对烯式不饱和化合物加氢甲酰化制备醛的催化剂和方法

文档序号:3524320阅读:221来源:国知局
专利名称:对烯式不饱和化合物加氢甲酰化制备醛的催化剂和方法
技术领域
本发明涉及一种新催化剂和在这一催化剂存在的条件下对烯式不饱和化合物加氢甲酰化的方法,加氢甲酰化的产物不溶于或很少不溶于水。
使烯烃与一氧化碳和氢气反应(加氢甲酰化)是已知的,可以生产醛和醇,醛和醇比起始烯烃多一个碳原子。这一反应可由氢化金属羰基化物(hydridometal carbonyls)、特别是含元素周期表中第Ⅷ族的金属的那些所催化。除经典的催化剂金属钴外,基于铑的催化剂的应用在增加。与钴不同,铑可以使反应在低压下进行,而且,当使用末端烯烃时,形成了正构醛,形成的异构醛较少。最后,与使用钴催化剂相比,在有铑催化剂存在的条件下,烯式化合物加氢得到的饱和烃也明显较少。
在工业上,使用铑膦复合物的催化效果对烯式不饱和化合物加氢甲酰化主要有两种方式。第一种是均相进行,即起始烯烃、催化剂系统(羰基铑和有机膦)和反应产物都存在于溶液中。反应产物通过蒸馏从混合物中分离出来。另一方式的特征在于,存在一种从反应产物分出的含水催化剂相,它含有羰基铑复合物和磺化的-或羧化的有机膦。这一方式使得不必使用热处理步骤就能分离甲酰化产物,简化了催化剂的回收,当使用末端烯烃时,产物中非支链醛的比例特别高。这两种方法都频繁出现在文献中,例如在W.A.Herrmann,C.W.Kohlpaintner,应用化学,1993,105,1588页和DE-C-26 27 354以及EP-B-0 103 810中。
在已经工业化的这些方法中,催化剂以氢化铑羰基化物的形式使用,它含有其它配位体,特别是有机叔膦或亚磷酸盐。在大多数情况下,相对于金属原子,配位体是过量的,因此,催化剂系统含有复合物和游离的配位体。使用所述铑催化剂使得加氢甲酰化反应可以在低于300巴的压力下进行。
不同的反应方式影响起始物料的转化率和副产物的形成。通常,与均相反应(单相)方法相比,两相反应的转化率较高,选择性较好。在使用单独的催化剂相的系统中进行反应的优点是免去了除去催化剂的麻烦。可以用简单的水相与有机相的分离来除去,即不必蒸馏,因此,不使用热处理步骤。另一方面,在均匀的单相催化过程中,产品必需须蒸馏以除去催化剂,或者必须使用其它方法从粗产品中分离出催化剂。由于反应产品的热敏感性,蒸馏经常与产品的损失联系在一起。其它方法,如用沉淀或膜方法分离催化剂在工业上是复杂的,因此是不利的。
丙烯或1-丁烯(来自丁烯混合物,如残液2(raffinate 2))的双相加氢甲酰化方法在工业规模上被证明是成功的。就是所谓的Ruhrchemie/Rhone-Poulenc方法。所用的催化剂系统是氢化铑羰基化物复合物,该催化剂通过水溶性配位体TPPTS(三苯基膦三磺酸钠)改性和稳定。
由于具有磺酸盐基团,TPPTS配位体是可溶于水的,具有将铑复合物溶解到水相的功能,防止铑复合物损失到有机相中。按照目前的理解,化学反应即氢和一氧化碳分子与双键的复合物催化加成反应可以发生在含水催化剂相中或发生在相界面上。通过调节相平衡,所形成的产品可以进入有机相。
对于高级烯烃-即具有6个以上碳原子的烯烃-的加氢甲酰化,Ruhrchemie/Rhone-Poulenc方法是不合适的,因为时空产率非常低。随碳原子数的增加,可以观察到双相烯烃加氢甲酰化反应产率的下降,这是因为高级烯烃在水相中的溶解度较低。由于双相加氢甲酰化方法的反应条件相对温和,而且产物相与催化剂相的分离简单,所以用这一方法进行高级烯烃的加氢甲酰化也一直受到关注。
高级烯烃的加氢甲酰化产物经常用作制备高级醇的中间体,还能作为通过氧化制备中长链羧酸的中间体。此外,具有七个或更多碳原子的直链醛本身或其缩醛形式用于香料工业制造香水或香皂。具有8-12个碳原子的直链或支链醇在工业上大量用作增塑剂醇,在大多数情况下,以邻苯二甲酸二酯和马来酸二酯的形式作为增塑剂,以增塑PVC。高级直链醇的其它应用领域是作为洗涤剂的、涂料基材、搪瓷基材的成分(Ullmann’s工业化学百科全书,第4版,卷7,Chemie Weingeim出版社1974,118-141页)。
加氢甲酰化催化剂也可以从实用化学杂志338(1996),124-128中得知。
本发明的目的是,开发一种对高分子量烯式不饱化合物加氢甲酰化、以得到相应醛的方法,同时具有尽可能最高的活性和选择性。此外,应使反应产物和催化剂系统易于相互分离,并且大大避免贵金属的损失。
本发明的目的是通过含有铑和通式(Ⅰ)化合物的催化剂实现的
其中m是1-1000的数,优选2-300,特别优选2-100;x是一个0-4的数,优选0或1;W是通式为-CH2-CH2-,-CH(CH3)CH2-或-CH2CH(CH3)-基团;R是氢、直链或支链C1-C5烷基;或以下通式的基团
其中a、b、c、d和e相互独立地是0-1000的数,a、b、c、d和e中至少一个大于0;R5、R6、R7、R8和R9可以相同或不同,是氢、C1-C5烷基;或如下通式的基团
R1和R2相同或不同,为直链、支链或环状C1-C30烷基;或C6-C10芳基,是非取代的或被1-5个C1-C3烷基取代的,或者R1和R2与三价P原子形成一个如下通式的二苯并膦基(dibenzophospholyl)
或如下通式的3,4-二甲基膦基(dimethylphospholyl)
L是C1-C5烷基、C1-C5烷氧基、NO2、NR3R4,其中R3和R4独立地是氢、C1-C4烷基,或L是Cl或OH。
苯环上的亚烷基二醇基团可以与磷原子是邻位、间位或对位的。氧杂亚烷基链-它以基团-(W-O-)m为基础-可以唯一地由氧化乙烯单元或氧化丙烯单元或其任意的组合组成。
特别感兴趣的是这些通式(Ⅰ)的化合物,其中R1和R2相同,各是一个直链或支链C1-C6烷基、环己基或苯基。
特别感兴趣的还是这些通式(Ⅰ)的化合物,其中R是氢、甲基、乙基、正丙基、正丁基或如下通式的基团
其中c1、d1和e1各自独立是一个1-500、特别是2-300的数,和R70、R80和R90相同或不同,是氢、甲基、乙基、正丙基或正丁基。
特别感兴趣的还是这些通式(Ⅰ)的化合物,其中L是甲氧基、乙氧基、甲基、乙基或OH,或其中x是0。
通式(Ⅰ)的化合物的例子是甲基(三苯基膦-4-基)三亚乙基二醇醚,甲基(三苯基膦-3-基)三亚乙基二醇醚,甲基(三苯基膦-2-基)三亚乙基二醇醚,和具有较长氧杂烷基链的化合物,其中乙氧基和丙氧基单元以任意顺序以及一般形成的一种产品混合物
其中m1和m2都是16,Ph是苯基;
其中m3是约22;
其中m4为约84,m5约为21,
其中m6为约22,m7都是5.5。
可以使用碱使通式(Ⅱ)的羟苯基膦化合物脱去质子、得到相应的酚盐,并与通式(Ⅲ)的化合物反应来制备通式(Ⅰ)的化合物
X-(-W-O-)m-R(Ⅲ)其中,W、R和m的定义与前面相同,X是一个亲核可取代的离去基,得到通式(Ⅰ)化合物。
亲核可取代离去基X的例子是邻-、间-或对-甲苯磺酸根、甲磺酸根、三氟乙酸根、三氟甲磺酸根、九氟丁磺酸根、苯磺酸根、对硝基苯磺酸根、Cl或Br。
合适的碱的例子是NaOH、KOH、NaH、KH或三烷基胺。优选三烷基胺和KOH。
反应在20-100℃、优选在60-90℃下进行是有利的。因为脱质子步骤通常是放热的,从这一点看,在合成过程中进行冷却是有利的,例如冷却到0-20℃。合成过程可以在有或没有有机溶剂存在的条件下进行。合适的有机溶剂是二甲基甲酰胺、甲苯或乙酸乙酯。进一步说,在惰性气氛下进行反应是有利的。
通过将铑-例如以其盐或复合物形式-和通式(Ⅰ)的化合物一起混合,可以简单的方式制备催化剂。这些盐或复合物的例子是乙酸铑、丁酸铑、氯化铑、铑的乙酰丙酮化物、硝酸铑、[RhCl(CO)2]、[Rh(acac)(CO)2]和HRh(CO)(TPP)3,其中acac是乙酰丙酮化物,TPP是三苯基膦。特别有利的是,以可溶于水的盐或复合物的形式将铑与通式(Ⅰ)的化合物一起溶解。也可以先溶解铑盐或铑的复合物,然后加入通式(Ⅰ)的化合物,或与此相反,先溶解通式(Ⅰ)的化合物,然后加入铑盐或铑的复合物。
可以在加氢甲酰化中直接使用含有铑和通式(Ⅰ)化合物的催化剂,即不必进行附加处理。
然而,必要时,也可以在有氢和一氧化碳存在的条件下,在升温下,先对含有铑和通式(Ⅰ)化合物的催化剂进行预处理,借助这种预处理,以制备实际上具有活性的催化剂物质。其条件可以相应于加氢甲酰化的条件。
催化剂通常含有铑和通式(Ⅰ)的化合物,其摩尔比率为1∶1-1∶5000,优选1∶100-1∶3000。在许多情况下,铑和通式(Ⅰ)化合物的摩尔比率为1∶1-1∶500,特别是1∶1-1∶200,优选1∶50-1∶150的催化剂被证明是合适的。一般来说,提高膦配位体的量能减少由于加氢甲酰化引起的贵金属损失到有机相中。
本发明进一步涉及一种制备醛的方法。该方法包括在有含铑和通式(Ⅰ)化合物的催化剂存在的条件下,在10-500巴的压力和40-200℃的温度下,使具有3-20个碳原子的烯式化合物与一氧化碳和氢气在含水相和有机相的反应混合物中反应。
液体有机相主要由烯烃和/或加氢甲酰化反应产物组成,必要时,可以有一种或多种溶剂。如果使用溶剂,可以选择惰性脂族化合物如烷烃,优选C5-C9烷烃,如环己烷、正庚烷,或芳烃化合物,如甲苯、二甲苯、乙苯、米或氯苯。
水相含有催化剂和通式(Ⅰ)的化合物。按照本发明,由上述铑盐或铑复合物与通式(Ⅰ)的化合物在水相中原位形成催化剂是有利的。正如上面所述,如果催化剂含有超过化学计算量的通式(Ⅰ)的膦是有利的。
向反应混合物中加入超过化学计算量的膦、以形成催化复合物并提供游离膦是有利的。游离的膦可以与用于催化复合物的膦相同或不同,但优选是相同的。
有机相对催化剂水相的体积比应为1∶5-5∶1。优选3∶1-1∶2。低的水相对有机相的比值在大多数情况下会使反应速度减慢。当水相与有机相的体积比大时,损失到有机相中的铑也多。
烯烃化合物可以含有一个或多个碳-碳双键。碳-碳双键可以位于末端或中间。优选的烯烃具有端部碳-碳双键。
α-烯烃化合物(具有端部碳-碳双键)的例子是链烯烃、链烯酸烷基酯、烷酸链烯基酯、链烯基烷基醚和链烯醇,特别是具有6-14个碳原子那些。不完全举例,α-烯烃的例子是丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-癸烯、1-十二碳烯、十八碳烯、2-乙基-1-己烯、苯乙烯、3-苯基-1-丙烯、烯丙基氯、1,4-己二烯、1,7-辛二烯、3-环己基-1-丁烯、己-1-烯-4-醇、辛-1-烯-4-醇、乙烯基环己烯、7-辛烯酸正丙酯、7-辛烯酸和5-己烯酰胺。
其它合适的烯式化合物的例子包括2-丁烯、二聚异丁烯、三聚丙烯、Octol或Dimersol(丁烯的二聚产品)、四聚丙烯、环己烯、环戊烯、二聚环戊烯、无环、环状或双环的萜烯,如月桂烯、贮烯、蒎烯。
相对于每千克水相,含有铑和通式(Ⅰ)化合物的催化剂的用量通常是5-100mg,优选30-60mg。
相对于烯式化合物,铑的量为1∶500-1∶100,000,优选为1∶10,000-1∶80,000摩尔铑/摩尔烯式化合物是有利的。如此少量的铑能满足两相方法是特别令人惊奇的。
在本发明方法中,在大多数情况下,损失到有机相中的铑小于lppm。
水相的pH值优选为5-8。如果使用缓冲液,应与催化剂互溶,并为惰性。
反应是在氢气和一氧化碳(合成气)存在下进行的。可在宽的范围内选择氢气与一氧化碳的摩尔比率,通常是1∶10-10∶1,特别是5∶1-1∶5,优选2∶1-1∶2。如果氢气与一氧化碳的摩尔比率为1∶1或接近1∶1,则反应特别简单。
在大多数情况下,在20-400巴、特别是在30-80巴的压力下进行反应被证明是有利的。从活性的角度来看,80巴是优选的,但是,对于正/异比率,30巴的合成气压力能得到较好的选择性。
烯式化合物与氢气和一氧化碳的反应在40-200℃下进行。低于40℃时反应速度慢,不能接受,当温度高于200℃时催化剂会失活。优选的范围是80-150℃,特别优选110-130℃,因为这一温度对醛的选择性最高,反应速度也能接受。
应当指出,反应条件、特别是铑浓度、压力和温度还取决于要加氢甲酰化的烯式化合物的性质。反应性相对高的烯式化合物需要低的铑浓度、低的压力和低的温度。与此相反,反应性相对低的烯式化合物需要高的铑浓度、高的压力和高的温度。
如果使用α-烯烃的话,本发明方法可以特别成功地进行。但是,也可以和具有中间碳-碳双键的其它烯式化合物反应。
在间歇反应完成后,通过泄压,加氢甲酰化混合物与一氧化碳和氢气分离,通过相分离,使有机产物与催化剂水相分开。本发明也以连续方式进行。
实验部分通式(Ⅰ)化合物的制备制备通式(Ⅰ)化合物的方法描述在与本专利同日申请的德国专利申请(中请号19630534.9)中。催化剂的制备1)0.7mg乙酸铑(Ⅲ)和36g按上述德国专利(申请号196 30534.9)制备的配位体P-(P41/300)-三苯基膦溶解在30ml水中,相应于Rh配位体摩尔比率为1∶2500,在200ml不锈钢反应釜中维持温度125℃3小时,合成压力为25巴(CO/H2=1∶1)。
实施例11-己烯的加氢甲酰化在已有的25巴的压力下,用泵将30ml的1-己烯计量输入含有催化剂溶液的上述反应釜中,在125℃下搅拌混合物3小时。合成气压力升高到80巴,保持压力波动在5巴的范围内。在反应结束时,停止搅拌器和加热,静置30-60分钟后,通过相分离,将上部产物相和催化剂相分开。用气相色谱(GC)和1H-NMR光谱分析产物相的转化程度用同一催化剂相经5个连续循环实验的转化率(按照GC)为97.9%,98.4%,98.1%,97.2%,90.4%。正庚醛∶异庚醛的比率(按照GC)为71∶29。
实施例2-5过程与实施例1相同,烯烃化合物(每次都是120m摩尔)和合成气压力按下表变化
实施例6用1-辛烯进行系列实验(7个循环)过程与实施1例相同,但使用37.7ml1-辛烯作为烯烃。在每一循环中获得了如下转化率和正壬醛与异壬醛的比率
实施例7用1-十二碳烯进行系列实验(5个循环)过程与实施例1相同,但使用53.3ml1-十二碳烯作为烯烃。在每一循环中获得了如下转化率和正壬醛与异壬醛的比率
制备实施例8-21中用的催化剂通用制备步骤6mg乙酸铑(Ⅲ)和表Ⅰ中“配位体量[g]”所列量的、按上述德国专利(申请号196 30534.9)制备的配位体溶解在30ml水中,相应于Rh∶配位体摩尔比率为1∶100,在200ml不锈钢反应釜中维持温度125℃3小时,合成压力为25巴(CO/H2),同时搅拌(预处理)。该催化剂溶液用于实施例8-21。
关于使用的通式(Ⅰ)的化合物(4’-(二苯基膦基)苯氧基-多亚烷基二醇),请参考如下简述。
M350-TPP:m=5-9(分子量约610)M500-TPP:m=9-13(分子量约760)M750-TPP:m=12-20(分子量约1010)
PEG200-TPP:m=5-7(分子量约560)PEG600-TPP:m=11-15(分子量约860)PEG1000-TPP:m=19-27(分子量约1260)PEG1000-TPP:m=29-39(分子量约1760)
M41/40-TPP(分子量约1260)
P41/300-TPP(分子量约5260)m1+m2+m3+m4=(100-114)
P41/300-TPP2(分子量约5520)m1+m2+m3+m4=(100-114)实施例8使用Rh/M41/40-TPP作为催化剂、对1-十二碳烯加氢甲酰化在已有的25巴的压力下,用泵将26.6ml(120毫摩尔)的1-十二碳烯计量输入含有催化剂溶液的上述反应釜中,然后,合成气压力升高到50巴,保持压力波动在5巴的范围内。反应温度为125℃。在反应90分钟后,再也没有气体被吸收,关掉搅拌器以停止反应。反应釜冷却到25℃,在静置60分钟后,通过相分离将上部产物相和催化剂相分开。用气相色谱(GC)和1H-NMR光谱分析产物相的转化程度按GC,转化率为93.4%,正十三醇∶2-甲基十二醛为72∶28。
实施例9-21用含有铑和通式(Ⅰ)化合物的不同催化剂对1-十二碳烯进行加氢甲酰化以下实施例按实施例8的方法进行,实验参数有细微变化,且使用不同的通式(Ⅰ)化合物。催化剂以类似的方法制备,配位体的原始重量列于表Ⅰ。其它实验参数和所得到的实验结果列于表Ⅰ。
表Ⅰ使用含有铑和通式(Ⅰ)化合物的催化剂对1-十二碳烯进行加氢甲酰化
恒定条件由6mg乙酸铑(Ⅲ)(0.023m摩尔)、给定量的和类型的通式(Ⅰ)的配位体和溶剂,Rh∶通式(Ⅰ)配位体的比率为1∶100,Rh∶烯烃比率为1∶5280预处理条件在25巴的合成气压力下3小时加氢甲酰化条件T=125℃,给定反应压力,给定反应时间(直到没有气体被吸收);在室温下相分离,n.d.*=未测
权利要求
1.一种含有铑和通式(Ⅰ)化合物的催化剂
其中m是1-1000的数;x是一个0-4的数;W是通式为-CH2-CH2-,-CH(CH3)CH2-或-CH2CH(CH3)-基团;R是氢、直链或支链C1-C5烷基;或以下通式的基团
其中a、b、c、d和e相互独立地是0-1000的数,a、b、c、d和e中至少一个大于0;R5、R6、R7、R8和R9可以相同或不同,是氢、C1-C5烷基;或如下通式的基团
R1和R2相同或不同,为直链、支链或环状C1-C30烷基;或C6-C10芳基,是非取代的或被1-5个C1-C3烷基取代的,或者R1和R2与三价P原子形成一个如下通式的二苯并膦基(dibenzophospholyl)
或如下通式的3,4-二甲基膦基(dimethylphospholyl)
L是C1-C5烷基、C1-C5烷氧基、NO2、NR3R4,其中R3和R4独立地是氢、C1-C4烷基,或L是Cl或OH。
2.权利要求1的催化剂,其特征在于,R1和R2相同,各是一个直链或支链C1-C6烷基、环己基或苯基。
3.权利要求1或2的催化剂,其特征在于,R是氢、甲基、乙基、正丙基、正丁基或如下通式的基团
其中c1、d1和e1各自独立地是一个1-500、特别是2-300的数,和R70、R80和R90相同或不同,是氢、甲基、乙基、正丙基或正丁基。
4.权利要求1-3中至少一项的催化剂,其特征在于,L是甲氧基、乙氧基、甲基、乙基或OH,
5.权利要求1-3中至少一项的催化剂,其特征在于,x是0。
6.权利要求1-5中至少一项的催化剂,其特征在于,含有铑和通式(Ⅰ)的化合物,其摩尔比率为1∶1-1∶200。
7.一种制备权利要求1-6中至少一项的催化剂的方法,其特征在于,将铑盐或复合物与通式(Ⅰ)的化合物一起混合。
8.权利要求7的方法,其特征在于,铑盐或复合物与通式(Ⅰ)的化合物溶解在水中。
9.权利要求1-6中至少一项催化剂用于制备醛的用途,其特征在于,在有通式(Ⅰ)的催化剂存在的条件下,在10-500巴的压力和40-200℃的温度下,在由一种水相和一种有机相组成的反应介质中,使具有3-20个碳原子的烯式化合物与一氧化碳和氢气反应。
10.权利要求9的用途,其特征在于,使用α-烯烃。
11.权利要求9或10的用途,其特征在于,相对于每摩尔烯烃,催化剂的用量为10-5-2×10-3摩尔。
12.权利要求9-11中至少一项的用途,其特征在于,与一氧化碳和氢气的反应在30-80巴的压力下进行。
13.权利要求9-12中至少一项的用途,与一氧化碳和氢气的反应在80-150℃的温度下进行。
全文摘要
一种用于加氢甲酰化的催化剂,它含有铑和通式(Ⅰ)化合物,其中m是1—1000的数;x是一个0—4的数;W是通式为-CH
文档编号C07C45/00GK1226189SQ97196675
公开日1999年8月18日 申请日期1997年7月21日 优先权日1996年7月29日
发明者S·伯格达诺维克, C-D·弗罗宁, H·巴曼, M·柏勒, S·哈伯, H-J·克雷纳 申请人:阿温提斯研究技术两合公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1