氧合物转化中短时接触的应用的制作方法

文档序号:3523755阅读:193来源:国知局
专利名称:氧合物转化中短时接触的应用的制作方法
技术领域
本发明涉及了由氧合物(oxygenate)转化为烯烃的方法。更具体地说,本发明涉及了由氧合物转化为烯烃的方法,本方法具有更高的烯烃收率以及降低的甲烷和其它轻饱和副产品的收率。
背景技术
传统上烯烃是由石油原料通过催化裂化或蒸汽裂化生产的。不利的是,石油裂化的费用已经稳步上升,所以找到生产烯烃的替代原料来源是很重要的。
氧合物如醇,有希望成为生产烯烃的替代原料。醇可以来源于非石油来源,如糖。糖的发酵可以产生乙醇。也可以通过合成气生产醇。合成气可以通过许多有机原料生产,包括但不限于回收的塑料、城市垃圾、石油液、天然气、包括煤的含碳原料以及其它有机原料。
由氧合物如甲醇和二甲醚生产烯烃的领域的现行技术的焦点为,使乙烯和丙烯的成品收率达到最大,如在US-A-4,499,327、US-A-4,617,243、US-A-5,095,163和US-A-5,126,308中例证的那样。总收率组成(slate),一般包括分子量低于乙烯的轻饱和物质,即甲烷(CH4)、氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)和乙烷(C2°),以及分子量高于丙烯的较重的副产品,即C4和C5物质。现行技术水平中,由于C4物质和较重物质的潜在污染和这些副产品相对比较低的价值,除了使这些副产品的收率降到最小外,很少有收率组成的整体优化。
由于轻饱和副产品为“清洁”化合物,没有潜在的污染,易于回收,可至少用作燃料,这些副产品的产生不会成为需要解决的问题。所以,现行技术中主要的焦点不是使轻饱和物的收率最小化的问题。
该途径的缺点为,在烯烃生产厂必须有昂贵的分离设备,以使甲烷和其它轻饱和物从所需的乙烯和丙烯产品中首先分离,然后回收。这种回收流程一般包括冷匣、脱甲烷塔、脱乙烷塔和乙烯/乙烷分离器。尽管本领域中熟知各种分离方法,此设备必须一般在-200℃(-328°F)及更低的温度下操作,由于碳素钢管在低于-100℃的温度下操作脆弱易破裂,设备必须由非常昂贵的不锈钢合金建造。迄今,现行技术还没有给出减小甲烷和其它轻质饱和物的收率,以减小这些回收设备的投资的有效方法。
对于给定催化剂,可以通过降低反应温度减少由氧合物原料生产的甲烷。但是,降低温度也会降低催化剂的活性和乙烯的收率。工业上需要能达到较高的烯烃收率和较低的轻饱和物收率的高温下由氧合物生产烯烃的方法。
发明概要本发明提供了由氧合物原料转化为烯烃的方法,方法为在有效的条件下使氧合物原料与分子筛催化剂接触,使氧合物原料转化为烯烃和包括甲烷的副产物,其中这些条件包括重量时空速度(WHSV)至少为约20小时-1,得到的温度校正标准化甲烷选择性(TCNMS)小于约0.016。
发明详述在本发明的定义中使用的以下参数,有助于评价本发明对于降低相对于所需产品—一般为乙烯的收率的甲烷收率的效力。“甲烷选择性”为由氧合物原料转化产生的甲烷的基于重量或摩尔的收率,被相同基础上的氧合物原料转化率除所得的结果。术语“标准化甲烷选择性”或“NMS”的定义为甲烷的成品收率被乙烯的成品收率除所得的结果,其中每一收率以重量百分数测定或转化为重量百分数。术语“温度校正标准化甲烷选择性”或“TCNMS”的定义为温度低于400℃时的TCNMS=NMS(1+((T-400)/400)×14.84)]]>NMS。当温度为400℃或更高时,TCNMS由下式定义,其中T=摄氏温度NMS和/或TCNMS越低,该方法增大乙烯收率和减小甲烷收率就越有效。
本发明提供了氧合物转化过程中优化收率组成的方法,反应的条件包括重量时空速度(WHSV)至少为约20小时-1,产生的烯烃的TCNMS小于约0.016。在优选的方法中,在至少为300℃的温度下生产烯烃。在另一优选的方法中,在约400℃或更高的温度下生产烯烃,其TCNMS小于约0.01。由于本方法的性质,在动力床系统或各种输送床系统中使用分子筛催化剂,而不是在固定床系统中实现本发明的方法是很理想的。使用的反应器系统的关键特征为在高空速下操作的能力。
氧合物转化生成轻烯烃的反应可以在各种催化反应器中进行,包括但不限于,流化床反应器和并流立管反应器,如在D.Kunii和O.Levenspiel的“自由沉降反应器”,《流态化工程》Robert E.Krieger出版公司,纽约,1977年中所介绍的,此处整体引用,作为参考。此外,转化过程中也可使用逆流自由沉降反应器,如在US-A-4,068,136和F.A.Zenz和D.F.Othmo的“立管反应器”,《流态化和流体质点体系》,48-59页,Reinhold出版公司,纽约,1960年中所介绍的,也是在此处整体引用作为参考。本领域中技术熟练的人很容易理解,在任何具体的应用中,每种类型的反应器都会有优点和缺点。
在优选的方法中,在约400℃或更高的温度下生产烯烃,其TCNMS小于约0.01。优选的反应器为并流立管反应器和短时接触逆流自由沉降反应器,其中,氧合物原料与分子筛催化剂的接触可以在至少约20小时-1的重量时空速度(WHSV)下,优选地在约20小时-1到1000小时-1的范围内,最优选地在约20小时-1到500小时-1的范围内。由于催化剂或原料可能含有用作惰性物或稀释剂的其它物质,WHSV是在氧合物和所用的分子筛的重量基础上计算的。
分子筛催化剂可为大孔、中孔或小孔的催化剂。一般地,大孔催化剂的定义为孔径大于约10埃单位,中孔催化剂的定义为孔径小于10且大于5埃单位。优选的实施方案中使用小孔的分子筛催化剂,其孔径范围为约3.5到约5.0埃单位,优选地为约4.0到约5.0埃单位,最优选地为约4.3到约5.0埃单位。适宜的分子筛催化剂包括,但不一定限于硅铝磷酸盐(SAPO)催化剂、丝光沸石、ZSM-5、ZSM-34、菱沸石、毛沸石及其混合物,优选地为SAPO催化剂,有SAPO-5、SAPO-11、SAPO-34、SAPO-17、SAPO-18、SAPO-44,最优选的为SAPO-17、SAPO-18、SAPO-34、SAPO-44、ZSM-34、菱沸石和毛沸石。可用催化剂合成领域中技术熟练的人熟知的原位合成或后合成方法,把金属结合入选取的催化剂中。
起始材料(原料)中含有“氧合物”,按照本发明的目的,其定义为包括含有氧原子的有机分子,如脂肪醇、醚、羰基化合物(醛、酮、羧酸、碳酸酯等等),以及含有其它原子的有机分子,如卤化物、硫醇、硫化物、胺及其混合物。其脂族结构部分优选地含有1到10个碳原子,更优选地含有1到4个碳原子。典型的氧合物包括但不一定限于低级直链和支链脂肪醇、其不饱和对应物以及其氮、卤和硫的类似物。适宜的化合物的例子包括,但不限于甲醇、乙醇、正丙醇、异丙醇、C4-C20醇、甲乙醚、二甲醚、二乙醚、二异丙醚、甲基硫醇、二甲硫醚、甲胺、乙基硫醇、二乙硫、二乙胺、乙基氯、甲醛、碳酸二甲酯、二甲酮、乙酸、含有3到10个碳原子的正烷基的正烷基胺、正烷基卤和正烷基硫,及其混合物。此处使用的术语“氧合物”只是指用作原料的有机物质。经过反应区的总原料负荷中也可含有其它化合物如稀释剂。非必需地,任何未转化的原料可以回收并与新鲜原料一同进入转化反应器中,进行再循环。
可以在适当的过程条件下,在气相中进行转化反应,以得到所需的烯烃,条件为与生产烯烃有关的有效的温度、压力、WHSV(重量时空速度)以及非必需地有效量的稀释剂。此外,该过程可以在液相中进行,将得到与轻烯烃产品的相对比值有关的不同的转化率和原料对产品的选择性。
至少在部分上,反应温度可随选取的分子筛催化剂,在很大的范围内变化。有效的温度范围为,但不一定限于,约200℃到约700℃,优选地为约250℃到约600℃,最优选地为约300℃到约500℃。在温度范围的低限,所需的轻烯烃产品的生成会大大降低。在反应温度的高限以及更高的温度下,该过程不会生成最优量的轻烯烃产品。在优选的实施方案中,可以得到特别理想的低的TCNMS,温度至少为约400℃。
包括自生压力的压力也可在很大的范围内变化。有效的压力的范围为,但不一定限于,约0.1千帕到约100兆帕。优选的压力的范围为约6.9千帕到约34兆帕,最优选的范围为约48千帕到约0.34兆帕。上述的压力不包括任何惰性稀释剂,而是指原料中氧合物化合物和/或其混合物的分压。在上述压力范围的低限和高限,选择性、转化率和/或反应都不会为最优的。
在很大程度上由反应温度、压力、选取的分子筛催化剂、WHSV、相(液相或气相)以及工艺过程设计特点所决定,停留时间从几秒到许多小时,会有很大的不同。
原料中可有一种或多种惰性稀释剂,例如,基于进入反应区(或催化剂)的全部原料和稀释剂成分的总摩尔数的摩尔百分含量,为1%到99%。典型的稀释剂包括,但不一定限于氦气、氩气、氮气、一氧化碳、二氧化碳、氢气、水、石蜡、烃(如甲烷)、芳香族化合物及其混合物。优选的稀释剂为水和氮气。
本过程可以以间歇、半连续或连续的方式进行。本过程可以在单一反应区或许多串联或并联的反应区中进行,或可以间歇地或连续地在延长管状区或许多这种区中进行。使用多反应区时,为得到理想的产品混合物,串联地使用一种或多种分子筛是很有利的。
如果需要再生,可以连续地把分子筛催化剂以移动床的形式输入再生区,在那里催化剂可以得到再生,例如通过移走含碳物质,或在含氧气氛中,通过氧化使催化剂再生。在优选的实施方案中,可以通过烧尽在转化反应中积聚的含碳沉积物,使催化剂再生。
通过参考下面的实施例,可以更好地理解本发明。
实施例I-比较例以下为在现行技术水平中有代表性的典型的由甲醇生产烯烃的方法中,所得到的甲烷的选择性的分析,这不是本发明的主题。象大多数的由甲醇生产烯烃的方法一样,US-A-4,499,327中所介绍的过程是试图增大乙烯和丙烯的收率。US-A-4,499,327说明了WHSV在约0.01小时-1到约100小时-1的范围内,优选地在约0.1小时-1到约40小时-1的范围内。US-A-4,499,327也指出也可以使用高于100小时-1的WHSV,尽管这些值不是优选的(第7列,28-34行)。据称该方法得到的甲烷的选择性小于10摩尔%,5摩尔%为优选的(第6列,13-21行)。这些选择性数值是基于摩尔测定的,基于重量分别等于5重量%和2.5重量%。
US-A-4,499,327的实施例32在甲醇转化为轻烯烃中,使用SAPO-34作为催化剂,压力为自生压力,WHSV大约为0.8小时-1,所用的四个不同的温度为350℃、375℃、400℃和425℃。结果经过整理,在下面的表I中以摩尔百分数和重量百分数列出。
表I
甲烷的选择性达到小于2.5重量%(5摩尔%)后,乙烯和甲烷的选择性都随着温度的升高而增大;但是,甲烷的收率比乙烯的收率增大得快得多。
关于WHSV的作用和它对收率组成的影响,US-A-4,499,327中没有给出产生更好或更坏的结果的WHSV的任何较窄的范围。实际上,US-A-4,499,327的实施例34中指出,以WHSV表征的流速,大体上不会影响甲烷的生产。给出两组实施例以说明流速对轻烯烃生产的影响,第2组的流速比第1组的流速大约大2.5倍。结果经过整理,以摩尔百分数和重量百分数列于下面的表II中。
表II
比较表II中列出的数据说明,在流体中经过大体上相同的时间后,较高的WHSV(1.91小时-1)下乙烯的选择性比较低的WHSV(0.83小时-1)下的一般要低,甲烷的选择性则有时高有时低。这种变化的净效果是,NMS在两个不同的WHSV下,也是有时高有时低。因此,使用较高的WHSV没有明显的好处。
实施例II-比较例按照US-A-4,440,871中的说明制备SAPO-34,此处引用作为参考。把5.0立方厘米制备的SAPO-34催化剂与15立方厘米的石英珠混合,并装填入由三区电炉加热的1.9厘米(3/4英寸)外径的316不锈钢管状反应器中。第一区作为预热区,使进料汽化。电炉中心区的温度调节至所需的反应温度450℃。首先用流速为50立方厘米/分的氮气吹30分钟,净化反应器。把含有30.8重量%的甲醇,相当于摩尔比为4∶1的水和甲醇混合物的原料,泵入反应器并调节使3磅/平方英寸(表压)压力下的流速为WHSV 0.7小时-1。结果列表如下
甲醇的转化率为100%。以预定时间间隔,通过装有热导检测器和火焰离子化检测器的在线气相色谱分析流出物。过程的结果为NMS大约为0.06,TCNMS为0.02。
实施例III-本发明通过在650℃的空气中煅烧催化剂粉末2小时,制备了SAPO-34试样。把50.5毫克制备的催化剂加入到4毫米内径的石英反应器中,在反应器中催化剂装料的上部和下部都装有玻璃棉。把反应器加热到450℃。总压保持在5磅/平方英寸(表压)。把1微升的水/甲醇共混物(摩尔比为4∶1)试样在WHSV为21小时-1下,重复地注入到催化剂之上。通过注入反应器中,水和甲醇被加热到反应器的温度。用装有火焰离子化检测器的气相色谱测定产物和未反应原料的成分,得到以下结果
得到的NMS为0.040,TCNMS为0.014。由前面的结果可以得出结论,WHSV由0.7小时-1增大到21小时-1,NMS和TCNMS都降低了约30%。
实施例IV-本发明重复实施例III的过程,除了只用50.0毫克的催化剂,不使用稀释剂,反应压力增大到25磅/平方英寸(表压),WHSV由21小时-1增大到110小时-1,使用了五个不同的温度325℃、375℃、425℃、450℃和475℃。得到了下面的结果
在温度为450℃、WHSV为110小时-1时,NMS由0.0401(实施例III,在相同的温度450℃,WHSV为21小时-1)降到0.0186。相应的TCNMS由0.0140降到0.00653。
实施例V重复实施例IV的过程,除了只用少量的12.1毫克的催化剂,WHSV由110小时-1增大到215小时-1以外,其它条件不变。在以下的温度下,得到了下面的结果
在温度为450℃、WHSV为215小时-1时,NMS为0.0236,计算的TCNMS为0.0068。
实施例VI重复实施例IV的过程,除了只用5.5毫克的催化剂,WHSV增大到约430小时-1以外,其它条件不变。在各个读取温度下,得到了下面的结果
这样,在温度为450℃、WHSV为430小时-1时,NMS为0.0154,TCNMS为0.00539。在475℃下,TCNMS甚至更低,为0.00479。
实施例VII-本发明重复实施例IV的过程,除了只用5.5毫克的催化剂,WHSV增大到约1000小时-1以外,其它条件不变。得到了下面的结果
在温度为450℃、WHSV为1000小时-1时,NMS为0.0134,得到的TCNMS为0.00469。
这些实施例说明了应用本发明,在高温下由氧合物得到高收率的烯烃,同时减小甲烷和其它轻饱和物的收率是做得到并且是有利的;因而,克服了现行技术水平中的低温的问题,其中为减小轻饱和物的收率需要低温,这会导致不理想的烯烃的低收率。
本领域中具有一般技能的人会理解,在不违背本发明的精神和范围的前提下,可以对本发明作很多修改。此处介绍的实施方案只是用做例证,不应作为本发明的限制,这些在下面的权利要求中有说明。
权利要求
1.一种由氧合物原料转化生成烯烃的方法,方法为在有效的条件下使氧合物原料与分子筛催化剂接触,使氧合物原料转化为烯烃和包括甲烷的副产物,其中这些条件包括重量时空速度(WHSV)至少为约20小时-1,得到的温度校正标准化甲烷选择性(TCNMS)小于0.016。
2.权利要求1的方法,其中条件为温度至少为300℃,优选地在300℃到500℃的范围内,最优选地在400℃到500℃的范围内。
3.权利要求1或2的方法,其中条件包括重量时空速度(WHSV)在20小时-1到1000小时-1的范围内,优选地在20小时-1到500小时-1的范围内。
4.上述权利要求中任何权利要求的方法,其中分子筛催化剂由硅铝磷酸盐(SAPO)、ZSM-34、菱沸石、毛沸石或其混合物组成,优选地由SAPO-17、SAPO-18、SAPO-34或SAPO-44组成,最优选地为SAPO-34。
5.上述权利要求中任何权利要求的方法,其中分子筛催化剂的孔径为大于3.5埃且小于5.0埃,优选地为大于4.0埃且小于5.0埃,最优选地为大于4.3埃且小于5.0埃。
6.上述权利要求中任何权利要求的方法,其中氧合物原料通过分子筛催化剂是在自由沉降反应器、流化床反应器或立管反应器中实现的。
7.上述权利要求中任何权利要求的方法,其中氧合物原料由含有氧原子的有机分子、脂肪醇、醚、羰基化合物、含有卤化物、硫醇、硫化物和/或胺的有机分子或其混合物组成。
8.上述权利要求中任何权利要求的方法,其中氧合物原料由含有1到10个碳原子的脂族结构部分的有机分子组成,优选地由含有1到4个碳原子的脂族结构部分的有机分子组成。
全文摘要
本发明涉及了由氧合物转化为烯烃的方法。更具体地说,本发明涉及了由氧合物转化为烯烃的方法,本方法具有更高的烯烃收率以及降低的不需要的甲烷和其它轻质饱和副产品的收率。特征为使用高重量时空速度(WHSV;高于20小时
文档编号C07C1/26GK1241990SQ9718110
公开日2000年1月19日 申请日期1997年12月31日 优先权日1996年12月31日
发明者S·N·瓦戈恩, 孙祥宁, D·R·小拉姆盖尔 申请人:埃克森化学专利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1