用于生产乙酸和二甲醚的方法

文档序号:3489437阅读:177来源:国知局
用于生产乙酸和二甲醚的方法
【专利摘要】一种通过使甲醇和乙酸甲酯的混合物与沸石催化剂接触生产乙酸和二甲醚的方法,其中所述沸石具有2维通道系统,所述2维通道系统包含至少一个具有10元环并且具有至少5%的被一个或多个碱金属阳离子占据的其阳离子交换容量的通道。
【专利说明】用于生产乙酸和二甲醚的方法
[0001] 本发明涉及一种于沸石催化剂的存在下由含有甲醇和乙酸甲酯的进料联合生产 乙酸和二甲醚的方法。特别地,本发明是在碱金属交换的沸石催化剂的存在下进行。
[0002] 已经发现沸石可用于催化甲醇脱水二甲醚。将其氢形式的镁碱沸石用于催化甲醇 脱水被描述例如在公开US 20090326281A,"Influence of catalytic functionalities of zeolites on product selectivities in methanol conversion,'Seung_Chan Baek 等人, Energy & Fuels,2009, 23 (2),第 593-598页,以及"Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether,',Khandan, N等人,Applied Catalysis : General,第 349 卷,议题 1-2, 2008 年 10 月 31 日,第 6-12 页中。
[0003] US 6, 740, 783描述了用于通过于沸石催化剂的存在下使含水的甲醇进料脱水以 制备二甲醚的改良方法,在所述沸石中,氢阳离子部分地被周期元素表的IA、IIA、IB和IIB 族的金属离子或铵离子置换。所述改良被认为是催化剂不会因存在于甲醇进料中的水失 活。
[0004] 韩国专利申请KR 2009131560A描述了通过在200-350°C及1-50个大气压下,于镁 碱沸石基催化剂或通过碱金属和/或碱土金属离子的部分引入获得的催化剂的存在下,将 甲醇脱水制备二甲醚。
[0005] US 6, 521,783描述了一种方法,其中将乙酸、乙酸甲酯、甲醇、二甲醚和水进料至 水解/脱水反应器中,所述反应器包含醚类水解催化剂和醇脱水催化剂,所述催化剂可以 相同或不同。所述醇脱水催化剂可以选自固体酸、杂多酸、酸性沸石、二氧化钛或二氧化硅 促进的氧化铝、磷酸铝或负载于二氧化硅-氧化铝上的氧化钨。所述酯水解催化剂可以选 自酸性离子交换树脂、酸性Y氧化铝、氟化的氧化铝、硫酸盐或钨酸盐促进的二氧化锆、二 氧化钛或二氧化硅促进的氧化铝、磷酸铝、负载于二氧化硅-氧化铝上的氧化钨、粘土、负 载的矿物酸、沸石或杂多酸。在与此方法相关的实施例中,所述催化剂的性质未被定义。
[0006] W0 2011027105描述了在140-250°C的温度下于沸石催化剂存在下由甲醇和乙酸 甲酯生产乙酸和二甲醚。所述沸石具有2维通道系统,所述2维通道系统包含至少一个 具有10元环的通道。被鉴定为属于此类型的沸石包括镁碱沸石、ZSM-35和斜发沸石。TO 2011027105教导了适合用于这样的方法中的沸石应包含仅微量的碱金属或碱土金属(所述 沸石的 〇_〇. 2wt%)。
[0007] 现已发现,在通过于沸石催化剂存在下的甲醇和乙酸甲酯的脱水和水解联合生产 乙酸和二甲醚中,随着时间的进行,沸石催化剂(例如镁碱沸石)展现出催化活性的损失,这 导致对于产物(乙酸和二甲醚)的产率的损失。此类催化剂的失活需要昂贵及耗时的再生方 法以恢复催化剂的活性。
[0008] 通常,该脱水和水解反应在至少140°C至约250°C的温度下进行。一般而言,为了 达到更具吸引力的生产速率,在较高的温度下进行反应是有益的。然而,还观察到用于该反 应的沸石催化剂于较高的反应温度下会更快速失活得多。
[0009] 另外,依据其来源,甲醇和/或乙酸甲酯原料可包含某些杂质,例如丙酮。现已发 现此类杂质的存在,特别是其具有相对高含量时,对于沸石催化剂是有害的。除非在与沸石 催化剂接触之前,执行从甲醇和/或乙酸甲酯原料中除去此类杂质的步骤,否则此类杂质 的存在将提高催化剂失活的速率。
[0010] 因此,高度希望降低用于由甲醇和乙酸甲酯原料联合生产乙酸和二甲醚的沸石催 化剂的失活速率,特别是降低此类沸石催化剂在高反应温度下和/或在杂质,例如丙酮的 存在下的失活速率。
[0011] 现已发现,上文概括的这些有害效应可通过使用具有2维通道系统的沸石进行脱 水和水解反应而被出乎意料地改善,所述2维通道系统包含至少一个具有10元环的通道, 并且与一种或多种碱金属阳离子交换。
[0012] 特别地,已经发现此类沸石在高反应温度下和/或在丙酮的存在下展现出提高的 抗失活性能。有利地,采用具有前述特征的沸石的结果是沸石催化剂在用于甲醇和乙酸甲 酯的脱水和水解方法中,且,特别是在其中在至少一种原料包含丙酮的那些方法中的有效 寿命的延长。
[0013] 因此,本发明提供了一种由甲醇和乙酸甲酯的混合物联合生产乙酸和二甲醚的方 法,所述方法包括在反应区中使甲醇原料和乙酸甲酯原料与沸石催化剂组合物接触,以生 产乙酸和二甲醚,所述催化剂组合物包含具有2维通道系统的沸石,所述2维通道系统包含 至少一个具有10元环的通道,并且其中至少5mol%的所述沸石的阳离子交换容量被一种或 多种碱金属阳离子占据。
[0014] 在本说明书的范围中,术语"沸石"应被理解为具有2维通道系统的沸石,所述2维 通道系统包含至少一个具有10元环的通道。
[0015] 沸石为众所周知的具有铝和硅的四面体的三维结构的铝硅酸盐型材料,其四面体 式地与氧原子配位。这些四面体通过它们共同具有的氧原子连接在一起。沸石中的通道 系统被描述成〇、1、2、或3维的。被发现可用于本发明的沸石具有2维通道系统。国际沸 石协会使用三字母代码命名法以根据沸石的骨架结构类型对沸石进行分类。关于沸石、它 们的骨架结构类型和通道系统的信息 Baerlocher, L.B. Mccusker和D.H. Olson,第6次修订版,Elsevier, Amsterdam, 2007 中并且也可以在国际沸石协会的网站上www. iza-online. org上取得。
[0016] 沸石是可商购的,例如,以氢形式或铵形式,购自数个供应商,包括Zeolyst International和Zeochem AG,或者它们可以通过采用已知技术合成制备,例如,如前文所 提及的国际沸石协会的网站中所描述的那样。
[0017] 在本发明中,所述沸石的2维通道系统包含至少一个具有10元环的通道,并且可 以包含一个或多个含有4、5、6、8、10、12、14或16元环的其他通道。
[0018] 优选地,用于本发明的沸石具有2维通道系统,其具有至少一个具有10元环的通 道以及至少一个具有8元环的通道。这样的沸石的实例包括骨架结构FER的沸石(例如镁 碱沸石、ZSM-35、ISI-6和FU-9)、HEU (例如斜发沸石)、MFS (例如ZSM-57)、DAC (例如环晶 石)和STI (例如束沸石)的沸石。
[0019] 其他适用于本发明的沸石包括具有选自NES (例如NU-87)、MWW (例如MCM-22) 和TER (特拉沸石(terranovaite))的骨架结构的沸石。
[0020] 优选地,所述沸石具有选自FER、HEU和MFS的骨架结构,并且更优选具有骨架结构 FER。
[0021] 合适地,用于本发明的沸石为镁碱沸石、251-35、151-6、?化9、2511-57和斜发沸石。 优选地,所述沸石选自镁碱沸石和ZSM-35,并且最优选地,所述沸石为镁碱沸石。
[0022] 所述沸石的2维通道系统可以包括互连通道或非互连通道,优选互连通道。
[0023] 用于本发明的沸石为其中一种或多种碱金属占据至少5mol%的其阳离子交换容 量的沸石。所述碱金属表示元素周期表的I族的金属,并且包括Li、Na、K、Rb、Cs和它们的 组合。
[0024] 优选的碱金属为铯。
[0025] 天然或合成沸石的主体二氧化硅对氧化铝的摩尔比(在本文中也称为"SAR")将是 可变的。可用于本发明的沸石的SAR可以在10-90范围内。优选地,所述沸石具有于13-60, 例如17-55和20-55范围内的SAR。所述主体二氧化硅对氧化铝的摩尔比可通过数种化学 分析技术中的任意一种确定。这样的技术包括X-射线荧光、原子吸收以及ICP (电感耦合 等离子体)。所有这些技术将提供基本上相同的二氧化硅对氧化铝的摩尔比。
[0026] 在本发明的一个实施方案中,被碱金属阳离子占据的沸石为镁碱沸石,优选氢形 式的镁碱沸石,并且所述镁碱沸石具有10-90、例如20-55的SAR。
[0027] 所述沸石的阳离子交换容量通过其氧化铝含量确定。在沸石骨架的四面体位置中 被取代的每摩尔铝离子在所述骨架上产生一摩尔的负电荷。该电荷通过可交换的阳离子平 衡。由于碱金属阳离子为一价的,通过离子交换引入的每摩尔碱金属阳离子置换一摩尔的 铵离子或氢离子。碱金属含量、二氧化硅对氧化铝的摩尔比以及交换度通过下列表述全部 关联: %碱金属交换=[碱金属摩尔数]/ [ ( A1摩尔数)xlOO] 这些值通过任何合适的分析技术(例如元素分析、X-射线荧光、原子吸收光谱和电感耦 合等离子体分析技术)测定,其获得在经过交换和用水洗涤以除去尚未被交换的所有金属 之后,存在于干燥碱金属交换的沸石中的各个元素的量。
[0028] 用于本发明的沸石具有至少5mol%的被一种或多种碱金属阳离子占据的它们的 阳离子可交换位点。这意味着沸石骨架上的至少5mol%的负电荷被碱金属阳离子平衡。
[0029] 所述阳离子可交换位点可以为氢或氢前体阳离子(例如铵离子)。用于本发明的沸 石催化剂通过用一种或多种碱金属阳离子交换至少5mol%的其阳离子可交换位点进行制 造。所述交换可以通过已知的交换技术进行,例如通过离子交换或浸渍技术。
[0030] 当希望采用离子交换时,氢形式或氢前体形式的沸石可以与所需的一种或多种碱 金属交换,仅通过将沸石与含有与氢阳离子或氢前体阳离子交换的碱金属阳离子的水溶液 接触。将沸石与碱金属水溶液接触后,可以过滤沸石以除去过量的金属溶液,并且用水洗涤 沸石,然后干燥以生产具有占据了至少一部分其阳离子可交换位点的碱金属阳离子的干燥 沸石。
[0031] 当采用浸渍时,氢形式或氢前体形式的沸石可以与所需的一种或多种碱金属交 换,仅通过将沸石与含有与氢阳离子或氢前体阳离子交换的碱金属阳离子的水溶液接触。 将沸石与含碱金属阳离子的水溶液接触后,所述沸石被干燥以除去水,从而生产具有占据 至少一部分其阳离子可交换位点的碱金属阳离子的干燥沸石。
[0032] 当氢前体形式,例如铵形式的沸石被用在交换过程中时,被干燥后,所述沸石可以 被煅烧以将铵阳离子转化成氢阳离子。得到的沸石将为含有占据了至少一部分其阳离子可 交换位点的碱金属阳离子的沸石。
[0033] 所述交换、任选的洗涤、干燥以及如需要时的煅烧步骤可以被多次重复以达到所 希望的阳离子交换水平。
[0034] 任意合适的碱金属盐可以被用于碱金属阳离子的交换溶液。合适的碱金属盐的实 例包括碱金属乙酸盐、碱金属硝酸盐、碱金属甲酸盐和碱金属氯化物。
[0035] 用于本发明的沸石具有至少5mol%的被一种或多种碱金属阳离子占据的它们的 阳离子交换容量。例如,至少l〇mol%、优选至少20mol%的沸石的阳离子交换容量被一种或 多种碱金属阳离子占据。
[0036] 通过碱金属阳离子进行的沸石的阳离子位点的交换调节了沸石的酸度。交换度越 高,沸石的酸度越低。对于本发明的目的而言,沸石可以合适地具有被一种或多种碱金属阳 离子占据的 5-60mol%、例如 5-50mol%,例如 10-50mol%、20-50mol%、15-40mol%、10-40mol% 以及20-40mol%的它们的阳离子交换容量。
[0037] 在本发明的一特定实施方案中,5_50mol%的沸石的阳离子可交换位点被一种或多 种碱金属阳离子占据,优选所述沸石具有骨架结构FER,并且更优选为镁碱沸石。
[0038] 在本发明的另一实施方案中,5_50mol%的沸石的阳离子可交换位点被一种或多种 选自铯和/或铷的碱金属阳离子占据,优选所述沸石具有骨架结构FER,并且更优选为镁碱 沸石。
[0039] 合成沸石通常以粉末形式制备。由于粉末不具有明显的机械强度,其实际应用是 受限的。可以通过形成沸石聚集体例如,成型体,例如丸粒或挤出物(extrudate )将机械强 度赋予在沸石上,挤出物。挤出物可以通过在粘结剂的存在下挤出沸石以及干燥和煅烧得 到的挤出物形成。
[0040] 除了沸石之外,所述催化剂组成物可以包括至少一种无机氧化物粘结剂。合适的 无机氧化物粘结剂的实例为二氧化硅、氧化铝、氧化铝-硅酸盐、硅酸镁、硅酸铝镁、二氧化 钛、二氧化锫和粘土。
[0041] 合适地,所述无机氧化物粘结剂可以10wt%_90wt%范围内的量(基于沸石和粘结 剂的总重量)存在于催化剂组合物中。
[0042] 所述沸石催化剂组合物可以用于甲醇和乙酸甲酯原料的混合物同时进行的脱水 和水解,以联合生产乙酸和二甲醚。
[0043] 根据本发明,使甲醇原料和乙酸甲酯原料与沸石催化剂组合物接触,以生产乙酸 和二甲醚产物。本发明中使用的沸石催化甲醇的脱水以及乙酸甲酯的水解。所述甲醇脱水 以及乙酸甲酯水解可以分别由式(1)和(2)表示: 2CH30H CH3OCH3 + H20 (1) CH3COOCH3+ H20 CH3COOH + CH3OH (2)。
[0044] 甲醇原料和乙酸甲酯原料可以单一的进料流的形式引入反应区。然而,优选地,将 甲醇和乙酸甲酯原料以单独的进料流的形式引入反应区中。
[0045] 甲醇和乙酸甲酯的摩尔比可以为任意所希望的比例,但合适地,甲醇:乙酸甲酯 的摩尔比为1:0. 1-1:40,例如1:1-1:30的范围内。
[0046] 水解反应要求水为反应物。水可以由脱水反应中获得,脱水反应原位生成水。然 而,优选地,在该过程中添加水。可以将水添加至甲醇和/或乙酸甲酯原料或作为单独的进 料引入反应区。合适地,基于乙酸甲酯、甲醇和水的总进料,可以将水以0. l-60mol%范围 内,例如3-40mol%范围内,例如5-30mol%的量引入反应区。
[0047] 甲醇和乙酸甲酯是商业生产的。通常,甲醇通过合成气的催化转化以工业级别地 被生产。乙酸甲酯被工业化生产,例如,通过乙酸与甲醇的酯化。乙酸甲酯还可以通过在沸 石催化剂的存在下由二甲醚的无水羰基化反应生产。
[0048] 甲醇和乙酸甲酯可以作为纯进料用于本发明中。但是,取决于本发明中使用的甲 醇和乙酸甲酯的来源,其中可以存在低水平的副产物组分,例如乙酸、二甲醚、水和丙酮的 一种或多种。丙酮可能存在于通过无水沸石催化的二甲醚的羰基化获得的乙酸甲酯中,也 可能存在于通过合成气的催化转化生产的甲醇中。存在于通过此类方法生产的甲醇和乙酸 甲酯中的丙酮的总量将是可变的,但是可以为例如〇. 005-5mol%。
[0049] 丙酮具有与乙酸甲酯和甲醇相似的沸点,因此难以通过简单的蒸馏技术从这些组 分中分离出丙酮。已经发现丙酮,即使是以相对低(ppm)的水平,对于特定的沸石催化剂, 例如镁碱沸石的失活是有害的,其使得催化剂更快地失活。因此,提供在将甲醇和乙酸甲酯 转化形成二甲醚和乙酸的方法中具有减少的失活的催化剂是高度希望的,其中甲醇和乙酸 甲酯原料中的至少之一包含丙酮。
[0050] 有利地,已经发现本发明中使用的沸石对于丙酮是耐受的,并且保持高度的催化 剂活性而无明显的失活。特别地,已经发现本发明的沸石对于基于至反应区的总进料(包括 任何再循环)的>〇至5mol%的丙酮水平是耐受的。
[0051] 因此,在本发明的一个实施方案中,甲醇和乙酸甲酯原料中的至少之一包含丙酮。 可以将丙酮以基于总进料(包括任何再循环)的>〇至5mol%的量,例如以基于总进料(包括 任何再循环)的〇· 〇〇5-5mol%的量,例如0· 5-5mol%的量引入反应区。
[0052] 合适地,用于本发明的乙酸甲酯原料由无水沸石催化的二甲醚的羰基化以生产 乙酸甲酯的方法获得,并且可以合适地包括量为>〇至5mol%,例如0.005-5mol%,例如 0.5-5mol% (基于至反应区的总进料,包括再循环)的丙酮。或者和/或另外,用于本发明 的甲醇原料可以由合成气的催化转化以生产甲醇的方法获得,并且可以合适地包括量为>〇 至5mol%,例如0. 005-5mol%,例如0. 5-5mol% (基于至反应区的总进料,包括再循环)的丙 酮。
[0053] 当丙酮存在于乙酸甲酯和甲醇原料中的至少之一中时,优选地,基于至反应区 的总进料(包括任何再循环),将水以〇. l_60mol%范围内,例如3-40mol%范围内,例如 5-30mol%范围内的量引入反应区。
[0054] 在本发明的一实施方案中,基于至反应区的总进料(包括任何再循环),丙酮以 >0至5mol%的量,例如0· 005-5mol%的量,例如0· 5-5mol%的量存在于乙酸甲酯和甲醇 原料中的至少之一中,所使用的沸石具有骨架结构FER,例如镁碱沸石,并且所述沸石的 5-60mol%、例如10-50mol%其阳离子可交换位点被一种或多种碱金属阳离子特别是铯阳离 子和钠阳离子的一种或多种占据。
[0055] 在另一实施方案中,基于至反应区的总进料(包括任何再循环),丙酮例如以>0 至5mol%的量,例如0· 005-5mol%的量,例如0· 5-5mol%的量存在于乙酸甲酯和甲醇原 料中的至少之一中,所使用的沸石具有骨架结构FER,例如镁碱沸石,并且所述沸石的 5-60mo 1%、例如10-50mo 1%其阳离子可交换位点被一种或多种碱金属阳离子特别是铯阳离 子和钠阳离子的一种或多种占据,并且基于至反应区的总进料(包括任何再循环),将水以 0· l-60mol%、例如3-40mol%、例如5-30mol%范围内的量引入反应区。
[0056] 稀释剂,例如惰性气体,例如氮气和氦气也可以为所述方法的进料。
[0057] 所述方法可以作为气相方法或作为液相方法在反应区中进行,例如作为固定床方 法或浆相方法。
[0058] 当所述方法作为气相方法操作时,所述一种或多种原料在进入反应区之前,可以 为液相。然而,与沸石接触接触之前,所述液相组分应当例如使用预加热器被气化。
[0059] 所述方法合适地在170-280°C的温度下进行。已经发现用于本发明的沸石在 190-240°C范围内的温度下是特别有利的。
[0060] 在本发明的一个特定实施方案中,所述生产乙酸和二甲醚的方法通过在 170-280°C范围内、并且特别在190-240°C、例如220-240°C范围内的温度下使甲醇原料和 乙酸甲酯原料与具有骨架结构FER的沸石例如镁碱沸石接触进行,基于总进料(包括任何 再循环),任选地,所述甲醇和乙酸甲酯原料中的至少之一包含例如量为>〇至5mol%的丙 酮,并且所述沸石具有5_60mol%、例如5_50mol%、例如10_50mol%的被一种或多种碱金属阳 离子例如一种或多种选自铯阳离子和钠阳离子的碱金属阳离子占据的其阳离子可交换位 点。
[0061] 所述方法可以在大气压或高于大气压的压力下进行。当所述方法在液相中进行 时,优选在足以将二甲醚产物保持在溶液中的总反应压力下操作所述方法。因此,合适地, 所述压力可以为至少40barg,例如40-100barg,合适地为40_60barg。当所述方法在气相中 进行时,合适的操作压力为大气压至30barg,例如2_20barg,例如2_15barg范围内。
[0062] 气时空速(GHSV)合适地在 500-40, 0001Γ1,例如 1,000-25, 0001Γ1,例如 1,000-15, OOOtT1 范围内。
[0063] 液时空速(LHSV)合适地在0. 2-201Γ1范围内,例如0. 5-101Γ1范围内,例如0. 5-51Γ1 或2-81Γ1范围内。
[0064] 所述方法可以作为连续或间歇方法操作,优选作为连续方法操作。
[0065] 本发明的产物流包括乙酸和二甲醚。所述产物流可以任选地还包括水、未反应的 甲醇和未反应的乙酸甲酯。可以通过常规的纯化方法(例如蒸馏)从产物流中回收乙酸和 二甲醚。二甲醚通常将被作为塔顶物从蒸馏塔中回收,并且乙酸将通常作为塔底馏分与任 何的乙酸甲酯、甲醇和水一起从该塔中回收。乙酸可以通过进一步的蒸馏与这些组分分离。 被回收的二甲醚可以出售或者可以被用作生产乙酸甲酯的羰基化方法的原料。乙酸可以出 售或者可以被用作其他下游方法,例如生产乙酸乙烯酯或乙酸乙酯中的进料。
[0066] 现参照下述非限制性实施例来示例本发明。
[0067] 实施例1-制各Cs_镁碱沸石 将 20g 的 NH4-镁碱沸石(20 的 SAR)(来自 Zeolyst International)、l. 97g 的 CsN03 (来自Sigma Aldrich,纯度99%)和48ml的去离子水于室温下一起搅拌16小时,在真空、 250mbar的压力和80°C的温度下干燥,然后在110°C下加热20小时,然后在空气于500°C下 煅烧3小时以生产H-镁碱沸石,其中37mol%的其阳离子位被铯占据。
[0068] 实施例2-制各Cs-镁碱沸石 除了 CsN03的用量是列于下表1中所示的那些之外,按照实施例1的方法制备一系列 催化剂,从而制备9. 2mol%和18. 5mol%的阳离子位点被铯占据的Η-镁碱沸石。
[0069] 实施例3-制各钠、钾和铷镁碱沸石 使用下述表1中所规定的量的硝酸钠、硝酸钾和硝酸铷重复实施例1的方法,从而制 备9. 2mol%、18. 5mol%以及37mol%的其阳离子位点被钠、钾、或铷占据的Η-镁碱沸石。
【权利要求】
1. 一种由甲醇和乙酸甲酯的混合物联合生产乙酸和二甲醚的方法,所述方法包括在反 应区中使甲醇原料和乙酸甲酯原料与沸石催化剂组合物接触,以生产乙酸和二甲醚,所述 催化剂组合物包含具有2维通道系统的沸石,所述2维通道系统包含至少一个具有10元环 的通道,并且其中至少5mol%的所述沸石的阳离子交换容量被一种或多种碱金属阳离子占 据。
2. 根据权利要求1的方法,其中所述沸石还包括至少一个具有8元环的通道。
3. 根据权利要求1或权利要求2的方法,其中所述沸石具有选自FER、HEU、MFS、DAC、 STI、NES、MWW和TER、优选FER的骨架结构。
4. 根据权利要求3的方法,其中所述沸石具有骨架结构FER并且为镁碱沸石。
5. 根据权利要求1-4中任一项的方法,其中所述被占据的沸石为氢形式的镁碱沸石。
6. 根据权利要求1-5中任一项的方法,其中所述碱金属为铯。
7. 根据权利要求1-6中任一项的方法,其中至少10%的所述沸石的阳离子交换容量被 一种或多种碱金属阳离子占据。
8. 根据权利要求1-7中任一项的方法,其中所述沸石的阳离子交换容量的5-60%、例如 5-50%被一种或多种碱金属阳离子占据。
9. 根据权利要求1-8中任一项的方法,其中所述沸石具有10-90范围内,优选13-60、 例如17-55或20-55范围内的SAR。
10. 根据权利要求1-9中任一项的方法,其中所述甲醇原料和乙酸甲酯原料中至少之 一包含丙酮。
11. 根据权利要求10的方法,其中丙酮以基于总原料(包括任何再循环)的>〇至5mol% 的总量存在于所述甲醇原料和乙酸甲酯原料的至少之一中。
12. 根据权利要求1-11中任一项的方法,其中所述乙酸甲酯原料由沸石催化二甲醚羰 基化以生产乙酸甲酯的方法获得。
13. 根据权利要求1-12中任一项的方法,其中所述方法在170-280°C、例如190-240°C 范围内的温度下进行。
14. 根据权利要求1-13中任一项的方法,其中所述催化剂组合物包括至少一种无机氧 化物粘结剂。
15. 根据权利要求1-14中任一项的方法,其中所述甲醇对乙酸甲酯的摩尔比在 1:0. 1-1:40的范围内。
16. 根据权利要求1-15中任一项的方法,其中基于至反应区的总进料(包括任何再循 环),将水合适地以〇· l_60mol%,例如3-40mol%、例如5-30mol%范围内的量引入反应区。
17. 根据权利要求1-16中任一项的方法,其中所述方法在气相中操作。
18. 根据权利要求17的方法,其中所述方法在2-20barg、例如2-15barg范围内的总压 力下操作。
【文档编号】C07C43/04GK104245651SQ201380010905
【公开日】2014年12月24日 申请日期:2013年2月22日 优先权日:2012年2月23日
【发明者】E. 克拉克 T., G. 孙利 J. 申请人:英国石油化学品有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1