子IL-12被本发明的MB-ODN4/5#31所诱导,因此证明了本发明的MB-ODN4/5#31可以诱导Th1免疫反应。
<实施例7>
体内分析检验治疗过敏性皮炎的能力<7-1>本发明含有MB-ODN4/5#31的软膏的应用将六只NC/Nga小鼠分成两组,MB-ODN4/5#31处理组和未处理组。将含有所制备的MB-ODN4/5#31的软膏(0.2mg/头)施用到处理组小鼠背部患有过敏性皮炎的5个损伤部位上,用药两周(共4次)。未处理组小鼠用不含本发明CpG-ODN的凡士林以上述同样方式用药。
<7-2>损伤部位的观察在施用了包含本发明的MB-ODN4/5#31的软膏后,肉眼观察过敏性皮炎的患处5-7天。结果表明,同未处理组小鼠相比,应用了O型的MB-ODN4/5#31的小鼠背部皮肤的患处消失,如图12b所示。并且,取自小鼠背部的皮肤用H&E染色技术检验MB-ODN4/5#31对过敏性皮炎的治疗效力。结果证实,施用了本发明的MB-ODN4/5#31的小鼠患处的表皮过度角化症和棘皮症明显减少,并且在真皮中淋巴细胞的浸润也减少,这显示了小鼠患处的过敏性皮炎得到了治疗。
<7-3>组织学分析a)细胞因子的表达在施用含有本发明的MB-ODN4/5#31软膏后的5、7和14天,取下三块面积为1.5×1.5cm2的皮。然后,将取下的皮在4%的福尔马林溶液中固定至少一天。固定后的皮肤组织用石蜡处理并以5μm的厚度切片。石蜡去除后,按照KASB+Kit(DAKO,Denmark)手册的方法进行如下实验。所得到的皮肤组织用3%的H2O2处理10分钟。然后加入用TBS(Tris-缓冲的生理盐水,Ph7.4)稀释的10%的普通山羊血清使皮肤组织阻断,其中TBS中包含0.1%的BSA。然后皮肤组织用山羊抗鼠IL-10抗体、山羊抗鼠-IL-4抗体(Santa Cruz,USA)和鼠抗鼠-INF抗体(Pierce,USA)之类的初级抗体进行处理,并在4℃下反应至少12小时。而后,皮肤组织与有生物素标记的二级抗体在室温下反应至少30分钟后,向其中加入过氧化酶标记的链霉亲和素并在室温下反应大约30分钟。最后用DAB底物显色系统(DAKO,Denmark)使皮肤组织染色,然后用显微镜观察染色后的皮肤组织。
结果表明,IL-4的表达减少,但是在施用了含有本发明的MB-ODN4/5#31的软膏后5天所取下来的小鼠表皮内INF-gamma表达增强,如图13所示。由此可见,本发明的O型MB-ODN4/5#31抑制了由Th2表型T淋巴细胞介导的IL-4细胞因子的产生,其中Th2表型T淋巴细胞在过敏性皮炎中特别地多。而本发明的O型MB-ODN4/5#31通过增加由Th1表型T淋巴细胞介导的IFN-gamma细胞因子的产生而改善和治疗过敏性皮炎的症状。
b)CD4+和CD8+淋巴细胞细胞数目的测定在施用含有本发明的O-型MB-ODN4/5#31软膏后的5、7和14天,取下三块面积为1.5×1.5cm2的皮。将所得到的皮肤组织用液氮冷冻。然后用Tissue-TekOCT(SakuraFinetek USA,INC)复合物将皮肤组织插入样本阻断剂中,并使用恒冷箱切片机以5μm的厚度切片。皮肤组织切片与如鼠抗-鼠CD4mAb(BD phamingen,USA)或鼠抗-鼠CD8mAb(Serotec,UK)之类的一级抗体在4℃下反应12小时。然后,使得到的皮肤组织与有生物素标记的二级抗体在室温下反应至少30分钟后,向其中加入过氧化酶标记的链霉亲和素并在室温下反应30分钟左右。用DAB底物显色系统(DAKO,Denmark)使皮肤组织染色,然后用显微镜观察染色后的皮肤组织。在放大100倍的情况下拍摄照片。
结果显示,应用了本发明的O型MB-ODN4/5#31的小鼠皮肤中的CD4+和CD8+淋巴细胞减少,见图14。这说明正是过敏性皮炎患处的CD4+和CD8+淋巴细胞的减少使本发明的MB-ODN4/5#31非常有效地治疗过敏性皮炎(Christian V.,等人,J Clin Invest.1041097-1105,1999)。
<7-4>血清中的IgE水平分析从每组小鼠中提取血浆,使用前一直在保存-20℃温度下。总的IgE水平采用鼠IgE BD OptEIA试剂盒(BD phamingen,USA)进行测定。为检测血浆中的IgE抗体(BDphamingen,USA)水平,如实施例<5-2>中所述,采用商购的生物素标记的IgE抗体(BDphamingen,USA)进行夹心酶联免疫吸附测试(ELISA)实验。
结果表明,应用了含有本发明的MB-ODN4/5#31软膏的小鼠血清中的IgE水平显著减少,如图15所示。
从上述结果看出本发明的O型MB-ODN4/5#31增加了由Th1淋巴细胞介导的细胞因子表达,同时通过抑制由Th2淋巴细胞介导的细胞因子表达减少血清中IgE水平而具有很好的治疗过敏性皮炎的效果。
<实施例8>
MB-4/5#31对放射治疗后免疫细胞存活率的影响<8-1>MB-ODN4/5#31处理后的Bcl-xs/L表达将1×104细胞/孔的RAW264.7细胞分布在6孔板上并在37℃、5%CO2的培养箱中孵育24小时。每个细胞用密度为10μg/孔的合成的寡核苷酸处理,并在37℃、5%CO2培养箱中孵育5小时。加入100μl/孔的裂解缓冲液使RAW264.7细胞均质化。将细胞溶解物离心得到上清夜(15μl)用于进行蛋白质印迹分析。将所得到的上清液用山羊抗-鼠-Bcl-xs/L抗体处理,并与过氧化物酶标记的二级抗体反应,然后用增强化学萤光试剂(Amersham Pharmacia Biotech,Piscataway,NJ,USA)观察Bcl-xs/L。
结果表明,本发明的MB-ODN4/5#31通过刺激RAW264.7细胞中的Bcl-xs/L的表达具有增加细胞存活率的功能。
<8-2>用MB-ODN4/5#31处理后巨噬细胞的存活率提高的观察将3×104/孔的RAW264.7细胞分布在4孔腔室载玻片中(Lab-TEK Chamber slid,Nalge Nunc international,Inc)并在37℃、5%CO2的培养箱中孵育24小时。每一个细胞用10μg/孔的合成寡核苷酸处理6小时并用γ-射线器以10Gy辐射,然后在37℃、5%CO2的培养箱中孵育48小时。将3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑(MTT)溶液(5x,2μg/ml)直接加入被孵育的RAW264.7细胞的培养基中(最终的浓度是0.4μg/ml),并在37℃、5%CO2的培养箱中反应4小时。当每孔中培养基完全移除后,加入0.5ml的DMSO后在37°下反应10分钟以使所得到的formazan结晶溶解。得到100μg的反应溶液并用于测定其在570nm处的吸收。
结果表明用本发明的MB-ODN4/5#31对RAW264.7细胞的处理,可以防止其被辐射杀死,如图17所示。就主链的型式而言,O型MB-ODN4/5#31具有更高的活性。
<8-3>用MB-ODN4/5#31处理后B细胞存活率提高的观察将1×105细胞/孔的RPMI8226细胞分布在6孔板上,并用密度为10μg/孔的合成寡核苷酸处理6小时,用γ-射线器以10Gy辐射,然后在37℃、5%CO2的培养箱中孵育48小时。将50μg/mg的碘化丙啶(PI)加入到孵育后的细胞中,在冰浴上反应10分钟,然后用流式细胞分析法测定用碘化丙啶染色后的细胞水平。
另外,孵育后的细胞用冷的PBS洗涤两次,并加入5μl的Annexin V-PE,然后室温下反应15分钟。将0.4ml的Annexin V粘结缓冲液加入其中使用采用流式细胞分析仪测定与Annexin V结合的细胞水平。
结果表明,本发明的MB-ODN4/5#31对RPMT8226细胞的处理可以防止其被辐射杀死,如图18、19所示。
综合以上的结果,可以确认,用放射疗法治疗癌症之类的疑难疾病时,本发明的MB-ODN4/5#31通过提高正常免疫细胞的存活率,具有极好的使免疫功能正常化的效果。
工业应用性如上所述可见,本发明从牛分枝杆菌卡介苗中得到的寡核苷酸片段通过作为形成HEL抗体的辅剂参与到体液免疫反应中,并且通过激活巨噬细胞的IL-8和IL-12启动子的级联激活反应中的IL-8启动子参与到先天免疫细胞的激活反应中。还证实了由于可以作为辅剂刺激体液免疫反应,也可以刺激免疫细胞诱导细胞介导的免疫反应,因此本发明的寡核苷酸可以用作为一种新的辅剂。并且揭示出本发明的MB-ODN提高了作为过敏性皮炎的动物模型的NC/Nga小鼠体内的由Th1淋巴细胞介导的细胞因子的表达,同时,通过抑制由Th2淋巴细胞介导的细胞因子的表达以降低血清中IgE的水平而有极好的治疗过敏性皮炎的效果。
此外,证实了在用放射疗法治疗癌症之类的疑难疾病时,通过提高正常免疫细胞的存活率,本发明的MB-4/5#31有着极好的使免疫细胞功能正常化的效果。
权利要求
1.用于刺激辅剂或治疗免疫相关疾病的寡脱氧核苷酸,其通式为[通式]HKCGTTCRTGTCSGM(SEQ ID NO1)其中,R表示A或G;S表示C或G;H表示A,T或C;K表示G或T;和M表示C或A。
2.如权利要求1所述的用于刺激辅剂或治疗免疫相关疾病的寡脱氧核苷酸,其特征在于所述的寡脱氧核苷酸还包括5个核苷酸,所述的核苷酸位于下列通式的5′末端和3′末端[通式]DKMHKCGTTCRTGTCSGMYK(SEQ ID NO2)其中,R表示A或G;S表示C或G;H表示A,T或C;K表示G或T;D表示A,G,或T;M表示C或A;M表示C或A;以及Y表示C或T。
3.如权利要求1或2所述的寡脱氧核苷酸,其特征在于,所述的寡脱氧核苷酸保护放射疗法时的正常免疫细胞。
4.如权利要求1或2所述的寡脱氧核苷酸,其特征在于,所述的寡脱氧核苷酸治疗和预防皮肤疾病。
5.如权利要求1或2所述的寡脱氧核苷酸,其特征在于,所述的寡脱氧核苷酸维持各种Th1/Th2免疫反应的平衡。
6.如权利要求1或2所述的寡脱氧核苷酸,其特征在于,所述的寡脱氧核苷酸在核苷酸之间具有磷酸二酯键或硫代磷酸酯键。
7.如权利要求1或2所述的寡脱氧核苷酸,其特征在于,所述的寡脱氧核苷酸是从包括下列的组中选出的,5’-AGCAGCGTTCGTGTCGGCCT-3’(SEQ ID NO3),5’-AGCAGCGTTCGTGTGCGCCT-3’(SEQ ID NO4),5’-AGCAGCGTTCATGTCGGCCT-3’(SEQ ID NO5),5’-AGCAGCGTTCGTGTCCGCCT-3’(SEQ ID NO6),5’-GTATTCGTTCGTGTCGTCCT-3’(SEQ ID NO7)和5’-TGACTCGTTCGTGTCGCATG-3’(SEQ ID NO8).
全文摘要
本发明公开了用于操纵免疫反应的寡核苷酸。本发明的寡核苷酸可用于刺激免疫功能,治疗免疫相关性疾病和过敏性皮炎,以及保护正常的免疫细胞。
文档编号C07H21/00GK1926145SQ200580006447
公开日2007年3月7日 申请日期2005年1月28日 优先权日2005年1月28日
发明者权滢周, 金泰润, 金斗植 申请人:权滢周, 金泰润
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1