C-取代二亚乙基三胺的制备方法

文档序号:3596758阅读:497来源:国知局
专利名称:C-取代二亚乙基三胺的制备方法
技术领域
本发明涉及一种权利要求书中所述的C-取代二亚乙基三胺的制备方法。
文献已经描述了C-取代二亚乙基三胺的各种合成方法,所有方法均按相同的基本流程进行[参见例如无机化学,25(1986)2772;DE37 10 730;US4,622,420;Nucl、Med、Biol(1991)313;WO91/14459]。其中使带自由氨基或受保护氨基的氨基酸酯与亚乙基二胺反应成相应的酰胺。接着,用乙硼烷将该酰胺还原成胺,其中须事先裂开必要时存在的保护基团。
该方法具有下列缺点a)必须使硼烷大大过量(5-10摩尔当量),原因是待还原酰胺是二元的,而且还含有两个自由的氨基。
b)中间步骤可结晶性极差,且难以提纯。
c)由于硼烷有毒性和售价高,该方法不适合大规模工业应用,或者至少由于需要花费高昂的安全投资而无利可图。
d)需要很长的反应时间以及高反应温度(沸腾加热18-30小时)。
用其它易处理还原剂如氢化铝锂(LAH)或二异丁基氢化铝(DIBAH)代替乙硼烷的尝试失败了。在LAH的情况下,形成络合的反应混合物。但DIBAH也不能通用,例如必要时要裂开分子中所含的酚醚基(作为C-取代基)。
因此,人们仍然对C-取代二亚乙基三胺的工业实用且通用的制备方法存在极大的兴趣,更何况该物质是制备衍生的二亚乙基三胺五乙酸用的重要离析物,该离析物就像二亚乙基三胺本身一样,是医药工业上重要的物质类别[参见例如US4,622,420;无机化学25(1986)2772;EP04 05 704;Nucl、Mol、Biol、(1991)31]。
五乙酸衍生物的金属络合物尤其是制备诊断领域对比剂的重要化合物(EP 0405704)。
因此,本发明的任务在于,提出一种制备C-取代二亚乙基三胺的通用方法,该方法应克服已有技术的缺点,特别是不使用昂贵有毒的乙硼烷。
该任务由本发明用于制备式Ⅰ碳取代二亚乙基三胺的方法所完成, 其中R1表示一个-(CH2)m-(C6H4)q-(O)k-(CH2)n-(C6H1)1-(O)r-R或-(CH2)m-(C6H10)q-(O)k-(CH2)n-(C6H10)1-(O)r-R基团,式中m和n相互无关地表示数字0-5,k、1、q和r相互无关地表示数字0或1,R为氢原子、保护基团、必要时用OR5-取代的C1-C6烷基或CH2-COOR5基团,其中R5为氢原子、C1-C6烷基或苄基,重要的是不允许出现直接的氧-氧键,R2和R3各自代表氢原子或共同构成一个-(CH2)p-亚烷基桥,其中p为数字3或4,和R4代表氨基保护基,优选为苄氧基羰基,其特征在于,使通式Ⅱ所示氮上有保护基的氨基乙醇 (式中R1和R4含义同上)与甲磺酰氯、甲苯磺酰氯或三氟乙酸酐在一种有机溶剂中,于添加碱的条件下反应成相应的甲磺酸酯、甲基苯磺酸酯或三氟乙酸酯,接着过滤,使滤液与式Ⅲ的亚乙基二胺 (式中R2和R3含义同上)转化成所需的氮被保护的式Ⅰ所示碳取代三胺。
本发明方法以容易得到的氮保护氨基乙醇为原料,使之先与甲磺酰氯、甲苯磺酰氯或三氟乙酸酐在一种非质子有机溶剂如THF、二乙醚或二恶烷中,于添加碱(优选三乙胺)的条件下反应。这时,除了2-氨基乙醇-醇基外,其它需要时在R1中含有的OH基也被转化成相应的甲磺酸酯、甲苯磺酸酯或三氟乙酸酯。需要时可在以后的反应步骤中用技术人员公知的方法将这些物质重新分解或转化。
这样得到的甲磺酸酯、甲苯磺酸酯或三氟乙酸酯直接与亚乙基二胺、1,2-二氨基环戊烷或1,2-二氨基环已烷反应,生成相应的单保护三胺。此时不需要进行以前那样对甲磺酸酯(甲苯磺酸酯,三氟乙酸酯)的分离或提纯。
需用作原始物质的式Ⅱ所示N被保护的氨基乙醇,可以很容易地以技术人员公知的方法[Bull.Chem.Soc.Japan(1984)2327]通过在有机溶剂中用NaBH4还原式Ⅳ所示N被保护的氨基酸酯制得, 式中R1和R4含义同上,R6为直链或支链C1-C6烷基。
还原剂也可用LiBH4[J.Org.Chem.(1982)1604]或添加了LiBr的NaBH4[Tetrahedron letters(1988)4919]来代替NaBH4。
如果需要,可以技术人员公知的方法(T.Green“有机合成中的保护基团”,Wiley(1981)239)分解通式Ⅰ所示C上取代的二亚乙基三胺的氮保护基团。为此,可有目的地通过用盐酸酸化并转化为相应的盐酸盐,来提纯式Ⅰ所示碳上取代的二亚乙基三胺。然后,使之在合适的有机溶剂如醇(优选为甲醇)中重结晶。接着用合适的Pd催化剂氢解氨基保护基团R4。醇类同样适合作反应介质用。完成氢解后滤出催化剂,随后使盐从滤液中结晶出来。
需要时,可以通过添加一种无机碱(优选为NaOH)使胺从结晶物(盐酸盐)中游离出来。
本发明的方法不再使用有毒的乙硼烷,由于中间步骤结晶性能好,故而制得的产物纯度和产率都高。二胺与相应甲磺酸酯、甲苯磺酸酯或三氟乙酸酯的烷基化不仅产率优于常规合成(硼烷还原),而且产率和选择性均优于以前公知的用简单烷基卤对亚乙基二胺进行的单烷基化,如J.Am.Chem.Soc.67(1945)1531或EP 0466200所述。
由于本发明方法与硼烷还原方法的原理不同,因此只有对整个合成途径,即对同样的原料和终产物进行产率对比才是有义和可能的。
因此,对于用(S)-N-苄氧基羰基-O-乙基酪氨酸甲酯合成(S)-1-(4-乙氧基苄基二亚乙基三胺)而言,本发明方法的总产率可达80%以上(实施例1a-d),但用相应的酰胺,通过分解苄氧基羰基并用乙硼烷还原的方法,其总产率只有60%。
下面用实施例详细说明本发明,但并不限制于这些实施例。
例1a)N-苄氧基羰基-O-乙基酪氨酸甲酯使32.94(100mmol)N-苄氧基羰基酪氨酸甲酯在200mlDMF中与27.64g(200mmol)磨碎的碳酸钾混合。向该悬浮液滴加8.96ml(110mmol)碘乙烷,在室温下搅拌一液。浓缩溶液,在醋酸乙酯和水之间分配,有机相脱水(Na2SO4)后与已烷混合。结晶出标题化合物。
产率32.88g(92%)熔点50-56℃分析计算值C67.21 H6.49 N3.92试验值C66.96 H6.57 N3.81b)(S)-N-苄氧基羰基-2-(4-乙氧基苄基)-2-氨基乙醇在室温下,向由221.41g(605.9mmol)(S)-N-苄氧基羰基-O-乙基酪氨酸甲酯溶于1.5L四氢呋喃所成的溶液,添加31.80g(848mmol)硼氢化钠。在2小时内,边搅拌边滴入270ml甲醇。随后在真空下蒸除四氢呋喃,将残余物溶于1L水中,三次用700ml醋酸乙酯萃取。用水洗涤合并后的有机相,用硫酸钠脱水并浓缩。在醋酸乙酯/已烷中重结晶。
产率187.0g(93.7%)熔点112-117℃分析计算值C69.28 H7.04 N4.25试验值C68.93 H7.27 N3.96c)(S)-N-苄氧基羰基-N′-(2-氨基乙基)-1-(4-乙氧基苄基)亚乙基二胺在4℃下,也搅拌边慢慢向由84.00g(255.0mmol)(S)-N-苄氧基羰基-2-(4-乙氧基苄基)-2-氨基丙醇和37.82ml(272.9mmol)三乙胺溶于330ml四氢呋喃所成的溶液,滴加20.86ml(267.8mmol)甲磺酰氯。2小时后,滤出形成的沉淀物,滤液与427.0ml(6.4mol)亚乙基二胺混合。在50℃下搅拌溶液4小时,接着在真空下浓缩。用水溶解残留物,用醋酸乙酯萃取,用硫酸钠脱水并在旋转式蒸发器中浓缩。残留物溶于甲醇中,在0℃用浓盐酸酸化。吸滤并干燥后,得到二盐酸盐形式的无色晶状产物。
产率95.7g(84.5%)熔点223-225℃(分解)分析计算值C56.76 H7.03 N9.46 C115.96试验值C55.34 H6.94 N9.45 C116.321H-NMR(CDCl3,游离碱)7.45-7.29m[5];7.15d,J=8Hz[2];6.80d,J=8Hz,[2];5.25br.d[1];5.08ABq[2];3.98q,J=6Hz,[2];3.90m[1];2.90-2.55m[8];1.50br.s[3];1.40tr,J=6Hz[3]。
d)(S)-1-(4-乙氧基苄基)二亚乙基三胺将90.0g(202.5mmol)(S)-N-苄氧基羰基-N′-(2-氨乙基)-1-(4-乙氧基苄基)-亚乙基二胺二盐酸盐悬浮在2.7L甲醇中,添加7.5g10%Pd/C后,在15巴下氢化1小时。接着滤除催化剂,并将滤液浓缩至150ml。吸滤出所沉析的晶体。
产率56.86g(90.5%)熔点227-231℃(分解)分析计算值C50.33 H8.12 N13.54 C122.85试验值C50.71 H8.32 N13.77 C123.27为了释出三胺,向所得晶体在100ml甲醇中所成的悬浮液,添加14.7g(366mmol)粉末状NaOH。滤出所沉析的氯化钠,并浓缩滤液。在50℃真空下脱水干燥后,得到43.5g(100%)无色油状物。
例2a)(S)-N-苄氧基羰基-3-(4-羟基苄基)-2-氨基丙醇在室温下,向由50.0g(151mmol)(S)-N-苄氧基羰基酪氨酸甲酯溶于0.5L四氢呋喃所成的溶液,加入15.75g(400mmol)硼氢化钠。在2小时内,边搅拌边滴入100ml甲醇。在50℃下,搅拌反应混合物2小时。随后真空蒸除四氢呋喃,残余物溶入400ml水中,各用300ml醋酸乙酯萃取三次。用水洗涤合并后的有机相,用硫酸钠脱水并浓缩。在醋酸乙酯/已烷中重结晶。
产率41.5g(91%)熔点79-82.5℃分析计算值C67.76 H6.36 N4.65试验值C68.12 H6.37 N4.73b)(S)-N-苄氧基羰基-N′-(2-氨基乙基)-1-(4-甲基磺酰氧基苄基)-亚乙基二胺在4℃下,边搅拌边慢慢地向由7.3g(24.2mmol)(S)-N-苄氧基羰基-2-(4-羟苄基)-2-氨基丙醇和7.35g(72.7mmol)三乙胺溶于30ml四氢呋喃所成的溶液,滴加7.14g(60.6mmol)甲磺酰氯。2小时后,滤出所沉淀物,并使滤液与29.1g(484mol)亚乙基二胺混合。溶液在50℃下搅拌溶液4小时,随后真空浓缩。用水溶解残余物,用乙酸乙酯萃取,用硫酸钠脱水,在旋转式蒸发器中浓缩。残留物溶于甲醇中,于0℃下用浓盐酸酸化。吸滤并干燥后,得到二盐酸盐形式的无色晶状产物。
产率9.4g(79%)熔点216-218℃(分解)分析计算值C48.58 H5.91 N8.50 C114.34试验值C48.71 H6.32 N8.74 C113.971H-NMR(CDCl3,游离碱)7.4-7.15m[9];5.2br,d,J=9Hz[1];5.08s[2];3.94m[1];3.14s[3];2.95-2.60m[8];1.52br.s[3]。
c)(S)-1-(4-乙氧基苄基)二亚乙基三胺将5.0g(10.1mmol)(S)-N-苄氧基羰基-N′-(2-氨乙基)-1-(4-甲基磺酰氧基苄基)亚乙基二胺二盐酸盐悬浮在50ml甲醇中,添加0.84g10%pd/C催化剂后,在15巴下加氢化4小时。随后滤出催化剂,使滤液与1ml浓盐酸混合,并浓缩至20ml。抽滤出所沉析的晶体。
产率3.6g(90%)熔点226-230℃分析计算值C36.33 H6.10 N10.59 C126.81试验值C36.71 H6.32 N10.73 C126.27为了释出三胺,将1.1g(27.3mmol)粉末状氢氧化钠加入由所得晶体在10ml甲醇中形成的悬浮液中。滤出所沉析的氯化钠,浓缩滤液。在50℃下真空干燥后,得2.6g(100%)无色油状物。
例3N-(2-苄氧基羰基氨基-3-苯基丙基)-环戊基-1,2-二胺-二盐酸盐在4℃下,边搅拌边慢慢地向由5.7g(20mmol)N-苄氧基羰基苯基丙氨酸醇(-alaninol)[(Correa等人,Synth.Commun.21,1-9(1991)]和3.0ml(21.7mmol)三乙胺溶于30ml四氢呋喃所成的溶液滴加1.64ml(21mmol)甲磺酰氯。2小时后,滤除所沉析的沉淀物,将滤液滴到50.1g(500mmol)1,2-二氨基环戊烷[Jaeger和Blumendal,Z.anorg.Chem.175,161(1928)]中。所成溶液在50℃下搅拌4小时,接着真空浓缩。用水溶解残留物,用乙酸乙酯萃取,用硫酸钠脱水,并在旋转式蒸发器中浓缩。将剩下的油状物溶于甲醇,在0℃下用浓盐酸酸化。吸滤并干燥后,得非晶态产物。
产率7.1g(81%)分析计算值C60.00 H7.09 C116.10 N9.54试验值C59.43 H7.20 C116.61 N9.29例4N-(2-苄氧基羰基氨基-4-甲基苯基)-环已基-1,2-二胺二盐酸盐在4℃下,边搅拌边向由5.0g(20mmol)N-苄氧基羰基-亮氨酸醇[(Correa等人,Synth.Commun.21,1-9(1991)]和3.0ml(21.7mmol)三乙胺溶于30ml四氢呋喃所成的溶液慢慢滴加1.64ml(21mmol)甲磺酰氯。2小时后,滤除所沉析的沉淀物,并将滤液滴加到120ml(1mmol)反-1,2-二氨基环已烷中。溶液在50℃下搅拌4小时,随后真空浓缩。用水溶解残留物,用乙酸乙酯萃取,用硫酸钠脱水,并在旋转式蒸发器中浓缩。使剩余的油状物溶入甲醇中,并在0℃用浓盐酸酸化。吸滤并干燥后,得非晶形产物。
产率7.1g(84%)分析计算值C57.14 H8.39 C116.87 N9.99试验值C57.43 H8.20 C116.22 N9.69例5a)N-苄氧基羰基-O-甲基-酪氨酸甲酯使32.94g(100mmol)N-苄氧基羰基-酪氨酸甲酯在200mlDMF中与27.64g(200mmol)磨碎的碳酸钾混合。向该悬浮液滴加15.6g(110mmol)碘甲烷,并在室温下搅拌过夜。浓缩该溶液,在乙酸乙酯和水之间分配,有机相脱水(Na2SO4)后与已烷混合。结晶出标题化合物。
产率31.9g(93%)分析计算值C66.46 H6.16 N4.08试验值C66.60 H6.23 N3.99b)Na-苄氧基羰基-O-甲基-酪氨酸-(2-氨基环已基)-酰胺-盐酸盐将24.0g(70mmol)N-苄氧基羰基-O-甲基-酪氨酸甲酯溶于50ml甲醇,并在约2小时内滴入420ml(3.5mol)反-1,2-二氨基环已烷中。将该溶液在室温下搅拌24小时,随后在油真空下蒸发至干。将油状残留物溶入醋酸乙酯中,用水多次振摇萃取,以除去二氨基环已烷残留物。有机相脱水(Na2SO4)并与2N氯化氢在醋酸乙酯中混合。滤去不久后生成的沉淀物,并在50℃真空干燥。
产率23.0g(71%)分析计算值C62.40 H6.98 C17.67 N9.10试验值C61.70 H7.05 C17.38 N9.25c)N-[2-氨基-3-(4-甲氧基苯基)丙基]-环已烷-1,2-二胺-三氢氯化物将18.5(40mmol)Na-苄氧基羰基-O-甲基-酪氨酸-(2-氨基环已基)-酰胺-氢氯化物悬浮在200ml甲醇中,在氮气氛下与载钯活性炭(10%Pd)混合,可选择在高压釜中或常压下用氢气加氢。反应结束(约2-6小时)后,吸出催化剂,并浓缩滤液。将得到的油状物悬浮在320mL 1M/M的乙硼烷/四氢呋喃络合物溶液(320mmol)中,回流下搅拌48小时。随后在冰浴中冷却,加入15ml甲醇来结束反应。在冰浴中搅拌1小时,然后导入氯化氢,这时沉析出所需胺的三氢氯化物。吸滤出沉淀物,并用P2O5干燥。
产率14.2g(92%)分析计算值C49.68 H7.82 C127.50 N10.86试验值C49.21 H7.70 C128.75 N10.20
权利要求
1.制备式Ⅰ碳取代二亚乙基三胺的方法, 式中R1表示-(CH2)m-(C6H4)q-(O)k-(CH2)n-(C6H4)l-(O)r-R或-(CH2)m-(C6H10)q-(O)k-(CH2)n-(C5H10)l-(O)r-R基团,其中m和n各自独立地为0-5的数字,k、l、q和r各自独立地为数字0或1,R为氢原子、保护基团、必要时由OR5-取代的C1-C6烷基或-CH2-COOR5,R5为氢原子、C1-C6烷基或苄基,重要的是不允许出现直接的氧-氧键,R2和R3各为一个氢原子或共同构成一个-(CH2)p-亚烷基桥,其中p为数字3或4,以及R4为氨基保护基团,其特征在于,使式Ⅱ所示,式中R1和R4含义同上的氮被保护的氨基乙醇 与甲磺酰氯、甲苯磺酰氯或三氟乙酸酐在有机溶剂中,于添加碱的条件下反应,生成相应的甲磺酸酯、甲苯磺酰酯或三氟乙酸酯,随后过滤,并使滤液与式Ⅲ所示亚乙基二胺 (式中R2和R3含义同上)反应,生成式Ⅰ所示氮被保护的所需碳取代三胺。
2.权利要求1所述的方法,其特征是,基团-(CH2)m-(C6H4)q-(O)k-(CH2)n-(C6H4)1-(O)r-R为异丁基、苄基、4-乙氧基苄基或4-甲氧基苄基。
3.权利要求1所述的方法,其特征是,氨基保护基R4是一个苄氧基羰基。
4.权利要求1所述的方法,其特征是,将三乙胺用作碱。
5.权利要求1所述的方法,其特征是,使式Ⅱ所示氮被保护的氨基醇与甲磺酰氯反应。
6.权利要求1所述的方法,其特征是,使式Ⅱ所示氮被保护的氨基醇与甲苯磺酰氯反应。
全文摘要
本发明涉及一种制备式I所示C-取代二亚乙基三胺的方法,式中R
文档编号C07C271/20GK1100411SQ9410266
公开日1995年3月22日 申请日期1994年1月24日 优先权日1993年1月25日
发明者O·比乔夫, J-C·海尔谢, K·尼凯西, H·施密特-维里西, H·格里斯, B·拉杜谢尔 申请人:舍林股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1