聚合方法和由其形成的聚合物与流程

文档序号:11732996阅读:1119来源:国知局
聚合方法和由其形成的聚合物与流程
聚合方法和由其形成的聚合物对相关申请的交叉引用本申请要求2012年12月3日提交的美国临时申请序号No.61/732,727的权益,其全文经此引用并入本文。政府资助在来自国家卫生研究院(NationalInstitutesofHealth),GrantNo.GM-087620和国家科学基金会(NationalScienceFoundation),GrantNo.CHE-0848982的政府资助下作出本发明。美国政府对本发明享有某些权利。发明领域本发明涉及聚合物和制造聚合物的方法。更具体而言,本发明涉及通过氟化和甲硅烷基化单体在碱性催化剂存在下的缩合制造聚合物的方法,和可通过该方法获得的聚合物。背景聚合材料在现代材料科学中起到重要作用。合成缩聚物(例如具有有机砜、有机硫酸酯、有机碳酸酯、有机氨基甲酸酯、有机脲或有机酯型聚合骨架的材料)用于各种产品和工业,包括例如包装、高性能工程材料、医疗假体和植入物、光学器件和消费塑料制品。仍然需要制备聚合材料,特别是固体聚合物(例如塑料),包括用于高价值特种用途的材料(例如医疗假体和植入物、工程材料和光学器件)的新方法。本文描述的聚合方法和聚合物致力于解决这些需要。一些反应处于数百万吨聚合物工业的中心。大部分商品聚合物由烯烃通过形成碳-碳骨架合成,而工程聚合物通常通过含活化羰基或其等同物的单体和合适的亲核体的缩合反应,由此形成碳-杂原子键制备。以此方式制造聚酯、聚酰胺、聚氨酯和聚酰亚胺。尽管骨架结构多种多样,但含有硫(VI)"–SO2–"连接体的聚合物在文献中几乎不存在并很少用于工业应用,在单体中已存在砜基团的聚砜除外(参见例如Garbassi,在Kirk-OthmerEncyclopediaofChemicalTechnology中;第五版;JohnWiley&Sons:2007;第10卷)。不出所料,合成含硫(VI)聚合物的大多数已报道的尝试依赖于模仿羰基型缩合的反应,即磺酰氯与亲核体的反应(参见例如(a)Goldberg等人,美国专利3,236,808;(b)Firth,美国专利3,895,045;(c)Thomson等人,J.Pol.Sci.,PartA1964,2:1051;(d)Worket等人,Polym.Sci.,PartA:Polym.Chem.1968,6:2022;(e)Schlott等人,在AdditionandCondensationPolymerizationProcesses中;AmericanChemicalSociety:1969;91:703-716)和在小得多的程度上,Friedel-Crafts磺酰化(参见例如Cudby等人,Polymer1965,6:589)。尽管通过这些方法获得的聚合物的有吸引力的性质,如良好的热和水解稳定性和机械弹性(参见Thompson等人,同上;Worket等人,同上;和Schlott等人,同上),易水解和参与简易的氧化还原转化,尤其是氯化的氯化硫(VI)的非选择性反应性显著限制这些方法和材料的效用。许多甲硅烷基化和氟化化合物的反应是有机合成以及聚合物化学中已知的。在1983年,Kricheldorf引入了用于合成聚芳基醚的“甲硅烷基法”,其利用Si–F键的强度和甲硅烷基氟化物副产物的无害性质(Kricheldorf等人,J.Pol.Sci.:Pol.Chem.Ed.1983,21:2283;Bier等人,美国专利4,474,932)。在2008年,Gembus证实磺酰氟(R-SO2F)与甲硅烷基醚在催化量的DBU存在下反应,以产生芳基磺酸酯(Gembus等人,Synlett.2008,1463)。氟化硫(VI),特别是硫酰氟(SO2F2)及其单氟化衍生物——磺酰(RSO2–F)氟、氨磺酰(R2NSO2–F)氟和氟代硫酸酯(ROSO2–F)(其中R是有机部分)与其它卤化硫(VI)形成鲜明对比。这些氧代氟化硫水解稳定得多、氧化还原惰性(redoxsilent)并且不充当卤化剂。但是,当在恰当的条件下存在适当的亲核体时,可以显现出它们的选择性反应性。在70年代早期,Firth由BPA的氟代硫酸酯(获自BPA和SO2F2)和双酚的二钠盐制备聚(芳基硫酸酯)双酚A(BPA)聚合物(参见例如Firth,J.Pol.Sci.,PartB1972,10:637;和Firth,美国专利3,733,304)。该聚合需要长时间加热并产生相当大量的副产物(12至22%),Firth指出它们是环状低聚物。副产物的脱除需要该聚合物从二甲基甲酰胺(DMF)中反复沉淀到甲醇中。仍然需要通用并能在相对温和和可规模化的条件下产生多种多样的聚合物结构,包括在形式上被视为缩聚物的材料的新型聚合方法。还需要例如用于结构、包装和纤维用途的新型聚合物,和来自容许带有额外的非干扰基团的单体的方法的聚合物,它们可以为特种用途官能化。本文描述的方法和聚合物致力于解决这些需要。除提供获得具有有用性质的聚合物的实用途径外,本文描述的有机硫酸酯的格外简易的合成突出了硫酸酯连接体特别在有机化学中未受到重视的潜力,以及氧代氟化硫(VI)的独特反应性特征。本文描述的聚合物和方法应直接适用于不同学科。概述本文描述的聚合方法提供了通过活化的氟取代和甲硅烷基取代单体在温和反应条件下的催化聚合的相对较高分子量的聚合物的直接合成。在化学计量、温度和溶剂环境的意料不到的稳固条件下获得具有惊人高的分子量的聚合物。氟代硫酸酯、氟代磺酸酯、羰基氟和某些杂环氟化物单体与甲硅烷基醚、甲硅烷基胺(特别是与C(=O)F单体)和甲硅烷基硫化物单体在温和条件下反应,以形成多种多样的聚合材料,包括例如聚硫酸酯、聚碳酸酯、聚磺酸酯和相关材料。通过含有在许多包装和工程聚合物中存在的技术上有用的结构单元的聚合物和共聚物的成功形成证实本方法的选择性。在一个优选实施方案中,由双氟代硫酸芳基酯和芳基双甲硅烷基醚在存在本体(即无溶剂)聚合的温和反应条件下制备聚硫酸酯聚合物。该聚合物可以是基本线性的或在一些实施方案中可包括环状聚合物链或由环状聚合物链构成,其中单聚合物链的端基键合在一起以形成大环。含有氟取代和甲硅烷基取代单体的单体组合物在碱性催化剂存在下缩合形成聚合物链和易与聚合物产物分离的甲硅烷基氟化物副产物。该单体组合物包含至少一种式F–X–F的化合物和至少一种式(R1)3Si–Z–Si(R1)3的化合物。各R1独立地为烃基;X具有式–A(–R2–A)n–;各A独立地为SO2、C(=O)或Het,优选SO2;R2包含第一有机部分;n是0或1;Het是在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环(优选1,3,5-三嗪),且当A是Het时,F取代基连接到其杂芳环的碳原子上;Z具有式–L–R3–L–;各L独立地为O、S或N(R4),优选O;R3包含第二有机部分,且R3优选包含至少一个芳基或杂芳基部分;各L基团优选直接键合到R3的芳基或杂芳基部分上;且各R4独立地为H或第三有机部分。或者,除了或代替F–X–F和(R1)3Si–Z–Si(R1)3的组合,该单体组合物还可包含至少一种式F–X–Z–Si(R1)3的化合物。在聚合过程中,单体的各自的A和L基团一起形成X–Z聚合物链,且F和(R1)3Si取代基形成式(R1)3Si–F的甲硅烷基氟化物副产物,其容易与聚合物产物分离并可以再循环。在优选实施方案中,该聚合物包括相对稳定的氟取代端基,如果需要,其可以在选择性反应条件下改性。该碱性催化剂可以是脒、胍、磷腈、氮-杂环卡宾、叔醇盐、氟化物盐或上述两种或更多种的组合。令人惊讶地,该双-甲硅烷基和双-氟单体的混合物在不存在碱性催化剂的情况下甚至在升高的温度下也是不反应的。该聚合方法特别可用于在温和的高产率条件下制备芳基聚硫酸酯,如双酚聚硫酸酯,以提供具有适合用于例如材料用途,如工程材料、包装材料等的分子量和物理性质的聚合物。通过本文描述的方法制成的聚合物,包括芳基聚硫酸酯的一个优点在于,在许多情况下该聚合物的端基包括可以以通过现有方法不易实现的方式单独反应以将聚合物链的末端官能化的氟基。在芳基聚硫酸酯的情况下,-OSO2F和-SO2F端基惊人地稳定,但在如本文所述的易控制条件下可选择性地分别与酚式OH基团和氨基进行反应或水解成-OH和-SO3ˉ基团。甲硅烷基氟化物副产物可通过与酚式单体前体(例如双酚A)的盐(例如钠或钾盐)反应形成有用的双-甲硅烷基化单体(例如双-甲硅烷基双酚A)和氟化物盐(例如氟化钠)而再循环。该双-甲硅烷基化单体可用于另一聚合反应。本文描述的聚合方法的一个实施方案涉及使双氟化的第一单体与双-甲硅烷基化的第二单体在碱性催化剂存在下反应以形成聚合物链和甲硅烷基氟化物副产物。第一单体的氟取代基连接到缺电子基团,如磺酰基、羰基或杂芳基活化基团(优选磺酰基)上,且第二单体的甲硅烷基取代基经由氧、硫或氮原子(优选氧原子)连接到有机核心部分上。当第一和第二单体与催化剂合并时,第一单体的氟化物取代基与第二单体的甲硅烷基取代基反应以形成甲硅烷基氟化物,且第一单体的缺电子活化基团与第二单体的连接原子缩合以形成聚合物链。第一单体任选也可包括有机核心基团。在一些实施方案中,该方法包括使包含至少一种式F–X–F的化合物(优选FSO2F)的第一单体组合物与包含至少一种式(R1)3Si–Z–Si(R1)3的化合物的第二单体组合物在碱性催化剂存在下反应,以形成交替的X–Z聚合物链和式(R1)3Si–F的甲硅烷基氟化物副产物的步骤。第一单体的X部分具有式–A(–R2–A)n–,其中各A独立地为SO2、C(=O)或Het,优选SO2;R2包含第一有机部分;n是0或1;且Het是在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环(优选1,3,5-三嗪),其中各F连接到该杂芳环的碳原子上。第二单体的各R1独立地为烃基(例如直链或支链烷基、苯基等);Z具有式–L–R3–L–,其中各L独立地为O、S或N(R4),优选O;R3包含第二有机部分且R3优选包含至少一个芳基或杂芳基部分;各L基团优选直接键合到R3的芳基或杂芳基部分上;且R4是H或第三有机部分。在聚合过程中,第一和第二单体的各自的F和(R1)3Si取代基形成甲硅烷基氟化物,而第一和第二单体的各自的A和L基团交替缩合以形成交替的X–Z聚合物链。当n为0时,第一单体的各F取代基连接到同一A基团上。本文描述的聚合方法中所用的碱性催化剂包含选自脒、胍、磷腈、氮-杂环(N-杂环)卡宾、叔醇盐和氟化物盐的至少一种材料。例如,该碱性催化剂可包含脒碱(例如1,8-二氮杂双环[5.4.0]十一-7-烯(DBU)等)、胍(例如1,1,3,3-四甲基胍(TMG)、1,5,7-三氮杂双环[4.4.0]癸-5-烯(TBD)和7-甲基-1,5,7-三氮杂双环-[4.4.0]癸-5-烯(MTBD)等)、磷腈碱(例如2-叔丁基亚氨基-2-二乙基氨基-1,3-二甲基全氢化-1,3,2-二氮杂磷杂环己烯(diazaphosphorine)(BEMP)、1-叔丁基-4,4,4-三-(二甲基氨基)-2,2-双[三(二甲基氨基)-亚正膦基(phosphoranyliden)氨基]-2λ5,4λ5-链二(磷腈)(P4-t-Bu)等)、氮-杂环卡宾(例如咪唑-2-亚基、1,2,4-三唑-5-亚基、噻唑-2-亚基、咪唑啉-2-亚基等)、叔醇盐(例如叔丁醇钾等)或含氟化物的盐(例如CsF、CsFHF、KF、四丁基氟化铵(TBAF)、二氟三甲基硅酸三(二甲基氨基)锍(TASF)等)或其中两种或更多种的组合。该碱优选包含脒、磷腈或两者。如果需要,催化剂的组合可以作为混合物添加或相继添加。优选地,第一和第二单体以大致等摩尔量或在第一(即氟化)单体过量(例如0.01至大约10摩尔%过量)下反应。第一和第二单体可以以纯(无溶剂或本体)形式或在溶剂(例如卤代烃、乙腈、吡啶、N-甲基吡咯烷酮等)、溶剂的组合(例如一起或相继添加)或无溶剂和溶剂条件的组合(例如相继)中互相接触。通常,该聚合在大约20℃至大约200℃的温度下进行大约0.5至大约48小时。该聚合反应意外地容易,并通常表现出相对温和的反应热。另外,反应条件和单体意外地容许多种多样的有机部分和取代基。这意味着"AA"和"BB"单体组分(包括已知干扰正常酸-碱反应的基团)的前所未有的选择自由度和调节所得聚合物的官能度的能力到了非常高的程度。第一单体可以是符合式F–X–F的单一化合物或具有不同X基团的化合物的混合物。类似地,第二单体可以是符合式(R1)3Si–Z–Si(R1)3的单一化合物或具有不同的R1基团、Z基团或两者的化合物的混合物。此类单体混合物可以以任何所需比例和用任何所需的X和Z基团配制以赋予所得聚合物所需性质,例如所需分子量、所需分子量分布、合意的物理或机械性质(例如玻璃化转变温度、水解稳定性、拉伸强度、抗冲击性、延性、弹性、塑性等)或例如,生物可降解性。在一个实施方案中,第一单体具有式F-A-F。在这一实施方案中,第一单体可以是例如FSO2F、FC(O)F或F–Het–F(优选FSO2F)。如本文所述,Het是在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环,其中各F连接到该杂芳环的碳原子上。示例性的杂环是1,3,5-三嗪,且F取代基共价键合到位置2、4和6中的两个或更多个位置处的碳原子上。当使用气态单体如FSO2F时,如果需要,该反应可以在能在比1大气压高的压力下运行的反应器中进行。在另一些实施方案中,第一单体是式F–A–R2–A–F的材料。R2是第一有机部分,其可包含或由有机核心材料构成,所述有机核心材料为如烃、杂环、碳水化合物、氨基酸、多肽、肽类似物等或其中两种或更多种的任何组合,而A基团如上所述选自磺酰基、羰基或杂芳基(Het),优选SO2。在一些实施方案中,R2可以由式–L1–R5–L1–表示,其中各L1独立地选自O、S和N(R4),优选O;各R5独立地包含第一有机部分;且各R4独立地包含H或第三有机部分。或者或另外,R2可以由式–L1–R5–表示,其中各L1和R5如上定义。通过本方法制成的聚合物包含可由式(I):(–A(–R2–A)n–L–R3–L)x–表示的聚合物链,其中各A独立地为SO2、C(=O)或Het,优选SO2;各R2独立地包含第一有机部分;各n独立地为0或1;各Het独立地为在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环;各L独立地为O、S或N(R4),优选O;各R3包含第二有机部分且R3优选包含至少一个芳基或杂芳基部分;各L基团优选直接键合到R3的芳基或杂芳基部分上;各R4独立地为H或第三有机部分;且x是该聚合物中的重复单元的平均数并具有至少10的值(例如10至100,000或更大)。该聚合物链包括至少一个衍生自第一单体的端基,即包括式E–A–的部分的端基,如E–A(–R2–A)n–,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。当A是Het时,各L基团连接到其杂芳环的碳原子上。或者或另外,该聚合物包括可由式(II):(–A–R2–A–L–R3–L)y–表示的聚合物链,其中各A独立地为SO2、C(=O)或Het,优选SO2;各R2独立地包含第一有机部分;各Het独立地为在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环(优选1,3,5-三嗪);各L独立地为O、S或N(R4),优选O;各R3包含第二有机部分且R3优选包含至少一个芳基或杂芳基部分;各L基团优选直接键合到R3的芳基或杂芳基部分上;各R4独立地为H或第三有机部分;且y是该聚合物中的重复单元的平均数并具有至少10的值(例如10至100,000或更大)。该聚合物链包括至少一个衍生自第一单体的端基,即包括式E–A–的部分的端基,如E–A–R2–A–,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。当A是Het时,各L基团连接到其杂芳环的碳原子上。在另一些实施方案中,该聚合物包括可由式(III):(–A–L1–R5–L1–A–L–R3–L)z–表示的聚合物链,其中各A独立地为SO2、C(=O)或Het,优选SO2;各R5独立地包含第一有机部分;各Het独立地为在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环,优选1,3,5-三嗪;各L和L1独立地为O、S或N(R4),优选O;各R3包含第二有机部分且R3优选包含至少一个芳基或杂芳基部分;各L基团优选直接键合到R3的芳基或杂芳基部分上;各R4独立地为H或第三有机部分;且z是该聚合物中的重复单元的平均数并具有至少10的值(例如10至100,000或更大)。该聚合物链包括至少一个衍生自第一单体的端基,即包括式E–A–的部分的端基,如E–A–L1–R5–L1–A–,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。当A是Het时,各L和L1基团连接到其杂芳环的碳原子上。在再一些实施方案中,该聚合物包括可由式(IV):(–A–L1–R5–A–L–R3–L)m–表示的聚合物链,其中各A独立地为SO2、C(=O)或Het,优选SO2;各R5独立地包含第一有机部分;各Het独立地为在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环;各L和L1独立地为O、S或N(R4),优选O;各R3包含第二有机部分且R3优选包含至少一个芳基或杂芳基部分;各L基团优选直接键合到R3的芳基或杂芳基部分上;各R4独立地为H或第三有机部分;且m是该聚合物中的重复单元的平均数并具有至少10的值(例如10至100,000或更大)。该聚合物链包括至少一个衍生自第一单体的端基,即包括式E–A–的部分的端基,如E–A–L1–R5–A–,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。当A是Het(例如1,3,5-三嗪)时,各L和L1基团连接到其杂芳环的碳原子上。在另一些实施方案中,该聚合物包括可由式(V):(–A–L–R3–L)p–表示的聚合物链,其中各A独立地为SO2、C(=O)或Het,优选SO2;各Het独立地为在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环;各L独立地为O、S或N(R4),优选O;各R3包含第二有机部分且R3优选包含至少一个芳基或杂芳基部分;各L基团优选直接键合到R3的芳基或杂芳基部分上;各R4是H或另一有机部分;且p是该聚合物中的重复单元的平均数并具有至少10的值(例如10至100,000)。该聚合物链包括至少一个衍生自第一单体的端基,即包括式E–A–的部分的端基,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。当A是Het(例如1,3,5-三嗪)时,各L基团连接到其杂芳环的碳原子上。在再一些实施方案中,该聚合物可以由式(VI):(–A–R2–A–L–R3–L)a–(–A–L1–R5–L1–A–L–R3–L)b–(A–L1–R5–A–L–R3–L)c–(–A–L–R3–L)d–表示,其中a、b、c和d代表该聚合物中各自的重复单元的平均数,且a、b、c和d任一可以是0或更大,只要a、b、c和d之和具有至少10的值(例如10至100,000或更大),且该聚合物包括至少一个衍生自第一单体的端基,即式E–A–、E–A–L1–R5–A–、E–A–L1–R5–L1–A–、E–A–R2–A–或E–A(–R2–A)n–的端基,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。A、L、L1、R2、R3和R5各自独立地如它们在本文所述的其它聚合物和单体实施方案中所定义。在一些实施方案中,至少一部分第一单体包括式F–X–F的支化单体,其中X包括在磺酰基、羰基或杂芳基活化基团上的附加F取代基,以使该附加F取代基也与第二单体的氧、硫或氮原子连接基上的甲硅烷基取代基反应以形成甲硅烷基氟化物,且第一单体的活化基团与第二单体的连接基缩合以在该聚合物中引入至少一个分支点。或者或另外,第二单体可包括支化单体,其中Z包括连接到氧、硫或氮原子连接基上的附加甲硅烷基取代基,以使该附加甲硅烷基取代基与第一单体的磺酰基、羰基或杂芳基活化基团上的氟取代基反应,以形成甲硅烷基氟化物,且第二单体的连接基与第一单体的活化基团缩合以向该聚合物中引入至少一个分支点。在本文描述的任何聚合方法和聚合物中,单体的各有机部分,例如R1、R2、R3、R4、R5和R8可以独立地选自烃、杂环、碳水化合物、氨基酸、多肽、肽类似物,及其两种或更多种的组合。在一些实施方案中,R2、R3、R4、R5和R8可包括一个或多个取代基,例如羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸和多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。本发明还提供通过本文描述的方法制成的聚合物。该聚合物包含具有选自下列的式的聚合链:式(I):(–A(–R2–A)n–L–R3–L)x–;式(II):(–A–R2–A–L–R3–L)y–;式(III):(–A–L1–R5–L1–A–L–R3–L)z–;式(IV):(–A–L1–R5–A–L–R3–L)m–;式(V):(–A–L–R3–L)p–;和式(VI):(–A–R2–A–L–R3–L)a–(–A–L1–R5–L1–A–L–R3–L)b–(A–L1–R5–A–L–R3–L)c–(–A–L–R3–L)d–,和至少一个衍生自如上所述的第一单体,即包括至少一个官能团"E–A–"的端基,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。在上式(I)、(II)、(III)、(IV)、(V)和(VI)中,各A独立地为SO2、C(=O)或Het,优选SO2;各R2和R5独立地包含第一有机部分;各Het独立地为在其杂芳环中包含至少两个碳原子和至少氮原子的芳族杂环(优选1,3,5-三嗪);各L和L1独立地为O、S或N(R4),优选O;各R3和R5独立地包含第二有机部分;各R4独立地为第三有机部分;x、y、z、m、a、b、c和d是该聚合物链中各自的重复单元的平均数;x、y、z、m和p各自具有至少10的值(例如10至100,000或更大);且a、b、c和d各自可以是0或更大,只要a、b、c和d之和具有至少10的值(例如10至100,000或更大)。A、L、L1、R2、R3和R5各自独立地如上文对单体式描述的那样定义。在本文描述的任何聚合物中,各有机部分,例如R2、R3、R4、R5和R8可以独立地选自烃、杂环、碳水化合物、氨基酸、多肽、肽类似物,及其两种或更多种的组合。另外,R2、R3、R4、R5和R8可以被一个或多个官能团取代。此类官能团的非限制性实例包括例如羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸、多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。在一些实施方案中,优选的单体包括双酚氟代硫酸酯(例如双酚A氟代硫酸酯、双酚A双酚AF氟代硫酸酯、双酚S氟代硫酸酯和具有连接在一起的两个酚式基团的相关单体)和双酚甲硅烷基醚(例如双酚A甲硅烷基醚、双酚A双酚AF甲硅烷基醚、双酚S甲硅烷基醚和具有连接在一起的两个酚式基团的相关单体)。本文描述的聚合物通常是容易模制和热成形成多种多样的机械部件和结构组件的热塑性材料。该聚(双酚A硫酸酯)聚合物抗水解,具有相对较高的介电常数、良好的抗冲击性以及与聚碳酸酯类似的拉伸强度、弹性模量和伸长。此类聚合物可制造成用于包装材料、建筑材料等的片材和膜,并可用于如汽车和飞机组件(例如挡风玻璃等)、医疗假体、安全护目镜和容器(例如杯子、瓶子等)之类的用途。附图简述图1图解可用于本文描述的聚合方法的(A)氟化单体、(B)甲硅烷基化单体和(C)包含氟基和甲硅烷基的单体的非限制性实例。图2在版块(a)中示意性图解所选双酚A单体合成,在版块(b)中示意性图解由该单体合成聚(双酚A硫酸酯)。图3图解(A)由前体材料制备氮-杂环卡宾型碱性催化剂和(B)各种类型的氮-杂环卡宾的结构。图4提供通过单体2a和2b的聚合在不同单体浓度下制成的聚(双酚A硫酸酯)的标准化GPC迹线。图5图解温度和催化剂载量对单体2a+2b(下方曲线)和单体2a+2c(上方曲线)的溶液聚合的影响。图6提供与表2中的聚合物相关的所选GPC迹线。图7提供代表性的聚(双酚A硫酸酯)聚合物样品的热重分析(TGA)温谱图,其证实在不同条件下制成的并具有不同分子量特征,即2.5kDa(最下方曲线)、40kDa和59kDa(两个重叠的上方曲线)的MALSMn值的聚合物的一致的热分解性质。图8提供代表性的聚(双酚A硫酸酯)聚合物样品的差示扫描量热法(DSC)二次加热温谱图(插图)和该聚合物的相应GPCMn相对于Tg的曲线图。图9提供与以类似方式压缩模塑的商业LEXAN聚碳酸酯相比,压缩模塑的聚(双酚A硫酸酯)的拉伸应力-应变曲线。图10示意性图解通过本文描述的聚合方法制备聚(双酚A碳酸酯)。图11图解由不同的单体组合合成的所选磺酸酯和硫酸酯聚合物的化学结构式,其证实本文描述的聚合方法的宽范围。图12图解通过本文描述的聚合方法制成的聚(双酚A硫酸酯)的氟代硫酸酯端基的改性以将染料(尼罗红)连接到聚合物链的末端。图13提供图12中所示的尼罗红染料封端的聚(双酚A硫酸酯)的UV/可见光光谱。图14提供用于测定聚(双酚A硫酸酯)的dn/dc的折光指数相对于浓度的曲线图;版块(a)提供如本文中的实施例11中所述的流程#1的数据,且版块(b)提供流程#2的数据。图15提供(A)通过Firth的方法(US3,733,304)制成的聚(双酚A硫酸酯)的GPC迹线;和(B)根据本文中的实施例1中描述的本体聚合方法制成的聚(双酚A硫酸酯)的GPC迹线。图16提供来自在相同目标条件下在不同反应规模下制成的各种批次的聚(双酚A硫酸酯)以及在分离后已加热或加工的样品的GPC迹线。图17图解(A)由胺通过用乙烯磺酰基氟(ESF)处理合成磺酰基氟单体;(b)根据(A)中的图式制成的所选单体;和(C)由磺酰基氟单体制成的所选共聚物。详述本聚合方法可提供多种多样的单体结构、官能取代基和单体-单体连接。在一些实施方案中,该聚合方法包括,基本由或由使至少一种双氟化的第一单体F-X-F与至少一种双-甲硅烷基化的第二单体(R1)3Si–Z–Si(R1)3在碱性催化剂存在下接触构成。第一单体的氟取代基连接到X的磺酰基、羰基或杂芳基部分上,且第二单体的甲硅烷基连接到Z的氧、硫或氮原子上。在碱性催化剂存在下,第一单体的氟取代基与第二单体的甲硅烷基取代基反应以形成甲硅烷基氟化物。同时,第一单体的磺酰基、羰基或杂芳基与第二单体的氧、硫或氮原子(甲硅烷基与其连接)缩合,由此形成具有X-Z重复单元的线性交替聚合物链。如本文中详细描述,第一单体可以由式F–A(–R2–A)n–F表示,其中各A独立地为SO2、C(=O)或Het;R2包含第一有机部分;n是0或1;且Het是在其杂芳环中包含至少两个碳原子(例如2至4)和至少一个(例如1至4)氮原子的芳族杂环。当A是Het时,各F连接到杂芳环的碳原子上。特别优选的A基团是SO2。当n为0时,第一单体可以由式F–A–F表示(即FSO2F、FC(O)F和F–Het–F)。当n为1时,第一单体可以由式F–A–R2–A–F表示。在一些实施方案中,第一有机部分R2可以由式–L1–R5–L1–表示,其中各L1独立地选自O、S和N(R4);R5包含第一有机部分,且R4是H或第三有机部分。在另一些实施方案中,第一有机部分R2可以由式–L1–R5–表示,其中L1独立地选自O、S和N(R4);R5包含第一有机部分,且R4是H或第三有机部分。第二单体(R1)3Si–Z–Si(R1)3可以由式(R1)3Si–L–R3–L–Si(R1)3表示,其中各L独立地为O、S或N(R4);R3包含第二有机部分;且R4是H或第三有机部分。图1图解可用于本文描述的聚合方法的(A)氟化单体、(B)甲硅烷基化单体和(C)包含氟基和甲硅烷基的单体的非限制性实例。该聚合物链的X和Z部分通过如–SO2–L–、–C(=O)–L–、–Het–L–、–L1–SO2–L–、–L1–C(=O)–L–或–L1–Het–L–之类的键互相连接,其中各L和L1独立地选自O、S和N(R4);且各R4独立地包含H或有机部分。如本文所述,Z包含带有氧、硫或氮原子的有机部分,且X可以是磺酰基、羰基或杂芳基活化基团,或X可包含带有磺酰基、羰基或杂芳基活化基团的有机核心基团。在一些聚合物实施方案中,X的磺酰基、羰基和杂芳基活化基团直接连接到X中的第一有机部分(如果存在)的碳原子上。或者或另外,X的磺酰基、羰基和杂芳基可通过硫、氧或氮原子连接到其有机部分上。可与第一单体的氟取代基连接的杂芳基(在本文中也称作杂芳族基团或“Het”)包括在芳环(例如5-元芳环或6-元芳环)中包含至少一个氮原子(例如1至4个氮原子)和至少两个碳原子(例如2至4个碳原子)的任何杂环部分,且氟取代基连接到芳环中的碳原子上。包含6-元杂芳环的合适的杂芳基Het的非限制性实例包括氮杂苯杂环基团,如吡啶、二嗪(例如1.2-二嗪、1,3-二嗪或1,4-二嗪)和三嗪(例如1,3,5-三嗪);氮杂萘基团,如1-氮杂萘(也称作喹啉)、2-氮杂萘(也称作异喹啉)、1,2-二氮杂萘(也称作噌啉)、2,3-二氮杂萘(也称作酞嗪)、1,3-二氮杂萘(也称作喹唑啉)、1,4-二氮杂萘(也称作喹喔啉)、1,5-二氮杂萘、1,6-二氮杂萘、1,7-二氮杂萘、1,8-二氮杂萘、1,3,5-三氮杂萘、1,3,8-三氮杂萘和1,3,5,8-四氮杂萘(也称作蝶啶)、氮杂菲咯啉基团,如1,10-二氮杂菲咯啉;等。包含5-元杂芳环的合适的杂芳基Het的非限制性实例包括吡咯、咪唑、噁唑、噻唑、吡唑、异噁唑、异噻唑以及稠合5-和6-元杂环,如吲哚、异吲哚、苯并噻唑、苯并噁唑、嘌呤等。如本文所述,第二单体的Z部分,和任选地,第一单体的X部分,可包含本文所述的式中的任何有机部分(例如R2、R3、R4和R5),因为单体对聚合的反应性主要受控于碱性催化剂、和第一单体的磺酰基、羰基和杂芳基活化基团、第二单体中的氧、硫和氮原子的组合,和由第一和第二单体各自的氟基和甲硅烷基取代基形成热力学稳定的甲硅烷基氟化物副产物。可用于本文描述的方法的双-氟化和双-甲硅烷基化的单体的非限制性实例在图1中显示。图1的版块A图解所选氟化单体;图1的版块B图解所选甲硅烷基单体;而图1的版块C图解包括氟基和甲硅烷基取代基的所选单体。除非本文中另行指明或明显与上下文相悖,在描述本发明的上下文中(尤其在下列权利要求的上下文中)使用的术语“一”和“该”和类似指示词应被解释为涵盖单数和复数。除非另有说明,术语“包含”、“具有”、“包括”和“含有”应被解释为开放式术语(即是指“包括,但不限于”)。除非本文中另行指明,本文中的数值范围的记载仅旨在充当逐一提到落在该范围内的各单独数值的简写法,各单独数值就像在本文中逐一记载那样并入本说明书。通过测量获得的所有数值(例如重量、浓度、物理尺寸、清除率、流速等)不应被解释为绝对精确值,而应被视为包括在本领域中常用的测量技术的已知界限内的值。除非本文中另行指明或明显与上下文相悖,本文描述的所有方法可以以任何合适的顺序进行。除非另行要求,本文中提供的任何和所有实例或示例性措辞(例如“如”)的使用仅意在更好地阐明本发明的某些方面,而非限制本发明的范围。说明书中的措辞都不应被解释为指明任何未提出权利要求的要素对本发明的实施是必不可少的。关于基团或部分,本文所用的术语“有机”及其语法变型是指包含通常与至少一些氢结合的碳并任选包括一种或多种其它元素,如氧、硫、氮、磷、卤素或来自周期表第II-A族(例如B)、第IV-A族(例如Si)、第V-A族(例如As)、第VI-A族(例如Se)的另一非金属或准金属元素的材料。术语“有机”还是指传统上被描述为有机金属材料的材料(例如包含共价键合到碳原子上的一个或多个主族或过渡金属原子)以及包括与有机部分络合或成盐的金属元素的材料。有机部分或基团的非限制性实例包括烃、杂环(包括包含至少一个饱和、不饱和和/或芳族环的材料,所述环包含至少一个碳原子和一种或多种其它元素)、碳水化合物(包括糖和多糖)、氨基酸、多肽(包括蛋白质和含有至少两个经肽键键合在一起的氨基酸基团的其它材料)、肽类似物(包括包含两个或更多个通过非肽键的键,例如酯键连接的氨基酸的材料),及其两种或更多种的组合。另外,有机部分R2、R3、R4、R5和R8可以被一个或多个官能团取代。此类官能团的非限制性实例包括例如羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸、多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。术语“烃”及其语法变型是本领域中公知的并且是指完全由氢和碳构成的有机化合物。烃可以是饱和的(不含多重键)、不饱和的(含有至少一个双键或三键)或芳族的(含有芳环体系,如苯环或稠合芳环体系,如萘、蒽和类似体系)。烃可包括碳原子的直链、碳原子的支链、碳原子环或它们的任何组合。烃的非限制性实例包括链烷、烯、炔、环烷和基于炔的化合物。术语“烃基”及其语法变型是指通过从烃中除去氢原子形成的一价基团,例如乙基、苯基。术语“碳水化合物”及其语法变型是本领域中公知的并且是指例如在形式上具有经验元素式(CH2O)x的多羟基化化合物,其中x>1。碳水化合物的非限制性实例包括糖(例如葡萄糖、麦芽糖)、多糖(例如淀粉、纤维素)以及糖和多糖的改性形式(例如代替或除了羟基外,包含一个或多个官能团,如氨基、醚、酯),以及脱氧糖和脱氧多糖(即其中OH已被H替代的糖和多糖)等。该碳水化合物可以是天然存在的材料、合成材料或其组合。术语“氨基酸”及其语法变型是本领域中公知的并且是指例如包含至少一个氨基和至少一个羧酸基的有机化合物。氨基酸的实例包括天然或合成α-氨基酸(例如常见的生产蛋白的氨基酸以及非生产蛋白的氨基酸,如鸟氨酸,根据结构,其可以是手性材料,例如左旋或右旋立体异构体或其混合物,或非手性材料),以及其中氨基和羧酸基被多于一个碳隔开的化合物。术语“多肽”及其语法变型是本领域中公知的并且是指例如包括两个或更多个氨基酸(通常α-氨基酸)的材料,该两个或更多个氨基酸通过一个氨基酸的羧酸基(通常α-羧酸基)和另一氨基酸的氨基(通常α-氨基)之间的肽(酰胺)键连接在一起。本文所用的术语多肽还包括蛋白质以及具有多肽核心结构以及附着到多肽骨架上的附加官能团或保护基的材料。术语“肽类似物”及其语法变型是指类似于多肽的材料,其中一个或多个肽键被非肽键,如酯、醚等替代。除非另行规定,本文所用的分子量值,如数均分子量(Mn)和重均分子量(Mw)以及多分散性指数值(“PDI”,即Mw/Mn)基于对照聚苯乙烯标样的凝胶渗透色谱法(GPC),或如下文的实施例11中所述的与多角度光散射(MALS)联用的GPC。没有明确描述或语境暗示为是GPC或MALS值的分子量参数应被解释为GPC衍生值。分子量值以克/摩尔(也被称作道尔顿,"Da")或千克/摩尔(也被称作kDa)为单位报道。令人惊讶地,本文描述的聚合方法可以在各种相对温和的反应条件下进行。该反应通常可以在环境室温(例如大约20至25℃)至大约200℃的温度下进行。当该聚合不用溶剂(纯)进行时,可能需要足以熔化单体的温度。第一和第二单体优选以大致等摩尔量(基于所存在的F和甲硅烷基取代基的摩尔数)或在氟化的第一单体过量(例如0.01至大约10摩尔%过量)下反应。如本文所述,第一和第二单体可以以纯形式或在溶剂中互相接触。合适的溶剂的非限制性实例包括卤代烃(例如二氯甲烷、氯仿、四氯化碳、全氯乙烷、氯氟烃、碳氟化合物等)、醚(例如二乙醚、四氢呋喃、二甲氧基乙烷等)、酯(例如乙酸乙酯)、腈(例如乙腈等)、酮(例如丙酮、甲乙酮)、吡啶(例如吡啶、甲基吡啶等)、酰胺(例如N-甲基吡咯烷酮、乙酰胺、二甲基乙酰胺等)、亚砜(例如二甲亚砜等)和砜(例如环丁砜、二甲基砜等)。该溶剂优选是非水和非质子的。如果需要,可以使用混合溶剂体系,或该聚合反应可以相继在不同溶剂中或在无溶剂和溶剂条件的组合中(例如在一种溶剂中(或无溶剂)开始并在另一溶剂中完成聚合)进行。该聚合的甲硅烷基氟化物副产物容易通过化学领域的普通技术人员公知的各种方法的任意一种与聚合物产物分离。例如,根据该甲硅烷基氟化物的沸点,可通过在环境大气压或减压下蒸馏或蒸发除去甲硅烷基氟化物。或者或另外,可通过用溶解甲硅烷基氟化物但不溶解聚合物产物的溶剂(例如烃溶剂)洗涤从聚合物产物中除去倾向于相对非极性的甲硅烷基氟化物副产物。该甲硅烷基氟化物副产物也可通过与双酚式单体前体(例如双酚A)的盐反应形成双-甲硅烷基醚型单体而再循环。获自本文描述的方法的聚合材料优选具有至少大约10,更优选大于10(例如10至大约100、200、300、400、500、1,000、10,000、100,000或更大)的聚合度(即单体单元的平均数)。在本文描述的方法中,第一和第二单体可各自包含单一的单体材料,或两种或更多种单体材料的组合——作为混合物或相继添加到聚合反应中。例如,第一单体F–X–F可包含两种或更多种具有不同的X基团的单体材料的组合。类似地,第二单体(R1)3Si–Z–Si(R1)3可包含具有不同的R1基团、不同的Z基团或两者的两种或更多种单体材料的组合。单体的此类组合可以以如本文所述的任何所需比例配制,或可以分开添加到该聚合混合物中。根据各种单体的相对反应性,以及根据不同单体材料是一开始混合在一起还是以连续方式接触,或是混合和连续添加的一些组合,由单体材料的此类组合产生的聚合物可包括无规分布的重复单元或可包括具有相同结构的重复单体单元的嵌段,或无规和嵌段化的链段。作为非限制性实例,第一单体的混合物可包括90摩尔%(mol%)的F–SO2–F和10摩尔%的F–SO2–CH2–Ph–SO2–F。第一单体的这种混合物与式Me3Si–O–Ph–CMe2–Ph–O–SiMe3的第二单体的反应随之提供具有经验式:–(SO2–O–Ph–CMe2–Ph–O–)e–(SO2–CH2–Ph–SO2–O–Ph–CMe2–Ph–O–)f–并具有大约9:1的e:f近似比的聚合物,其中SO2–O–Ph–CMe2–Ph–O和SO2–CH2–Ph–SO2–O–Ph–CMe2–Ph–O重复单元可能以无规方式分布在聚合物链中。或者,可如下形成嵌段共聚物:使一定量(例如9摩尔)的单一第一单体组合物F–SO2–F和更大摩尔量(例如10摩尔)的单一第二单体组合物Me3Si–O–Ph–CMe2–Ph–O–SiMe3接触以形成第一均匀聚合物链段–(SO2–O–Ph–CMe2–Ph–O–)e,然后一定量(例如1摩尔)的不同的第一单体F–SO2–CH2–Ph–SO2–F,其足以与剩余量的第二单体反应以形成第二聚合物链段(例如–(SO2–CH2–Ph–SO2–O–Ph–CMe2–Ph–O–)f),从而产生具有a:b的近似摩尔比例(即,在此实例中为大约9:1)的嵌段的嵌段共聚物。如聚合物领域中的普通技术人员所理解,第二单体也包含或者能包含多种具有不同Z基团的化合物,以产生具有重复单元的多种组合的聚合物,例如通式–(X1–Z1)g–(X1–Z2)h–(X2–Z1)i–(X2–Z2)k...–(X'–Z')w–的聚合物,其中g、h、i、k和w与该聚合反应混合物中存在的各不同的第一和第二单体的相对量成比例。在一些实施方案中,至少一部分第一单体包括式F–X–F的支化单体,其中X包括在选自如本文其它地方定义的SO2、C(=O)和Het的活化基团上的附加F取代基,以使所述附加F取代基也与第二单体的甲硅烷基取代基反应以形成甲硅烷基氟化物,且所述附加活化基团与第二单体的L基团缩合以在该聚合物中引入至少一个分支点。例如,第一单体可包含具有被三个活化氟取代基取代的有机核心基团如苯基的支化单体,如1,3,5-三-氟磺酰基苯或2,4,6-三氟-1,3,5-三嗪,其中该三嗪既是活化基团(Het),又是有机核心基团,或由该支化单体构成。另外或或者,第二单体可包括具有连接到氧、硫或氮原子上的附加甲硅烷基取代基的支化单体。如本文中所述,支化第二单体的反应也导致通过氧、硫或氮原子与第一单体的磺酰基、羰基或杂芳基活化基团的缩合向该聚合物中引入至少一个分支点,且氟基和甲硅烷基取代基的伴随反应形成甲硅烷基氟化物。在本文描述的任何聚合方法实施方案中,有机部分,例如R2、R3、R4、R5和R8可选自烃、杂环、碳水化合物、氨基酸、多肽、肽类似物和其中两种或更多种的组合。在一些实施方案中,R1、R2、R3、R4和R5可包括一个或多个取代基,例如羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸、多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。本文描述的聚合方法的一个有趣和有用的特征在于所得产物包含至少一个链端且通常两个链端都衍生自第一(氟化)单体的聚合物链,以使如此制成的聚合物包含氟取代的端基(例如SO2F、COF或HetF)。该氟取代的端基可用于在官能上改性该聚合物链的末端,例如通过用基于氧、氮或硫的亲核体亲核置换F取代基。这种端基改性可以在聚合过程结束时(例如当在溶液中进行聚合时)在聚合混合物中进行,或所得氟封端的聚合物可以在已分离出最初形成的聚合物后在分开的反应中与亲核体反应。用于置换F取代基的适合的亲核体的非限制性实例包括羟基取代的材料(例如醇和酚类化合物)、胺、叠氮化物、硫醇等。在一些实施方案中,通过本文描述的方法制备的聚合物包含具有选自下列的式的聚合链:式(I):(–A(–R2–A)n–L–R3–L)x–;式(II):(–A–R2–A–L–R3–L)y–;式(III):(–A–L1–R5–L1–A–L–R3–L)z–;式(IV):(–A–L1–R5–A–L–R3–L)m–;式(V):(–A–L–R3–L)p–;和式(VI):(–A–R2–A–L–R3–L)a–(–A–L1–R5–L1–A–L–R3–L)b–(A–L1–R5–A–L–R3–L)c–(–A–L–R3–L)d–。在上式(I)、(II)、(III)、(IV)、(V)和(VI)中,各A独立地为SO2、C(=O)或Het,优选SO2;各R2和R5独立地包含第一有机部分;各Het独立地为在其杂芳环中包含至少两个碳原子和1至4个氮原子的芳族杂环,其中各L连接到杂芳环的碳原子上;各L独立地为O、S或N(R4),优选O;各R3独立地包含第二有机部分;且各R4独立地为H或第三有机部分。在式(I)、(II)、(III)、(IV)和(V)中,x、y、z、m和p各自是该聚合物中的重复单元的平均数并具有至少10的值(例如10至大约100、200、300、400、500、1,000、10,000、100,000或更大)。在式(VI)中,各a、b、c和d是各自的重复单元的平均数并可以独立地为0或更大,只要a、b、c和d之和为至少10(例如10至大约100、200、300、400、500、1,000、10,000、100,000或更大)。式(I)、(II)、(III)、(IV)和(V)中的聚合物链包括至少一个衍生自第一单体的端基,优选两个端基,即包括E–A–部分的端基,其中E优选是氟取代基(F),或E是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为如本文对R1、R2、R3、R4和R5所述的有机部分。可通过本文描述的方法制造的一类聚合物的实例是聚(有机硫酸酯),如本文的实施例中详细描述的聚(双酚硫酸酯)。在一个实施方案中,该聚(双酚硫酸酯)由式(IV)表示,其中各A是SO2,且各L是O且各R3是式:–Ph–C(R7)2–Ph–的化合物,其中各Ph是1,4-亚苯基,且各R7是H、(C1-C4)烷基(例如甲基、乙基和丙基)或卤代(C1-C4)烷基(例如三氟甲基)。在本文描述的任何聚合物中,有机部分,例如R2、R3、R4、R5和R8可选自烃、杂环、碳水化合物、氨基酸、多肽和其中两种或更多种的组合。另外,R2、R3、R4和R5可以被至少一个官能团取代。此类官能团的非限制性实例包括例如羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸和多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。在一个优选实施方案中,第一和第二单体可包含双酚型化合物,其中两个酚式基团(被氟磺酰基或甲硅烷基封端)通过连接键或连接基(例如氧、硫、氮、羰基或饱和或不饱和的亚烷基,其可以是取代或未取代的)连在一起,例如式VII的第一单体和式VIII的第二单体:其中各R1独立地为烃基,且R9独立地为共价键、C(CH3)2、C(CF3)2或SO2。一种优选聚合物是式IX的化合物:其中t是单体单元的平均数并且为至少10(例如10至大约100、200、300、400、500、1,000、10,000、100,000或更大),且E是F或是可通过从"A"部分中亲核置换F而得的官能团,如叠氮基、氨基、烷基氨基、芳基氨基、烷氧基、芳氧基、烷基硫基和类似基团。在一些实施方案中,E选自氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为如本文对R1、R2、R3、R4和R5所述的有机部分。下面例示本文描述的方法和材料的某些非限制性实施方案。实施方案A是一种聚合方法,其包括使液体单体组合物与碱性催化剂接触的步骤,其中所述单体组合物包含至少一种式F–X–F的化合物和至少一种式(R1)3Si–Z–Si(R1)3的化合物;其中:各R1独立地为烃基;X具有式–A(–R2–A)n–;各A独立地为SO2、C(=O)或Het;R2包含第一有机部分;n是0或1;Het是在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环,且当A是Het时,F取代基连接到其杂芳环的碳原子上;Z具有式–L–R3–L–;各L独立地为O、S或N(R4);R3包含第二有机部分;各R4独立地为H或第三有机部分;且其中在单体的各自的A和L基团缩合以形成X–Z聚合物链时,F和(R1)3Si取代基形成式(R1)3Si–F的甲硅烷基氟化物副产物;且其中所述碱性催化剂包含选自脒、胍、磷腈、氮杂环卡宾、叔醇盐和氟化物盐的至少一种材料。实施方案B是实施方案A的方法,其中:各R1独立地为烷基或芳基;X具有式–A(–R2–A)n–;各A是SO2;R2包含第一有机部分;n是0或1;Z具有式–L–R3–L–;各L独立地为O;且R3包含含有至少一个直接键合到各L上的芳基或杂芳基的第二有机部分。实施方案C是实施方案A或B的方法,其中n是0。实施方案D是实施方案A至C任一项的方法,其中Het是1,3,5-三嗪。实施方案E是实施方案A至D任一项的方法,其中所述单体组合物包括一种化合物,其中X包括在磺酰基、羰基或杂芳基活化基团A上的附加F取代基,以使所述附加F取代基也与氧、硫或氮原子连接基L上的(R1)3Si取代基反应以形成甲硅烷基氟化物,且所述活化基团与所述连接基缩合以在所述聚合物中引入分支点。实施方案F是实施方案A至E任一项的方法,其中所述单体组合物包括一种化合物,其中Z包括在氧、硫或氮原子连接基L上的附加甲硅烷基取代基(R1)3Si,以使所述附加甲硅烷基取代基也与磺酰基、羰基或杂芳基活化基团A上的F取代基反应以形成甲硅烷基氟化物,且所述连接基与所述活化基团缩合以在所述聚合物中引入分支点。实施方案G是实施方案A至F任一项的方法,其中n是1;R2是–L1–R5–L1–;各L1独立地选自O、S和N(R4);且各R4独立地为H或第三有机部分,且R5包含有机部分。实施方案H是实施方案A至G任一项的方法,其中n是1;R2是–L1–R5–;L1选自O、S和N(R4);R4是H或第三有机部分;且R5是有机部分。实施方案I是实施方案A至H任一项的方法,其中所述碱性催化剂包含1,8-二氮杂双环[5.4.0]十一-7-烯(DBU)。实施方案J是实施方案A至I任一项的方法,其中所述碱性催化剂包含选自如下的至少一种磷腈:2-叔丁基亚氨基-2-二乙基氨基-1,3-二甲基全氢化-1,3,2-二氮杂磷杂环己烯(BEMP)和1-叔丁基-4,4,4-三-(二甲基氨基)-2,2-双[三(二甲基氨基)-亚正膦基氨基]-2λ5,4λ5-链二(磷腈)(P4-t-Bu)。实施方案K是实施方案A至J任一项的方法,其中所述碱性催化剂包含选自CsF、CsFHF、KF、四丁基氟化铵(TBAF)和二氟三甲基硅酸三(二甲基氨基)锍(TASF)的至少一种氟化物盐。实施方案L是实施方案A至K任一项的方法,其中所述碱性催化剂包含选自1,1,3,3-四甲基胍(TMG)、1,5,7-三氮杂双环[4.4.0]癸-5-烯(TBD)和7-甲基-1,5,7-三氮杂双环-[4.4.0]癸-5-烯(MTBD)的至少一种胍。实施方案M是实施方案A至L任一项的方法,其中所述碱性催化剂包含选自咪唑-2-亚基、1,2,4-三唑-5-亚基、噻唑-2-亚基和咪唑啉-2-亚基的至少一种氮-杂环卡宾。实施方案N是实施方案A至M任一项的方法,其中各A是SO2。实施方案O是实施方案A至N任一项的方法,其中各R2包含直接键合到A基团上的芳基或杂芳基部分,或通过与所述芳基或杂芳基部分上连接的氧原子键合到A上的芳基或杂芳基部分。实施方案P是实施方案A至O任一项的方法,其中所述聚合物包含选自下列的式所示的聚合链:式(I):(–A(–R2–A)n–L–R3–L)x–;式(II):(–A–R2–A–L–R3–L)y–;式(III):(–A–L1–R5–L1–A–L–R3–L)z–;式(IV):(–A–L1–R5–A–L–R3–L)m–;式(V):(–A–L–R3–L)p–;和式(VI):(–A–R2–A–L–R3–L)a–(–A–L1–R5–L1–A–L–R3–L)b–(A–L1–R5–A–L–R3–L)c–(–A–L–R3–L)d–;其中:各A独立地为SO2、C(=O)或Het;各L和L1独立地为O、S或N(R4);各R2和R5独立地包含第一有机部分;各R3包含第二有机部分;各R4独立地为H或第三有机部分;各n独立地为0或1;各Het独立地为在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环,且当A是Het时,F取代基连接到其杂芳环的碳原子上;x、y、z、m和p各自是该聚合物中的重复单元的平均数并具有至少10的值;且各a、b、c和d是各自的重复单元的平均数,并可以独立地为0或更大,只要a、b、c和d之和为至少10。实施方案Q是实施方案A至P任一项的方法,其中R2、R3、R4和R5中的一个或多个包含选自如下的部分:烃、杂环、碳水化合物、氨基酸、多肽、肽类似物和其中两种或更多种的组合。实施方案R是实施方案A至Q任一项的方法,其中R1、R2、R3、R4和R5中的一个或多个被选自如下的至少一个取代基取代:羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸和多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。实施方案S是实施方案A至R任一项的方法,其中所述单体组合物包含(a)两种或更多种不同的式F–X–F的化合物,(b)两种或更多种不同的式(R1)3Si–Z–Si(R1)3的化合物,或(c)(a)和(b)的c组合。实施方案T是实施方案S的方法,其中所述两种或更多种不同的式(R1)3Si–Z–Si(R1)3的化合物因R1、Z或R1和Z的选择而有差别。实施方案U是实施方案A至T任一项的方法,其中所述单体组合物包含至少一种式VII的化合物和至少一种式VIII的化合物:其中各R1独立地为烷基或芳基,且各R9独立地为共价键、C(CH3)2、C(CF3)2或SO2。实施方案V是实施方案A至U任一项的方法,其中所述液体单体混合物包含溶解在溶剂中的单体混合物。实施方案W是实施方案A至V任一项的方法,其中所述液体单体混合物包含熔融的单体混合物。实施方案X是实施方案A至W任一项的方法,其中所述F-X-F单体包含硫酰氟(FSO2F)。实施方案Y是实施方案A至W任一项的方法,其中所述F-X-F单体包含式F-SO2-CH2CH2-N(R11)-CH2CH2-SO2-F的双氟磺酰基单体,其中R11包含有机部分。实施方案Z是实施方案Y的方法,其中R11包含选自如下的部分:烃、杂环、碳水化合物、氨基酸、多肽、肽类似物和其中两种或更多种的组合。实施方案AA是实施方案Y或实施方案Z的方法,其中R11被选自如下的至少一个取代基取代:羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸和多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。实施方案AB是一种聚合物,其包含具有选自下列的式的聚合链:式(I):(–A(–R2–A)n–L–R3–L)x–;式(II):(–A–R2–A–L–R3–L)y–;式(III):(–A–L1–R5–L1–A–L–R3–L)z–;式(IV):(–A–L1–R5–A–L–R3–L)m–;式(V):(–A–L–R3–L)p–;和式(VI):(–A–R2–A–L–R3–L)a–(–A–L1–R5–L1–A–L–R3–L)b–(A–L1–R5–A–L–R3–L)c–(–A–L–R3–L)d–;其中:各A独立地为SO2、C(=O)或Het;各L和L1独立地为O、S或N(R4);各R2和R5独立地包含第一有机部分;各R3包含第二有机部分;各R4独立地为H或第三有机部分;各n独立地为0或1;各Het独立地为在其杂芳环中包含至少两个碳原子和至少一个氮原子的芳族杂环,且当A是Het时,F取代基连接到其杂芳环的碳原子上;x、y、z、m和p各自是该聚合物中的重复单元的平均数并具有至少10的值;且各a、b、c和d是各自的重复单元的平均数,并可以独立地为0或更大,只要a、b、c和d之和为至少10;且该聚合物在聚合物链的一端或两端包括式E–A–的基团,其中各E独立地为氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。实施方案AC是实施方案AB的聚合物,其中一个或多个有机部分R2、R3、R4、R5和R8选自烃、杂环、碳水化合物、氨基酸、多肽、肽类似物和其中两种或更多种的组合。实施方案AD是实施方案AB或AC的聚合物,其中R2、R3、R4、R5和R8中的一个或多个被选自如下的至少一个取代基取代:羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸和多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。实施方案AE是实施方案AB的聚合物,其中所述聚合物包含式IX的化合物:其中t是单体单元的平均数并且为至少10,各E独立地为氟、OR8、NHR8、N(R8)2、叠氮基、CN或SR8,且各R8独立地为有机部分。实施方案AF是实施方案AB至AD任一项的聚合物,其中所述聚合物具有式(I):(–A(–R2–A)n–L–R3–L)x–,其中各A是SO2,且各R2独立地为-CH2CH2-N(R11)-CH2CH2-,其中R11包含有机部分。实施方案AG是实施方案AF的聚合物,其中R11包含选自如下的部分:烃、杂环、碳水化合物、氨基酸、多肽、肽类似物和其中两种或更多种的组合。实施方案AH是实施方案AF或AG的聚合物,其中R11被选自如下的至少一个取代基取代:羟基、卤素、硝基、–C(O)R6、–C(O)OR6、–C(O)N(R6)2、–CN、–SOvR6、–SOvN(R6)2、R6SOvN(R6)–、–N(R6)SOvR6、–SO3R6、–N(R6)2、–N(R6)OR6、–N(R6)C(O)R6、–N(R6)C(O)OR6、–N(R6)C(O)N(R6)2、–OC(O)N(R6)2、–OC(O)OR6、叠氮基、烷基、环烷基、链烯基、炔基、烷氧基、氟烷基、氟烷氧基、芳基、芳氧基、杂芳基、聚(乙烯氧基)、炔基封端的聚(乙烯氧基)、脂肪酸、碳水化合物、氨基酸和多肽;其中各R6独立地为H、烷基或芳基,且v是0、1或2。实施方案AI是实施方案AB的聚合物,其中所述聚合物具有小于大约2.2的基于使用聚苯乙烯标样的凝胶渗透色谱法的分子量多分散性指数(PDI),并包括少于大约5重量%的环状低聚物。实施方案AJ是实施方案AI的聚合物,其中所述聚合物是聚(双酚A硫酸酯)。实施方案AK是包含聚(双酚A硫酸酯)的透明的基本无色膜或片材。实施方案AL是制备实施方案AK的膜或片材的方法,其包括将聚(双酚A硫酸酯)制粒并在升高的压力下在高于其玻璃化转变温度的温度下压缩所述颗粒。实施方案AM是实施方案AL的方法,其中所述升高的压力为至少大约25,000磅/平方英寸(psi)且所述温度为大约200至250℃。在本文描述的任一实施方案中,氟化单体F-X-F的一个或多个A基团(即SO2、C(=O)或Het)可以被式S(=O)(=NR12)的基团替代,即,以形成含有代替SO2F、C(=O)F或Het-F基团的-S(=O)(=NR12)F官能团的单体。在下列非限制性实施例中进一步例示本文描述的方法和聚合物的某些方面和特征。实施例1.示例性聚(双酚A硫酸酯)制备丙烷-2,2-二基双(4,1-亚苯基)二氟代磺酸酯(2a)的大规模制备.在2升单颈圆底烧瓶中装入双酚A(114.9克,0.5摩尔)、CH2Cl2(DCM;1升)和三乙胺(Et3N;174毫升,1.25摩尔,2.5当量)。将该混合物在室温下搅拌10分钟(min)。然后将反应烧瓶用隔膜密封,在温和真空下除去溶液上方的气氛,并通过针从充满气体的气球引入SO2F2气体(硫酰氟,VIKANE)。对于像这样的大规模反应,容易观察到从气球中耗尽硫酰氟,并在需要时用新的气球引入更多试剂。对于小规模反应,过量使用SO2F2。容易通过薄层色谱法(TLC)追踪这些反应。反应混合物在室温下剧烈搅拌2-4小时,通过GC-MS和TLC监测。在完成后,通过旋转蒸发除去溶剂,将残留物溶解在乙酸乙酯(EtOAc;1升)中,该溶液用1NHCl(2x500毫升)和盐水(2x500毫升)洗涤。有机相经无水Na2SO4干燥并浓缩。所得固体在高真空下在60℃下干燥整夜,从而以定量收率产生白色结晶固体形式的所需化合物(197.1克,100%收率)。熔点(mp)48-49℃。1HNMR(400MHz,CDCl3)δ7.34-7.32(m,2H),7.28-7.26(m,2H),1.72(s,3H);13CNMR(101MHz,CDCl3)δ150.4,148.2,128.7,120.5,42.9,28.4,30.7;19FNMR(376MHz,CDCl3)δ+37.0;GC-MS(tR):7.2min;EI-MS(m/z):392[M]+。(丙烷-2,2-二基双(4,1-亚苯基))双(氧基))双(叔丁基二甲基)硅烷(2c)的大规模制备.在2升烧瓶中,将88.4克(2.6当量,1.3摩尔)咪唑添加到双酚A(114.2克,0.5摩尔)在DCM(1000毫升)中的溶液中,这种溶液在室温下搅拌10分钟。接着将181克叔丁基二甲基甲硅烷基氯(TBSCl;2.4当量,1.2摩尔)溶解到200毫升DCM中,并通过加料漏斗经30分钟将所得TBSCl溶液添加到双酚A中。该反应在室温下搅拌24小时。通过TLC或GCMS监测该反应。然后通过旋转蒸发除去DCM溶剂,加入1000毫升EtOAc以再溶解该残留物,该EtOAc溶液用500毫升饱和碳酸氢钠溶液洗涤两次,用500毫升盐水洗涤两次,然后有机相经无水Na2SO4干燥。通过旋转蒸发除去溶剂。所得产物在高真空下在70℃下干燥24小时。获得白色固体形式的纯双-TBS双酚A化合物(225.2克,98.5%收率),其在聚合反应之前不需要进一步提纯。mp78-80℃;1HNMR:(400MHz,CDCl3,23℃):δ7.10-7.07(m,4H),6.76-6.73(m,4H),1.65(s,6H),1.01(s,18H),0.22(s,12H).13CNMR:(100MHz,CDCl3,23℃):δ153.2,143.7,127.7,119.2,41.7,31.1,25.7,18.2,-4.39。GCMS:8.38min,MSm/z456.3(M+)。大规模本体聚合–(0.5摩尔规模)的聚(双酚A硫酸酯).在配有回流冷凝器、两个橡胶隔膜(其中之一含有用于内部测量的温度计)和Teflon涂布的磁搅拌棒的1,000毫升3颈圆底烧瓶中装入2a(98.1克,0.25摩尔)和2c(114.5克,0.25摩尔)。将反应容器放入油浴中并达到135℃。一旦单体熔融(内部温度120℃),加入1摩尔%在1M己烷溶液(5毫升,5毫摩尔)中的BEMP。在5分钟内,观察到叔丁基二甲基氟硅烷(TBSF)回流。在大约45分钟后,该反应混合物凝固并停止搅拌。继续在120℃下加热另外45分钟,此时将回流冷凝器换成蒸馏头,并蒸馏出TBSF(分离出56克)。然后将DMF(300毫升)添加到固体粗制BPA-聚硫酸酯产物中,并在130℃下继续加热直至恢复搅拌且所有聚合物溶解。使所得清澈无色DMF溶液冷却至大约60℃,然后以连续一致的速率缓慢倒入在环境温度下的含3升剧烈搅拌的(顶置搅拌器)甲醇的烧杯中,以致形成长的纤维状BPA-聚硫酸酯丝束。这种材料(144克,99.3%)在真空炉中在80℃下干燥整夜,通过GPC分析。PDI=1.7;参照聚苯乙烯标样的Mn=120,000Da;通过MALS测得的Mn=58,000;Tg=98℃;1HNMR(400MHz,DMSO-d6)δ7.31(apps,8H),1.61(2,6H);对(C15H14O4S)n的计算值:C,62.05;H,4.86;S,11.04.实测值:C,61.98;H,4.80;S,10.84;F,0.33。本文描述的聚合反应极其有效,当使用双(芳基氟代硫酸酯)2a和双(芳基甲硅烷基)醚2b-e时,制成高分子量聚合物(图2)。通过有机碱,如1,8-二氮杂双环[5.4.0]十一-7-烯(DBU)或2-叔丁基亚氨基-2-二乙基氨基-1,3-二甲基全氢化-1,3,2-二氮杂-磷杂环己烯(BEMP),或氟化物盐,如CsF催化该反应。其以基本定量收率进行,与许多官能团相容,并且不需要特殊设备或预防措施。氟代硫酸酯和甲硅烷基醚单体都容易由BPA获得(图2,版块(a))。其在三乙胺存在下用SO2F2气体处理以生成双(氟代硫酸酯)2a,其根据不需要色谱提纯的简单后处理程序在摩尔规模下以高收率作为贮存稳定的白色结晶固体分离。双(甲硅烷基醚)单体2b-e可购得(2b)或容易根据标准程序大规模制备(2c-e)。在不同溶剂(1M在单体中)中在20摩尔%DBU存在下单体2a和2b之间的反应的最初检查确认N-甲基吡咯烷酮(NMP)和二甲基甲酰胺(DMF)是用于制备聚硫酸酯的最佳溶剂(图2,版块(b))。在从甲醇中沉淀后,BPA-聚硫酸酯(BPA-PS)以95%收率作为白色粉末回收(GPCMn=30,900g/mol,参考聚苯乙烯标样)。当使用TBS单体(2c)时,结果类似(GPCMn=24,600g/mol);在后一情况中,生成液体叔丁基氟二甲基硅烷(3c,TBSF)副产物并通过蒸馏除去。实施例2.催化剂评估.使用在乙腈中的单官能氟代硫酸酯(PhOSO2F)和TBS保护的酚(PhOTBS)评估各种有机和无机碱、亲核体、路易斯酸和氟化物源。结果表明脒、胍和磷腈是特别有用的催化剂。另一些活性催化剂是经有机和无机源引入的氟化物以及非亲核的叔丁醇盐碱(KOt-Bu)。然后将活性催化剂用于BPA-氟代硫酸酯单体(2a)以及TMS(2b)和TBS(2c)保护的BPA单体在室温下的聚合(参见表1)。TMS单体体系(2a+2b)提供高达大约Mn30,000至35,000g/mol的BPA-聚硫酸酯(基于GPC),而TBS单体体系(2a+2c)表现出更宽范围的所得Mn值。在脒催化剂,表1中的条目1-3中,DBU对生成聚合物最有效,而DBN和PMDBD主要提供低聚物。胍,条目4-6,与脒催化剂基本相当(即使不是更优异),其中MTBD与DBU相比以一半的催化剂载量提供具有两倍Mn的BPA-聚硫酸酯(2a+2c体系)。如通过BEMP制成的55,400g/mol的聚硫酸酯所证实,磷腈,条目7-8表现出最高催化活性。最后,催化用的KOt-Bu(条目9)和氟化物(条目10-11)仅在TBS体系中才产生聚硫酸酯,而在TMS体系中产生低分子量(MW)低聚物。由这些和其它初始研究看出,与2b,TMS体系(其表现出大约35,000g/mol的明显Mn上限)相比,在酚式羟基取代基上具有更稳定的TBS保护基的2c提供制备具有更高Mn的聚硫酸酯的潜力。这两种体系之间的差异可能与TBS酚与TMS酚相比高得多的碱性稳定性相关。表1.BPA-聚硫酸酯催化剂评估在表1中,聚合条件是:催化剂载量[a]20摩尔%或[b]10摩尔%;摩尔浓度NMP[c]大约1M或[d]大约0.5M;反应时间[e]24小时或[f]48小时。由甲醇沉淀分离材料并通过GPC分析。Mn参考聚苯乙烯标样。缩写:DBU=1,8-二氮杂双环[5.4.0]十一碳-7-烯;DBN=1,5-二氮杂双环[4.3.0]-壬-5-烯;PMDBD=1,2,3,4,4a,5,6,7-八氢-2,2,4a,7,7-五甲基萘啶;TMG=1,1,3,3-四甲基胍;TBD=1,5,7-三氮杂双环[4.4.0]癸-5-烯;MTBD=7-甲基-1,5,7-三氮杂双环-[4.4.0]癸-5-烯;BEMP=2-叔丁基亚氨基-2-二乙基氨基-1,3-二甲基全氢化-1,3,2-二氮杂磷杂环己烯;P4-t-Bu=1-叔丁基-4,4,4-三-(二甲基氨基)-2,2-双[三(二甲基氨基)-亚正膦基氨基]-2λ5,4λ5-链二(磷腈);KOt-Bu,叔丁醇钾;CsF=氟化铯;TASF=二氟三甲基硅酸三(二甲基氨基)锍。氮-杂环卡宾也可用作本文描述的聚合方法中的催化剂。图3图解由盐和两性离子中间体制备氮-杂环卡宾(版块A)以及一些杂环卡宾种类(版块B,其图解了咪唑-2-亚基、1,2,4-三唑-5-亚基、噻唑-2-亚基和咪唑啉-2-亚基)。代表性的卡宾是1,3-(二-(2,4,6-三甲基苯基)-2,3-二氢-1H-咪唑-2-亚基。Enders等人,Chem.Rev.2007,107:5606-5655详细描述了这些卡宾碱和它们的制备,其全文经此引用并入本文。单体2a和2c与1,3-(二-(2,4,6-三甲基苯基)-2,3-二氢-1H-咪唑-2-亚基的两性离子羧酸盐前体的反应(参见图3)在加热时释放CO2并原位产生活性催化剂。在2毫摩尔规模下,所得聚合物的GPCMn为56,000Da(聚苯乙烯标样)且PDI为1.4。尚未理解催化的机制。初步调查表明用F-/HF2-活化甲硅烷基醚和它们转化成高价硅衍生物可能至少部分是导致观察到的甲硅烷基醚与氟代硫酸酯的反应性的原因。DBU和类似催化剂与氟磺酰基的相互作用也可能在该反应中发挥作用。实施例3.浓度、温度和催化剂载量的评估用TMS体系(2a+2b)研究浓度的影响。分子量在本体中(在大约150℃,远高于大约90至98℃的Tg)最高并随浓度降低而降低(参见图4)。本体聚合还表现出最低量的据信为环状低聚物副产物,在GPC中在大约23分钟表现出洗脱。如通过GPC测得的窄PDI和低Mn表明这种副产物的环状拓扑。该环状低聚物在有机溶剂中的溶解度低于该聚合物。尽管尚未确认确切的结构,但该环状副产物表现出对称NMR且元素分析表明(C15H14O4S)n的分子式(62.32%C,1.89%H,11.03%S)。环状副产物的量随浓度降低而提高。环状副产物形成量的这种增加预计归因于在低浓度下提高的分子内反应趋势。对BPA-聚碳酸酯观察到类似效应。在通过将2a和2b逐滴添加到含DBU的稀乙腈溶液中实现的低浓度下,该产物是几乎纯的环状低聚物。对于在上述本体聚合条件下的活性的其它催化剂筛选包括BEMP、CsF和叔丁醇钾。类似于上述结果,BEMP和CsF都提供比DBU更高的Mn。有趣地是,叔丁醇钾无效,尽管其在溶液中表现出活性。随后研究温度对NMP中的基于溶液的聚合的影响。催化剂载量保持恒定在20%DBU。TMS体系如图5(下方曲线)中所示对加热不响应,GPCMn为大约35,000g/mol。这种TMS体系的本体聚合预计提高Mn,但仅轻微提高,大约40,000g/mol。相反,TBS体系(图5,上方曲线)在反应温度从室温提高到50℃时表现出显著的Mn提高。温度的进一步提高造成Mn轻微提高:在这些提高的温度下,Mn为大约50,000g/mol。在150℃(所研究的最高温度)下,可能由于降解,Mn降低。还研究改变催化剂载量的影响。在NMP中在室温下,无论所用的DBU摩尔%如何,TMS体系(2a+2b)基本没有表现出GPCMn的变化。在TBS体系中,提高DBU载量造成提高的Mn。类似于温度从室温(RT)到50℃的第一次升高,DBU载量从20%到50%的第一次升高使得Mn大幅提升。更多的DBU确实进一步提高Mn,但随着Mn达到大约50,000至55,000g/mol,提高不那么明显。在本体中在150℃下,催化剂载量对Mn没有明显的影响,其徘徊在65,000至70,000g/mol的表观平均值附近。TBS体系比TMS体系(其在提高GPCMn中表现出明显的限制)更响应不同的条件。在本体中,TBS体系生成最高分子量的聚合物。本体聚合还提供最少的环状副产物,并可争辩地是更不浪费和更生态友好的方法。由于这些原因,进一步扩大本体聚合条件的范围。进一步的研究表明,聚合物的分子量取决于催化剂的性质、其载量和甲硅烷基的性质(表2,图6)。TBS单体2c始终产生最大的聚合物,在使用BEMP催化剂时GPCMn超过100,000g/mol(表2,条目4-6)。DBU通常产生小于70,000g/mol的聚合物并在低载量下无效(参见条目4和7)。与TBS相比,无论聚合条件如何,由TMS单体2b获得的聚合物从未超过40,000g/mol。TBDPS(2d)和TIPS(2e)BPA醚在本体中也成功聚合并产生Mn可变的聚硫酸酯(条目11和13),尽管需要较高的BEMP催化剂载量(参见条目10vs.11)。因此,TBS醚2c以“金凤花(goldilocks)”单体出现,在不同条件下以低催化剂载量提供大聚合物。最后,对若干样品施以用于测定绝对分子量的多角度光散射(MALS)分析。如对BPA-聚碳酸酯报道,聚苯乙烯标准看起来明显高估聚硫酸酯的分子量。这对较低分子量聚合物(表2中的条目1-3)尤其明显,在较高分子量下误差降至大约两倍(参见条目4和9)。图6提供在表2中标作A、B、C和D的聚合物的代表性GPC迹线(分别为条目1、3、8和4)。表2.本体聚合条件的比较对表2的注释:聚合条件:无溶剂,150℃,2小时(h)。后处理:溶解在DMF中,随后从甲醇中沉淀。MnMALS是指通过与GPC联用的多角度光散射测得的Mn。MnPS是指通过参考聚苯乙烯标样的GPC测得的Mn。n/d=未测定。实施例4.聚(双酚A硫酸酯)物理性质表征.评估本实施例中获得的聚(双酚A硫酸酯)聚合物的物理性质。对MALSMn为大约2,500、40,000和58,000g/mol的聚合物进行热重分析(TGA)测量。特别地,使用TAQ5000IRTGA以10℃/min的加热速率测量BPA-聚硫酸酯样品的热分解。使用TAQ2000差示扫描量热(DSC)装置测定各种聚合物样品的玻璃化转变温度(Tg)。使用以10℃/min从0℃到220℃的热/冷/热程序。Tg取自二次加热扫描。TGA结果表明聚硫酸酯表现出优异的热稳定性,如图7中所示,具有非常类似的降解曲线,其中2,500g/mol样品的曲线为最低曲线,40,000和58,000g/mol样品显示在上方重叠曲线中。随着Mn提高,热分解温度仅轻微提高,但各材料热稳定:在350℃附近仅发生大约5%重量损失。几个分开的聚(双酚A硫酸酯)样品的代表性DSC温谱图在图8(插图)中提供,其中从顶部曲线到底部曲线评估MALSMn值分别为2.5kDa、10.6kDa、20kDa、38kDa和58kDa的聚合物。该聚合物的Tg值为大约72至98℃,最低Mn聚合物具有最低Tg,最高Mn聚合物具有最高Tg。没有识别出结晶熔融峰或结晶峰,表明该BPA聚硫酸酯是非晶的。还发现该芳族硫酸酯骨架水解稳定。图8还提供Mn相对于Tg的曲线图。图8中的数据表明在MALSMn超过大约20kDa(大约60kDa的GPCMn)时大约95至大约100℃的Tg值平台。这表明该聚(双酚A硫酸酯)聚合物的大约20kDa的MALSMn(或大约60kDa的GPCMn)代表用于产生完全缠结聚合物的近似最小分子大小。没有识别出结晶熔融峰或结晶峰,表明受试聚(双酚A硫酸酯)聚合物是非晶的。还首先通过与多角度光散射(MALS)联用的GPC和用于测定绝对分子量的差示折光指数(dRI)检测器使用与下文在实施例11中所述略微不同的分析参数和条件分析该120,000g/molMn样品(基于对照聚苯乙烯标样的GPC)。结果(在DMF中的分析)表明该聚合物的分子量为Mn=84,740g/mol;Mw=111,500g/mol;PDI=1.31,这是略高于如下文在实施例11中所述测得的58,000g/mol的值的Mn。这些不同的结果表明聚合物分子量测定对用于分子量测定的具体条件和方法的公知敏感性。因此,对本文描述的聚合物测得的分子量参数可基于用于获得测量结果的技术而改变。由于相对易于操作和设备的可得性、合适的标准和发展完善的方法,相对GPC分子量据信内部一致并适用于常规评估。实施例5.聚(双酚A硫酸酯)机械性质评估.将2a和2c的本体聚合扩大至0.5摩尔规模。使用1摩尔%BEMP催化剂在120℃下进行该反应2小时。在反应过程中没有观察到内部温度的显著变化。以定量收率(145克)获得Mn为58,000Da(MALS)的BPA-PS。该聚合物轻微可溶于多种多样的有机溶剂,包括氯仿、二氯甲烷和丙酮,在DMSO和DMF中观察到最佳溶解度(大约1克/2毫升DMF,在加热下)。在80℃下用50/5010%NaOH/EtOH溶液处理聚硫酸酯16小时不造成可观察到的Mn变化,表明与聚碳酸酯相比优异的水解稳定性。将大规模批次的聚(双酚AA硫酸酯)制粒并压缩模塑以进行各种物理和机械分析。LEXAN聚碳酸酯样品在类似条件下压缩模塑并用于比较。在压薄时,获得基本无色、透明和可弯曲但刚性的膜。原始的薄膜/片材用于透气性测量。更厚的样品,如用于拉伸强度测量的那些,表现出不透明的褐色。特别地,聚硫酸酯纤维和粉末在200℃下挤过熔体流动指数仪。将薄挤出物冷却至室温并用剪刀手动制粒。使用设定在230℃的Carver压机将聚硫酸酯颗粒压缩模塑成薄膜和其它样品模型总共20分钟(10分钟无压力,接着10分钟在25,000psi下)。将样品从压机中取出并在水中淬火。在Carver压机中在室温下使用锐钢“曲奇成型刀(cookiecutter)”模具从聚硫酸酯板上冲压出拉伸狗骨形试样。在相同条件下制备未指定等级的BPA-聚碳酸酯(LEXAN)以供比较。评估拉伸性质、透氧率和密度。聚硫酸酯和聚碳酸酯聚合物的工程应力-应变行为都描绘在图9中。用配有2.5kN测力计的MTSINSIGHT10机电测试框架测量拉伸性质。在环境温度下以10%/min应变率一式三份进行试验。使用阿基米德法在室温下用分析天平测定密度。经4次测量取平均质量并记录至4个小数位。密度计算至3个小数位,为1.310g/cc。在MOCONOX-TRAN2/21仪器上使用ASTM(D3985)批准的连续流测试槽法(continuous-flowtestingcellmethod)测定该聚合物的透氧率。在两个分开的BPA-聚硫酸酯膜样品上都在23℃和0%相对湿度(RH)下进行测量。(a)Sekelik等人,JournalofPolymerSciencePartB:PolymerPhysics1999;37:847-857;和(b)Kwisnek等人,Macromolecules2009,42:7031-7041描述了关于这种方法关注的进一步细节。类似于聚碳酸酯,聚硫酸酯表现出屈服,接着形成烧结颈、稳定化并蔓延。初步看来,至少在所用的具体条件下,聚硫酸酯具有比聚碳酸酯高的模量和略低的屈服应力。聚硫酸酯的致断应变达到50%以上,但受样品缺陷限制。真实的伸长可能明显更高。屈服和烧结颈通常对在环境条件下的热塑性非晶聚合物而言是不典型的。聚碳酸酯和聚砜是常用的实例。这种观察结果意味着聚硫酸酯在超过其屈服应力的应力下表现出韧脆转变,清楚表明这种聚合物是延性但也相当刚性的。较大的模量可能与在环境温度下聚硫酸酯中存在的较少自由体积有关。透气率测量(表3)有助于测定自由体积。令人惊讶地发现聚硫酸酯的透氧率比聚碳酸酯低大约5倍,这使聚硫酸酯可用于例如氧敏感材料的包装用途。降低的透氧率可归因于较低的自由体积。在环境温度下,聚硫酸酯具有源自较低Tg的较少过量的空穴自由体积。BPA-聚硫酸酯表现出大约1.310克/立方厘米(g/cc)或比聚碳酸酯致密大约9%的密度。如含硫聚合物和网络常见的那样,重复单元中的重硫原子产生相当致密的材料。切实而言,聚硫酸酯提供优于聚碳酸酯的其它潜在优点。聚硫酸酯的较低Tg可能易于加工。聚硫酸酯的碱性稳定性也是优于聚碳酸酯(其已知水解)的显著改进。表3.BPA-聚硫酸酯和用于比较的BPA-聚碳酸酯(LEXAN)的观察到的性质实施例6.聚(双酚A碳酸酯)的制备.图10提供通过本文描述的方法制备双酚A聚碳酸酯聚合物的示意性图示。由双-三氯甲基碳酸酯(“三光气”)与氟化钾和在乙腈中的1.5%18-冠醚-6根据Olofson,TetrahedronLetters,2002;34:4275-4279描述的方法生成氟光气(COF2)。特别地,在通过冰-水浴冷却的烧瓶中,将18-冠醚-6(200毫克)在乙腈(5毫升)中的溶液逐滴添加到三光气(2克,6.8毫摩尔)和喷雾干燥的KF(3.23克,55毫摩尔)在乙腈(30毫升)中的搅拌混合物中。该烧瓶配有干冰/丙酮冷指形冷凝器,并将生成的COF2气体送入含有双-三甲基甲硅烷基-双酚A(总共大约1克)在NMP中的1M溶液的反应容器中。通过注射器将大约0.1毫升DBU引入NMP溶液中。在添加DBU时该溶液立即变成深紫色。所得混合物在环境室温(大约20至22℃)下搅拌大约12小时。该反应混合物形成粘性凝胶,将其在甲醇中稀释,从而以大致定量收率(大约690毫克)形成灰色纤维状聚(双酚A碳酸酯)。通过GPC相对于聚苯乙烯标样分析该聚碳酸酯,其表现出大约159860的Mw和大约70539的Mn(大约2.27的PDI)。实施例7.附加聚合实施例各种双官能酚根据与图2中所示类似的反应流程进行端基转化和聚合。使用三氟甲基化的BPA单体形成具有良好品质和高分子量的均聚物和共聚物。检查该聚合反应与不同官能团的相容性。根据与图2中所示类似的程序制备单体4-13并包括双酚AF(4a/b)、萘(5a/b)、醚(6a/c)、酯(9a/c和12c)、硫化物(8a/c)、酮(9a/c)、酰胺(10a/c和13c)和双酚S(砜,11a/c)衍生物。该聚合反应在室温下在1MNMP中用20摩尔%DBU进行24小时。如表4所示,获得各种均聚物和BPA共聚物,证实该反应与不同官能团的相容性。如参考聚苯乙烯标样的观察到的分子量在相同的一般范围内,这无法得出关于不同单体种类的相对反应性的结论。在结构类似的BPA-共聚物中,当在甲硅烷基醚单体中存在对位供电子(参见表4中的条目5vs.6,11vs.12)或吸电子(参见8vs.9,14vs.15)基团时,分子量降低。通过含有在其它工程聚合物中发现的技术上有用的嵌段的共聚硫酸酯的成功形成证实该反应的选择性。也由双-磺酰氟(条目23)获得聚合物。由4,4’-联苯基双-磺酰氯通过使用在乙腈中的饱和KHF2水溶液在室温下的便利转化直接获得磺酰氟单体14。表4.对表4的注释:[a]在80℃下的聚合;[b]将温度提高到100℃提供46,100的GPCMn和1.5的PDI;[c]低聚产物;[d]将温度提高到100℃提供43,200的GPCMn和1.4的PDI。图11提供通过本文描述的方法制成的磺酰基和硫酸酯聚合物结构的代表性取样。除提供获得具有有用性质和各种结构单元的聚合物的实用途径外,本文描述的聚(有机硫酸酯)的格外简易的合成突出了硫酸酯连接体在有机和材料化学中未受到重视的潜力以及氧代氟化硫(VI)的独特反应性特征。这种新型点击反应直接适用于不同学科。实施例8.单体化学计量学的影响甲硅烷基醚-官能和氟代硫酸酯-官能的BPA单体的过量从0.0或无失配逐渐上升至1.0或100%化学计量不平衡以查验双-甲硅烷基醚或双-氟代硫酸酯2a过量时的化学计量失配的影响。这些结果概括在表5中。过量的甲硅烷基醚,在这种情况中为双-OTBSBPA单体2c导致基于GPC的Mn和PDI降低。Mn的这种降低预计归因于传统的逐步生长规则。在几乎每种情况下获得超过90%的收率,表明有限的单体完全耗尽。在1.0摩尔过量下,由于较低的低聚物在沉淀过程中的损失,收率明显更低。在过量氟代硫酸酯单体的情况下,观察到完全不同的影响。在双-氟代硫酸酯的0.05摩尔过量下,Mn相当于或优于非失配的对照体系。随着使用进一步过量的双-氟代硫酸酯,Mn随后从这种最大值降低。但是,在每种情况下,Mn高于双-甲硅烷基醚的相同摩尔当量过量的情况。收率也奇怪地提高,在双-氟代硫酸酯的最大过量下聚合时达到超过100%。因此对于这种聚合明显看出,尽管"A-A"(双-氟代硫酸酯)主要与"B-B"(双-甲硅烷基醚)反应,A-A也可以与A-A反应。这一结果不仅是传统的逐步生长聚合规则的一个惊人的例外,所得聚合物还看起来在线性聚合物链的两端上都是氟代硫酸酯官能的。在传统的逐步生长工程聚合物的情况下,端基通常是A或B官能团的统计混合物。这些基团随后被单官能试剂封端,或简单地降解或反应性太弱以致不可用。在没有任何额外控制或繁琐转化的情况下确保逐步生长的聚合物的末端上的稳定易点击官能团是工程聚合物的一个重要目标。表5.BPA-聚硫酸酯对化学计量不平衡的容许度实施例9.聚合物端基改性.将大约200毫克实施例8(来自表5的条目2)中制成的具有大约71,000g/mol的GPCMn的聚(双酚A硫酸酯)与如图12中所示的大约100毫克TBS-保护的尼罗红染料和大约20微升DBU一起溶解在大约4毫升DMF中。将该混合物在大约40℃下搅拌大约1.5小时以提供包含连接在聚合物端基上的尼罗红染料的聚合物。通过用大约20毫升甲醇稀释而使染色的聚合物沉淀。所得沉淀的聚合物具有归因于尼罗红端基的特征性品红色。通过将染色的聚合物样品再溶解在DMF中并使用在200至800纳米的多种波长下的UV-Vis检测进行GPC分离,证实染料与该聚合物的共价连接。GPC迹线表明,在567纳米检测器波长下的迹线表现出在与使用聚合物骨架波长(203纳米)时相同的洗脱时间的峰。也通过甲硅烷基化尼罗红染料与染色的聚合物和包含经由硫酸酯键连接到单一双酚A化合物上的单一尼罗红分子的单体材料的UV-可见光谱的比较证实染料与该聚合物的连接(参见图13)。该聚合物和双酚A-尼罗红共轭化合物具有几乎相同的UV/Vis光谱,而甲硅烷基化尼罗红的光谱相对于染色的聚合物和染色的单体材料蓝移(参见图14)。因此,将染料共价连接到聚合物上的能力证实在该聚合物上存在氟代硫酸酯端基。实施例10.氟NMR端基分析.使用19FNMR端基分析获得聚(双酚AF硫酸酯)的聚合度(DP)和因此Mn的独立的近似值。在作为溶剂的NMP中制备这些聚合物样品,然后溶解在d7-DMF中以用于NMR分析。使用单体混合物的实验证实,相对于聚合物链CF3信号量化OSO2F的端基信号的灵敏度为至少大约1:600(通过峰积分),假设所有聚合物为线性并包括两个OSO2F端基,这相当于大约200的DP(n)。在NMP中大约1M的浓度下用双(叔丁基二甲基甲硅烷基)双酚AF和过量双(氟代磺酰基)双酚AF在DBU作为催化剂存在下在环境室温下进行反应大约16小时。用5种不同量的双(氟代磺酰基)双酚AF(5摩尔%、10摩尔%、20摩尔%、50摩尔%和100摩尔%过量)运行实验。获自这些评估的DP值是上限,因为任何环状聚合物/低聚物的存在会使结果偏向更高的表观DP。5摩尔%过量的双(氟代磺酰基)双酚AF提供>200的DP(Mn>大约78000g/mol),即没有可察觉的端基信号;10摩尔%过量提供大约90的DP(大约35100的Mn);20摩尔%过量提供大约26的DP(大约10140的Mn),50摩尔%过量提供大约13的DP(大约5070的Mn),且100摩尔%过量提供大约7的DP(大约2730的Mn)。本体制备的聚合物样品(无溶剂)没有表现出任何可察觉的OSO2F端基信号,表明DP>200和/或可能大环状结构。实施例11.单体和聚合物合成的详述Ex.11A.材料和方法除非另行说明,在AMX-400(Bruker)和INOVA-400(Varian)仪器上在295K下记录1H和13CNMR谱。化学位移(δ)以相对于作为内标的残留CHCl3、丙酮或DMSO的百万分之份数表示。在400MHz下记录质磁共振(1HNMR)谱。在100MHz下记录碳核磁共振(13CNMR)谱。缩写为:s,单重峰;d,双重峰;t,三重峰;q,四重峰;p,五重峰;sex,六重峰;sept,七重峰;app,表观。在AVATAR370傅里叶变换红外光谱仪(ThermoNicolet)上记录红外光谱并以波数(cm-1)表示。使用熔点装置(Thomas-Hoover)测定熔点(mp)并且是未校正的。在带有以电子碰撞(EI+)模式运行的5975CInertMSD系统(Agilent)的7890AGC系统(Agilent)上记录GCMS数据[To=50℃2.25分钟;以60℃/min升至300℃;在300℃下保持4分钟]。在带有1100SL质谱仪(Agilent;电喷雾电离,ES)的1100LC/MSD(Agilent)上进行HPLC分析,用H2O中的0.1%三氟乙酸和CH3CN中的0.05%三氟乙酸洗脱。预涂布的F-254硅胶板(Merck)用于薄层分析色谱法(TLC)并用短波紫外线或用高锰酸钾染色剂视觉化。使用EMD(Merck)SilicaGel60(40-63μm)进行柱色谱法。在配有二极管阵列和折光指数检测器的LC20HPLC系统(Shimadzu)和串联并置于柱温箱中的STYRAGELHR-3和HR-4柱(Waters;5微米粒度,7.2毫米直径)上进行GPC分析。用READYCAL聚苯乙烯标样(Mn为500g/mol至600,000g/mol)校准该系统,用含有0.1%(wt.)LiBr作为改性剂的HPLC级DMF洗脱。以规则时间间隔验证校准的准确度。MINIDAWNTREOS检测器(Wyatt)用于多角度光散射(MALS)分析。除非另行说明,所有原材料和溶剂购自Aldrich,AcrosOrganics,Fisher,TCI,AlfaAesar或StremChemicals并按来样使用。二甲基甲酰胺(DMF)和N-甲基-2-吡咯烷酮(NMP)作为"在分子筛上99.5%特级干燥"获自AcrosOrganics。1,8-二氮杂双环[5.4.0]十一-7-烯(DBU)获自AlfaAesar并按来样使用。2-叔丁基亚氨基-2-二乙基氨基-1,3-二甲基全氢化-1,3,2-二氮杂-磷杂环己烯(BEMP)作为在己烷中的1M溶液获自SigmaAldrich。硫酰氟气体(SO2F2,可以以商品名VIKANE商业生产)是来自DowAgro的赠品。Ex.11B.一般聚合程序(a)小规模本体聚合–(参见表2).A-A(2a;1-5毫摩尔)和B-B(2b-e;1-5毫摩尔)单体在含有Teflon涂布的磁搅拌棒的16mL的厚玻璃壁螺旋盖容器中合并,并用PTFE/硅酮隔膜密封。然后将这种反应器在搅拌下置于150℃油浴中,一旦单体熔化,引入催化剂以引发聚合。继续加热2小时,此时凝固的混合物冷却并用每克聚合物大约1-2毫升DMF稀释。通过用热枪剧烈加热或通过再引入150℃油浴中,辅助溶解。一旦完全溶解,将DMF溶液倒入每克聚合物大约100毫升甲醇中以使白色BPA-聚硫酸酯根据分子量以纤维或粉末形式沉淀。所得聚合物然后在真空炉中在65℃下干燥并施以GPC分析。(b)聚合反应中的单体结构容许度–(参见表4).双(氟代硫酸酯)(4-11a和14;1-3毫摩尔)和双(甲硅烷基醚)单体(TMS2b,4b-5b和TBS2c,6-13c;1-3毫摩尔)对在配有Teflon涂布的磁搅拌棒的16mL的厚玻璃壁螺旋盖容器中合并,并用PTFE/硅酮隔膜密封。将这些混合物溶解在1毫升NMP/1毫摩尔底物中(就各单体而言大约1M溶液)并用20摩尔%DBU处理。在室温下继续搅拌24小时。然后用热枪加热反应混合物以溶解任何沉淀的聚合物并将所得均匀溶液(在一些情况下需要额外的DMF以实现完全溶解)在环境温度下直接添加到每克聚合物大约100毫升甲醇中以使聚硫酸酯共聚物沉淀。(c)分子量测定.使用GPC测定数均分子量(Mn)、重均分子量(Mw)和多分散性指数(PDI)。使用窄分子量聚苯乙烯标样校准该系统。对于几个样品,使用MINIDAWNTREOS检测器(Wyatt)测定多角度光散射。流动相是含有0.1%(wt.)LiBr改性剂的HPLC级DMF。对表6中的关键聚合物样品提供代表性的GPC迹线和MALS分析报告。表6.(来自表2的字母名称)对于MALS分析,通过对聚合物溶液的折光指数相对于改变的溶液浓度作图,使用分批法测定差示折光指数(dn/dc)。用于溶解用于dn/dc测定和随后的MALS分析的BPA-聚硫酸酯("样品D",基于聚苯乙烯标样,Mn=120,000Da)的流动相是含有0.1%LiBr(wt.)的HPLC级DMF。一式两份获得dn/dc。在实验#1中,测得dn/dc为0.13009。在实验#2中,测得dn/dc为0.12623(参见表7和图14,版块(a)–实验#1和版块(b)-实验#2。表7.Ex.11C.单体制备.下面提供用于制备表4中所用的双-氟代硫酸酯"AA"单体的示例性的一般程序(即化合物2a的制备)。4,4'-(丙烷-2,2-二基)双(4,1-亚苯基)二氟代磺酸酯(disulfofluoridate)(2a).在配有搅拌棒的500毫升圆底烧瓶中将双酚A(1;20克,0.088摩尔)和三乙胺(30毫升,21.8克,0.216摩尔)溶解在CH2Cl2(200毫升)中。排空反应容器的顶空并填充经由与气球相连的针引入的硫酰氟气体。该反应在室温下搅拌12小时,在此期间GC-MS分析表明完全转化。然后将反应混合物在真空中浓缩,再溶解在300毫升EtOAc中,相继用300毫升0.6MHCl(1x)、200毫升饱和NaHCO3(1x)、200毫升饱和NaCl(1x)洗涤并经Na2SO4干燥。除去挥发物以产生黄色油形式的2a,其以白色固体结晶,随后在真空下干燥(33.3克,84.9毫摩尔,98%):mp49-52℃;IR(纯)λmax1499,1441,1409,1368,1229,1186,1137,1083,1015,949,911,840,812,793,772,599,564,538,502,472cm-1;1HNMR(400MHz,CDCl3)δ7.32-7.25(m,8H),1.71(s,6H);13CNMR(100MHz,CDCl3)δ150.6,148.4,128.9,120.7,43.1,30.9;19FNMR(376MHz,CDCl3)δ37.2;GC-MS(EI)m/z=392.1[M]+。下面给出用于制备表4中所用的双-甲硅烷基"BB"单体的示例性的一般程序(即化合物2c的制备)。注意将用于化合物2c的HCl洗涤换成用于制备三甲基甲硅烷基单体的附加NaHCO3洗涤。4,4'-(丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(叔丁基二甲基硅烷)(2c).在配有搅拌棒的3升圆底烧瓶中将双酚A(1;50克,0.219摩尔)、咪唑(45克,0.662摩尔)和4-二甲基氨基吡啶(1.3克,0.11摩尔)溶解在500毫升CH2Cl2和40毫升二甲基甲酰胺的混合物中。将叔丁基二甲基甲硅烷基氯(69克,0.46摩尔)逐份添加到该反应中,其快速导致生成白色沉淀物。将反应混合物搅拌3小时,过滤以除去所有固体(咪唑-HCl)并在真空中浓缩。将所得油溶解在750毫升EtOAc中并相继用700毫升1MHCl(1x)、400毫升饱和NaHCO3(1x)、500毫升饱和NaCl(1x)洗涤,然后经Na2SO4干燥。除去挥发物以产生无色油形式的2c,其以无色固体结晶并随后在真空下干燥(96.3克,0.211毫摩尔,96%):mp84-87℃;IR(纯)λmax2953,1501,1441,1230,1184,1137,1015,911,828,810,773,592,563,539cm-1;1HNMR(400MHz,CDCl3)δ7.07(d,J=8.8Hz,4H),6.72(d,J=8.8Hz,4H),1.62(s,6H),0.98(s,18H),0.19(s,12H);13CNMR(100MHz,CDCl3)δ153.4,143.8,127.8,119.3,41.9,31.2,25.8,18.3,-4.3;GC-MS(EI)m/z=456.4[M]+。(4,4'-(丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(三甲基硅烷)(2b)购自Gelest,Inc.并按来样使用。由(4,4'-(丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(三甲基硅烷)根据用于制备双-甲硅烷基"BB"单体的一般程序、用叔丁基二苯基甲硅烷基氯取代叔丁基二甲基甲硅烷基氯,制备(4,4'-(丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(叔丁基二苯基硅烷)(2d)。通过快速色谱法提纯(SiO2,0→5%EtOAc-己烷;在10%EtOAc-己烷下Rf=0.5)产生白色结晶固体形式的2d(大约27.8克,39.4毫摩尔,90%):mp94-98℃;IR(纯)λmax1501,1442,1230,1164,1138,913,822,797,773,742,700,594,563,541,502cm-1;1HNMR(400MHz,CDCl3)δ7.86(dd,J=1.6,8.0Hz,8H),7.57-7.38(m,12H),7.01(d,J=8.9Hz,4H),6.79(d,J=8.8Hz,4H),1.63(s,6H),1.25(s,18H);13CNMR(100MHz,CDCl3)δ153.4,143.6,135.7,133.3,129.9,127.8,127.6,119.0,41.7,31.1,26.7,19.6;由(4,4'-(丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(三甲基硅烷)根据用于制备双-甲硅烷基"BB"单体的一般程序、用三异丙基甲硅烷基氯取代叔丁基二甲基甲硅烷基氯,制备(4,4'-(丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(三异丙基硅烷)(2e)。2e作为无色的粘稠油分离(23.1克,42.5毫摩尔,97%):IR(纯)λmax2943,2864,1604,1504,1462,1257,1176,1106,1012,912,882,833,743,680,609,559,482cm-1;1HNMR(400MHz,CDCl3)δ7.07(d,J=8.7Hz,4H),6.79(d,J=8.7Hz,4H),1.64(s,6H),1.36-1.18(m,6H),1.13(d,J=7.2Hz,36H);13CNMR(100MHz,CDCl3)δ153.8,143.7,127.8,119.3,41.9,31.3,18.1,12.8;LRMS(EI)m/z=497.4[M–CH(CH3)2]+。双酚AF(2,2-双(4-羟基酚)六氟丙烷)获自OakwoodChemicals并按来样使用。由双酚AF根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备4,4'-(全氟丙烷-2,2-二基)双(4,1-亚苯基)二氟代磺酸酯(4a)。4a作为白色结晶固体分离:mp128-130℃;IR(纯)λmax1506,1450,1261,1240,1208,1163,1144,1019,968,911,840,805,768,737,697,645,575,536cm-1;1HNMR(400MHz,CDCl3)δ7.53(appd,J=9.0Hz,4H),7.42(dd,J=0.6,9.2Hz,4H);13CNMR(100MHz,CDCl3)δ150.4,133.6,132.6,123.7(q,J=E287.5Hz),121.3,64.2(appt,J=25.8Hz);19FNMR(376MHz,CDCl3)δ38.2,-64.1;LRMS(EI)m/z=500.0[M]+。由双酚AF根据用于制备双-甲硅烷基"BB"单体的一般程序、用三甲基甲硅烷基氯取代叔丁基二甲基甲硅烷基氯并省略HCl洗涤,制备(4,4'-(全氟丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(三甲基硅烷)(4b)。4b作为米黄色固体分离:mp46-50℃;IR(纯)λmax2959,1611,1513,1450,1242,1204,1168,1135,967,912,828,753,737,700,545,505cm-1;1HNMR(400MHz,CDCl3)δ7.25(d,J=9.2Hz,4H),6.81(d,J=9.1Hz,4H),0.29(s,4H);13CNMR(100MHz,CDCl3)δ155.9,131.7,126.4,124.6(q,J=287.8Hz),119.6,63.9(t,J=25.5Hz),-0.32;19FNMR(376MHz,CDCl3)δ-64.4;LRMS(EI)m/z=480.2[M]+。由双酚AF根据用于制备双-甲硅烷基"BB"单体的一般程序制备(4,4'-(全氟丙烷-2,2-二基)双(4,1-亚苯基))双(氧基)双(叔丁基二甲基硅烷)4c。4c作为白色结晶固体分离:mp167-170℃;IR(纯)λmax2952,2932,2859,1611,1513,1468,1275,1244,1202,1168,1134,968,911,830,804,777,727,701,667,556cm-1;1HNMR(400MHz,CDCl3)δ7.24(d,J=8.7,4H),6.80(d,J=9.0Hz,4H),0.99(s,18H),0.23(s,12H);13CNMR(100MHz,CDCl3)δ156.2,131.7,126.3,124.6(appd,J=285.1Hz),119.6,63.8(t,J=25.2Hz),25.8,18.3,-4.3;19FNMR(376MHz,CDCl3)δ-64.4;LRMS(EI)m/z=451.0[M–Si(Me)2t-Bu]+。萘-2,7-二醇购自AcrosOrganics并按来样使用。由萘-2,7-二醇根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备萘-2,7-二基二氟代磺酸酯5a。5a作为白色粉末分离(12.3克,38毫摩尔,87%):mp122-124℃;IR(纯)λmax1439,1365,1219,1187,1137,1115,960,922,896,839,801,637,582,530,470cm-1;1HNMR(400MHz,DMSO-d6)δ8.36(d,J=2.2Hz,2H),8.28(d,J=9.1Hz,2H),7.82(dd,J=2.4,9.1Hz,2H);13CNMR(100MHz,DMSO-d6)δ148.3,133.3,131.6,120.9,119.5;19FNMR(376MHz,DMSO-d6)δ38.1;LRMS(EI)m/z=324.0[M]+。由萘-2,7-二醇根据用于制备双-甲硅烷基"BB"单体的一般程序、用三甲基甲硅烷基氯取代叔丁基二甲基甲硅烷基氯,制备2,7-双(三甲基甲硅烷氧基)萘5b。5b作为黄色油分离(13.1克,43.5毫摩尔,99%):IR(纯)λmax2958,2856,1630,1604,1507,1460,1427,1365,1250,1211,1151,1110,909,833,743,697,612,489cm-1;1HNMR(400MHz,CDCl3)δ7.69(d,J=8.9Hz,2H),7.12(d,J=2.3Hz,2H),6.99(dd,J=2.3,8.8Hz,2H),0.37(s,18H);13CNMR(100MHz,CDCl3)δ153.6,136.2,129.3,125.4,120.0,114.0,-0.42;LRMS(EI)m/z=304.1[M]+。4,4'-氧基联苯酚购自AKScientific并按来样使用。由4,4'-氧基联苯酚根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备4,4'-氧基双(4,1-亚苯基)二氟代磺酸酯6a。6a作为白色结晶固体分离(8.2克,22.5毫摩尔,75%):mp53-55℃;IR(纯)λmax1499,1443,1230,1162,1132,1100,909,839,818,768,754,602,540,501cm-1;1HNMR(400MHz,CDCl3)δ7.36(dtd,J=0.9,3.7,10.6Hz,4H),7.11(dt,J=3.7,9.3Hz,4H);13CNMR(100MHz,CDCl3)δ156.4,145.8,122.9,120.6;19FNMR(376MHz,CDCl3)δ36.9;LRMS(EI)m/z=366.0[M]+。由4,4'-氧基联苯酚根据用于制备双-甲硅烷基"BB"单体的一般程序制备(4,4'-氧基双(4,1-亚苯基)双(氧基))双(叔丁基二甲基硅烷)(6c)。6c作为清澈无色的粘稠油分离(11.9克,27.8毫摩尔,93%):IR(纯)λmax2930,2857,1491,1451,1251,1213,1144,1096,908,871,835,778,691,504cm-1;1HNMR(400MHz,CDCl3)δ6.89-6.82(m,4H),6.80-6.77(m,4H),0.99(s,18H),0.19(s,12H);13CNMR(100MHz,CDCl3)δ152.1,151.3,120.9,119.6,25.8,18.3,-4.3;LRMS(EI)m/z=430.3[M]+。如Goldfinger等人在WO2009023759A2中所述通过氢醌与4-羟基苯甲酸的缩合制备4-羟基苯甲酸4-羟苯酯。由4-羟基苯甲酸4-羟苯酯根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备4-(氟磺酰氧基)苯甲酸4-(氟磺酰氧基)苯酯(7a)。通过快速色谱法提纯(SiO2,5→15%EtOAc-己烷;在20%EtOAc-己烷下Rf=0.52)产生白色粉末形式的7a(1.77克,4.5毫摩尔,45%):mp103-105℃;IR(纯)λmax1740,1497,1443,1260,1230,1135,1068,1015,909,801,757,689,612,540,491cm-1;1HNMR(400MHz,CDCl3)δ8.34(d,J=9.0Hz,1H),7.52(dd,J=0.7,9.0,1H),7.47-7.40(m,1H),7.36(d,J=9.3Hz,1H);13CNMR(100MHz,CDCl3)δ163.2,153.6,150.3,147.5,132.9,129.5,123.7,122.5,121.5;19FNMR(376MHz,CDCl3)δ38.8,37.24;LRMS(EI)m/z=393.8[M]+。由4-羟基苯甲酸4-羟苯酯根据用于制备双-甲硅烷基"BB"单体的一般程序制备4-(叔丁基二甲基甲硅烷氧基)苯甲酸4-(叔丁基二甲基甲硅烷氧基)苯基酯(7c)。通过快速色谱法提纯(SiO2,2%EtOAc-己烷;在5%EtOAc-己烷下的Rf=0.56)产生白色粉末形式的7c(2.05克,4.4毫摩尔,45%):mp69-73℃;IR(纯)λmax2956,2928,2857,1737,1601,1501,1442,1252,1232,1187,1160,1067,1010,904,822,782,692,540,501cm-1;1HNMR(400MHz,CDCl3)δ8.10(d,J=8.9Hz,2H),7.06(d,J=9.0Hz,2H),6.93(d,J=8.9Hz,2H),6.87(d,J=9.0Hz,2H),1.01(s,9H),1.00(s,9H),0.26(s,6H),0.22(s,6H);13CNMR(100MHz,CDCl3)δ165.3,160.7,153.3,145.2,132.3,122.8,122.6,120.7,120.2,25.8,25.8,18.4,18.3,-4.2,-4.3;LRMS(EI)m/z=458.2[M]+。4,4'-硫代二苯酚购自AlfaAesar并按来样使用。由4,4'-硫代二苯酚根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备4,4'-硫代双(4,1-亚苯基)二氟代磺酸酯(8a)。8a作为灰白色结晶固体分离(17.1克,44.7毫摩尔,98%):mp54-56℃;IR(纯)λmax1485,1442,1230,1177,1139,1101,1014,909,835,803,769,581,540,496cm-1;1HNMR(400MHz,CDCl3)δ7.44(d,J=9.0Hz,4H),7.32(dd,J=0.9,9.0Hz,4H);13CNMR(100MHz,CDCl3)δ149.3,136.2,133.0,122.2;19FNMR(376MHz,CDCl3)δ37.7;LRMS(EI)m/z=382.0[M]+。由4,4'-硫代二苯酚根据用于制备双-甲硅烷基"BB"单体的一般程序制备(4,4'-硫代双(4,1-亚苯基)双(氧基))双(叔丁基二甲基硅烷)(9c)。9c作为清澈无色的粘稠油分离(20.3克,46毫摩尔,99%):IR(纯)λmax2929,2856,1586,1485,1444,1254,1231,1140,1072,1013,907,821,804,772,739,673,585,521,498cm-1;1HNMR(400MHz,CDCl3)δ7.20(d,J=8.7Hz,2H),6.77(d,J=8.7Hz,2H),0.98(s,9H),0.19(s,6H);13CNMR(100MHz,CDCl3)δ155.2,132.7,128.1,121.0,25.8,18.3,-4.3;LRMS(EI)m/z=446.3[M]+。双(4-羟苯基)甲酮购自AKScientific并按来样使用。由双(4-羟苯基)甲酮根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备4,4'-羰基双(4,1-亚苯基)二氟代磺酸酯(9a)。9a作为白色结晶固体分离(11.1克,29.3毫摩尔,98%):mp91-94℃;IR(纯)λmax1672,1591,1440,1409,1268,1231,1138,1015,907,808,761,667,632,540,494,466cm-1;1HNMR(400MHz,CDCl3)δ7.97-7.87(m,4H),7.60-7.45(m,4H);13CNMR(100MHz,CDCl3)δ192.8,152.7,137.0,132.3,121.3;19FNMR(376MHz,CDCl3)δ38.6;LRMS(EI)m/z=378.0[M]+。由双(4-羟苯基)甲酮根据用于制备双-甲硅烷基"BB"单体的一般程序制备双(4-(叔丁基二甲基甲硅烷氧基)苯基)甲酮(9c)。9c作为无色低熔点固体分离(13.3克,30毫摩尔,99%):IR(纯)λmax2960,2930,2857,1651,1596,1505,1466,1254,1160,1105,904,836,803,773,713,682,494cm-1;1HNMR(400MHz,CDCl3)δ7.73(appd,J=8.8Hz,4H),6.90(appd),J=8.8Hz,4H),1.00(s,18H),0.25(s,12H);13CNMR(100MHz,CDCl3)δ194.9,159.7,132.3,131.4,119.8,25.7,18.4,-4.2;LRMS(EI)m/z=442.3[M]+。由4-羟基苯甲酸和4-氨基酚如(a)C.H.C.Loch,J.-Y.Guan,G.Siegal,M.Overhand,ChemMedChem2007,2,1054-1070;(b)P.W.Elsinghorst,J.S.Cieslik,K.Mohr,C.M.Gütschow,JournalofMedicinalChemistry2007,50,5685-5695所述以四个步骤制备4-羟基-(4-羟苯基)苯甲酰胺。由4-羟基-(4-羟苯基)苯甲酰胺根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备4-(氟磺酰氧基)-N-(4-(氟磺酰氧基)苯基)苯甲酰胺(10a)。通过快速色谱法提纯产生白色粉末形式的10a(1.86克,4.7毫摩尔,50%):mp160-167℃;IR(纯)λmax3417,1677,1600,1524,1503,1437,1405,1309,1258,1225,1176,1138,1104,1018,910,864,849,833,804,775,694,616,542,510,469cm-1;1HNMR(400MHz,CDCl3)δ10.70(s,1H),8.15(d,J=8.9Hz,2H),7.96(d,J=9.3Hz,2H),7.80(d,J=8.6Hz,2H),7.60(d,J=9.0Hz,2H);13CNMR(100MHz,CDCl3)δ164.5,151.5,145.2,139.5,135.4,130.6,121.9,121.4;19FNMR(376MHz,CDCl3)δ39.6,38.27;LRMS(EI)m/z=393.0[M]+。由4-羟基-(4-羟苯基)苯甲酰胺根据用于制备双-甲硅烷基"BB"单体的一般程序制备4-(叔丁基二甲基甲硅烷氧基)-N-(4-(叔丁基二甲基甲硅烷氧基)苯基)苯甲酰胺(10c)。通过快速色谱法提纯产生白色粉末形式的10c(2.26克,4.9毫摩尔,61%):mp209-210℃;IR(纯)λmax3298,2952,2929,2889,2856,1640,1603,1505,1469,1406,1254,1168,1101,1009,909,833,777,733,690,505cm-1;1HNMR(400MHz,CDCl3)δ7.81(s,1H),7.75(d,J=8.7Hz,2H),7.46(d,J=8.8Hz,2H),6.88(d,J=8.6Hz,2H),6.81(d,J=8.8Hz,2H),0.99(s,9H),0.98(s,9H),0.22(s,6H),0.19(s,6H);13CNMR(100MHz,CDCl3)δ165.4,159.0,152.5,131.9,128.9,128.0,122.0,120.5,120.3,25.7,25.7,18.4,18.3,4.3,4.3;LRMS(EI)m/z=457.3[M]+。4,4'-磺酰基联苯酚购自AlfaAesar并按来样使用。由4,4'-磺酰基联苯酚根据用于制备双-氟代硫酸酯"AA"单体的一般程序制备4,4'-磺酰基双(4,1-亚苯基)二氟代磺酸酯(11a)。11a作为白色粉末分离(7.5克,91%):mp118-122℃;IR(纯)λmax1586,1486,1451,1405,1324,1291,1231,1178,1139,1103,1015,907,850,810,783,688,589,574,538,509,466cm-1;1HNMR(400MHz,CDCl3)δ8.10(d,J=9.1Hz,4H),7.53(d,J=8.3Hz,1H);13CNMR(100MHz,CDCl3)δ153.1,141.3,130.7,122.5;19FNMR(376MHz,CDCl3)δ39.2;LRMS(EI)m/z=413.9[M]+。由4,4'-磺酰基联苯酚根据用于制备双-甲硅烷基"BB"单体的一般程序、用三甲基甲硅烷基氯取代叔丁基二甲基甲硅烷基氯,制备(4,4'-磺酰基双(4,1-亚苯基)双(氧基))双(叔丁基二甲基硅烷)(11c)。11c作为白色粉末分离(8.8克,92%):mp135-137℃;IR(纯)λmax2930,2857,1587,1492,1469,1314,1273,1151,1105,902,838,781,757,679,645,616,574,542cm-1;1HNMR(400MHz,CDCl3)δ7.79(d,J=8.8Hz,4H),6.88(d,J=8.8Hz,4H),0.96(s,18H),0.2(s,12H);13CNMR(100MHz,CDCl3)δ160.0,134.5,129.6,120.1,25.6,18.3,-4.3;LRMS(EI)m/z=478.2[M]+。由酚酞根据用于制备双-甲硅烷基"BB"单体的一般程序、用三甲基甲硅烷基氯取代叔丁基二甲基甲硅烷基氯,制备4,4'-(3-氧代-1,3-二氢异苯并呋喃-1,1-二基)双(4,1-亚苯基)二氟代磺酸酯(12a)。12a作为白色固体分离:mp93-98℃;IR(纯)λmax1761,1500,1443,1410,1288,1229,1139,1081,1016,974,938,906,846,802,753,691,638,571,534,503,476cm-1;1HNMR(400MHz,CDCl3)δ8.00(ddd,J=0.8,1.1,7.7Hz,1H),7.79(td,J=1.2,7.5Hz,1H),7.65(td,J=0.9,7.5Hz,1H),7.57(dt,J=0.8,7.8Hz,1H),7.47(d,J=9.1Hz,4H),7.35(dd,J=0.8,9.1Hz,4H);13CNMR(100MHz,CDCl3)δ168.7,150.4,150.2,141.1,135.0,130.4,129.4,126.8,125.4,124.0,121.5,89.7;19FNMR(376MHz,CDCl3)δ37.9;LRMS(EI)m/z=489.1[M]+。通过3,5-二羟基苯甲酸的全面TBS保护、接着如M.E.El-Khouly,E.S.Kang,K.-Y.Kay,C.S.Choi,Y.Aaraki,O.Ito,Chem.Eur.J.2007,13,2854-2863所述选择性释放酸部分,制备3,5-双(叔丁基二甲基甲硅烷氧基)苯甲酸。丁基-3,5-双(叔丁基二甲基甲硅烷氧基)苯甲酰胺(13c).在配有搅拌棒和橡胶隔膜的50毫升圆底烧瓶中装入3,5-双(叔丁基二甲基甲硅烷氧基)苯甲酸(0.76克,2.0毫摩尔)并置于氩气下。加入15毫升无水DCM,接着通过部分移除隔膜,依序添加羟基苯并三唑(HOBT;0.3克,2.2毫摩尔)和N,N'-二环己基碳二亚胺(DCC;0.45克,2.2毫摩尔)。将所得浆料在室温下搅拌10分钟。然后逐滴加入丁-1-胺(0.3毫升,0.22克,3.0毫摩尔)并将反应混合物搅拌整夜。所得不均匀溶液然后经Buchner漏斗过滤,滤液用DCM进一步稀释并用0.5MHCl洗涤。水层再次用DCM萃取,合并的有机物经Na2SO4干燥。该粗制反应混合物随后通过旋转蒸发浓缩到硅胶上并施以快速色谱法(SiO2,10%EtOAc-己烷;在10%EtOAc-己烷下的Rf=0.3)以提供白色结晶固体形式的13c(0.76克,1.8毫摩尔):mp114-117℃;IR(纯)λmax3294,2929,2857,1632,1583,1543,1438,1334,1253,1163,1027,1004,935,829,778,692,667,486cm-1;1HNMR(400MHz,CDCl3)δ6.81(d,J=2.1Hz,2H),6.43(t,J=2.1Hz,1H),6.02(apps,1H),3.41(q,J=7.1Hz,2H),1.58(p,J=7.7Hz,2H),1.39(sex,J=7.2Hz,2H),0.97(s,18H),0.95(t,J=7.3Hz,3H),0.19(s,12H);13CNMR(100MHz,CDCl3)δ167.3,156.8,137.1,114.9,112.1,39.9,31.8,25.8,20.3,18.3,13.9,-4.3;LRMS(EI)m/z=437.3[M]+。联苯基-4,4'-二磺酰基二氟(14).在搅拌下将联苯基-4,4'-二磺酰基氯(购自TCIchemicals;5.0克,0.014摩尔)溶解在40毫升乙腈和5毫升水中。向这种混合物中加入4当量饱和KHF2水溶液(1.2克)。使该反应进行3小时。该混合物用30毫升乙酸乙酯萃取两次。合并有机馏分,用水、盐水洗涤,然后经MgSO4干燥。在真空下除去溶剂以提供黄色固体形式的14(4.1克,90%):mp194-197℃;IR(纯)λmax1589,1405,1205,1095,816,771,750,709,569,535,493cm-1;1HNMR(400MHz,CDCl3)δ8.16(d,J=8.5Hz,4H),7.88(dd,J=0.7,8.7Hz,4H);13CNMR(100MHz,CDCl3)δ145.9,133.4(d,J=15.2Hz),129.4,128.9;19FNMR(376MHz,CDCl3)δ66.1;LRMS(EI)m/z=318.0[M]+。实施例12.通过苯基氟代硫酸酯(15)和叔丁基二甲基(对甲苯氧基)硅烷(16)的反应筛选催化剂实验安排:以下列方式制备原料试剂的0.5M乙腈储液:将苯基氟代硫酸酯(15)(2.667克,12.0毫摩尔)、叔丁基二甲基(对甲苯氧基)硅烷(16)(2.112克,12.0毫摩尔)和二苯基甲烷(标准,0.403克,2.4毫摩尔)溶解在足够的无水乙腈中以获得24毫升(总毫升数)储液,其随后置于氩气气氛下。将0.4毫升等分试样分配到1毫升闪烁管中,由此提供60个单独的0.2毫摩尔反应。然后将大约10或20摩尔%如表8中所示的催化剂添加到反应瓶中。用氩气吹扫顶空并将反应混合物在室温下摇振24小时。最后,将各反应混合物的15微升等分试样用1毫升EtOAc稀释并施以GC/MS终点分析以测定苯基甲苯基硫酸酯(17)和任何副产物4-甲基酚(18)的收率(如果有的话)。表8中所示的计算终点未通过分离证实,并被视为“粗制”。表8中所示的百分比可改变±5%并意在充当用于这一反应的有效催化剂的一般概况。表8.在表8中,测得催化剂量尽实际可能地接近10或20摩尔%。由衍生自化合物17的基于摩尔浓度的校准曲线计算粗制反应混合物中的产物百分比。收率可改变±5%。由参考二苯甲烷(内标)的初始反应混合物浓度推导出剩余原材料百分比。15和16的实际收率可改变±5%。4-甲基酚18的百分比参考原材料16,即18的实际收率可改变±5%。在一些情况下,观察到的产物是酚和哌啶的混合硫酸酯/氨磺酰基衍生物(化合物19)或二苯基硫酸酯20。实施例13.本聚合方法与Firth(US3,733,304)的用于制备聚(双酚A硫酸酯)的方法的比较.通过Firth(US3,733,304)的方法,即通过二钠双酚A与双酚A-双氟代硫酸酯在氯苯中在大约150至165℃下的反应制备聚(双酚A硫酸酯)。所得产物如Firth所述沉淀到水中,然后如本文所述通过GPC相对于聚苯乙烯标样分析。GPC迹线显示在图15的版块A中。当与在大约22分钟洗脱时间的环状低聚物峰结合时,根据Firth方法制成的聚合物的多分散性为大约6。为了比较,根据本发明制备的来自本文中的实施例1中的大规模制备的聚(双酚A硫酸酯)的GPC显示在图15的版块B中。由这两个GPC迹线清楚看出,本方法提供具有窄得多的多分散性的更高分子量产物和明显更少的环状低聚副产物。实施例14.聚(双酚A硫酸酯)在各种加工条件下的稳定性在本体无溶剂条件下(单体2a和2c的纯熔体,无溶剂,使用1%BEMP催化剂,在120℃下)在2毫摩尔、20毫摩尔和250毫摩尔规模下制备聚(双酚A硫酸酯)。将聚合物样品溶解在DMF中并将这些材料的GPC迹线与来自实施例5的薄膜(由实施例1的大规模聚合物制成)的再溶解样品进行比较。GPC迹线显示在图16中并清楚表明在各规模下都获得具有基本相同的分子量状况的聚合物。还显示,将该聚合物加工成膜不会明显影响分子量状况。此外,用热枪长时间加热来自实施例1的大规模聚合物的样品,加热另一样品并压过0.45微米过滤器,它们都没有明显影响样品的分子量状况(参见图16)。实施例15.由双-甲硅烷基-双酚A和硫酰氟制备聚(双酚A硫酸酯)含有磨砂玻璃旋塞、配有搅拌棒和橡胶隔膜的100毫升Schlenk烧瓶在真空(7mmHg)下火焰干燥。在冷却至室温后,将反应容器称重(无内部气氛),充入硫酰氟气体(SO2F2)并最后再称重以测定SO2F2的量(752毫克,7.37毫摩尔)。然后将溶解在7毫升无水DMF中的((丙烷-2,2-二基双(4,1-亚苯基))双(氧基))双(叔丁基二甲基硅烷)(3.30克,7.22毫摩尔)和1M溶液形式的在己烷中的2-叔丁基亚氨基-2-二乙基氨基-1,3-二甲基全氢化-1,3,2-二氮杂磷杂环己烯(BEMP;368微升,101毫克,0.368毫摩尔)依序添加到反应容器中并作为封闭(对大气封闭)系统将所得混合物在室温下搅拌20分钟。然后将反应容器置于150℃油浴中并在此后不久在反应容器的壁上可见到低沸点溶剂(可能是己烷和叔丁基氟二甲基硅烷(TBSF))的析出。该反应作为封闭系统在150℃下进行30分钟,此时打开旋塞,由此释放气态己烷和TBSF,然后作为开放系统继续加热另外2小时。然后从油浴中取出粘稠浅黄色清澈液体形式的反应混合物,并使其冷却至室温。将反应混合物直接添加到200毫升MeOH中导致BPA-聚硫酸酯作为白色纤维状固体沉淀。在真空下在80℃下干燥3小时得到1.966克(94%),基于聚苯乙烯标样的Mn为95,000Da。实施例16.由伯胺通过与乙烯磺酰基氟(ESF)反应制备的氟磺酰基单体图17,版块A图解通过伯胺与ESF在DCM或乙酸中的反应便利地合成双(2-氟磺酰基乙基)胺。图17的版块B图解由此方式制备的此类单体的四个实例。图17,版块C图解由这些单体和双-甲硅烷基-双酚A单体制成的聚合物的一些实例。ESF与伯胺和仲胺的反应的一般程序.将原料胺(1当量)溶解在DCM(在底物中大约0.1至0.5M)中并根据修改自Hyatt等人(J.Org.Chem.,1979,44:3847-3858)的程序用ESF(大约1至2.5当量)处理。将反应混合物在室温下搅拌几分钟至1小时,通过LCMS监测转化。在完成后,使用旋转蒸发器除去DCM和过量ESF并干燥,以提供基本不含任何杂质的产物。在某些情况中,可以使用柱色谱法获得ESF加合物的分析纯的样品。2,2'-((2-(1H-吲哚-3-基)乙基)氮烷二基)二乙磺酰氟:根据上述一般程序,使用2当量ESF并将反应混合物在室温下搅拌3小时,以提供通过快速柱色谱法(己烷/EtOAc–9/1至6/4)获得的分析纯的样品。产物以黄色油形式以定量收率(1.9克)获得。1HNMR(400MHz,CDCl3)δ(ppm):8.04(s,1H),7.57(d,J=7.8Hz,1H),7.37(d,J=7.9Hz,1H),7.23(t,J=7.5Hz,1H),7.16(t,J=7.4Hz,1H),7.01(brs,1H),3.48–3.39(m,4H),3.15–3.05(m,4H),2.96–2.89(m,2H),2.89–2.80(m,2H);13CNMR(101MHz,CDCl3)δ(ppm):136.3,127.1,122.3,122.2,122.1,119.6,118.5,113.0,111.5,54.2,49.4(d,J=13.2Hz),47.9,23.3;19FNMR(376MHz,CDCl3)δ(ppm):+57.9;Rf(己烷/EtOAc-7/3):0.27;ESI-MS(m/z):381[MH]+。2,2'-((呋喃-2-基甲基)氮烷二基)二乙磺酰氟:根据上述一般程序,在DCM(0.33M)中在2当量ESF存在下,以提供粗产物,其通过柱色谱法(己烷/EtOAc–95/5至7/3)提纯。产物以黄色油形式以99%收率(1.6克)获得。1HNMR(400MHz,CDCl3)δ(ppm):7.41(dd,J=1.9,0.8Hz,1H),6.37(dd,J=3.2,1.9Hz,1H),6.28(dd,J=3.2,0.7Hz,1H),3.81(s,2H),3.53(td,J=6.9,3.6Hz,4H),3.16(td,J=7.0,1.2Hz,4H);13CNMR(101MHz,CDCl3)δ(ppm):149.9,143.1,110.7,110.1,49.6,49.4(d,J=11.1Hz),47.9;19FNMR(376MHz,CDCl3)δ(ppm):+57.9;Rf(己烷/EtOAc–7/3):0.47;ESI-MS(m/z):340[MNa]+。2,2'-((3-乙炔基苯基)氮烷二基)二乙磺酰氟(修改自Hyatt等人J.Org.Chem.,1979,44:3847-3858):将ESF(1.8毫升;20毫摩尔)添加到在冰醋酸(3毫升)中的苯胺(1.17克;10毫摩尔)中并将反应混合物在50℃下搅拌24小时。在完成后,通过过滤分离粗产物,用己烷洗涤并从CCl4-DCM中重结晶。产物以浅棕色晶体形式以87%收率(2.94克)获得。m.p.98-100℃.1HNMR(400MHz,CDCl3)δ(ppm):7.31(t,J=8.0Hz,1H),7.10–7.06(m,1H),6.85–6.82(m,1H),6.78–6.73(m,1H),4.01(t,J=6.4Hz,4H),3.67–3.59(m,4H),3.10(s,1H);13CNMR(101MHz,CDCl3)δ(ppm):144.0,130.5,124.3,124.2,117.6,115.0,83.3,78.0,48.3(d,J=14.4Hz),46.8;19FNMR(376MHz,CDCl3)δ(ppm):+57.2;ESI-MS(m/z):338[MH]+。用于ESF与磺酰胺和醇的反应的一般程序:将原材料(1当量)和三苯膦(0.1当量)溶解在DCM(在底物中0.33M)中并用ESF(大约1至2.5当量)处理。反应混合物在室温下搅拌整夜,通过LCMS/GCMS/TLC监测转化。在完成后,使用旋转蒸发器除去DCM和过量ESF并通过短柱色谱法提纯粗产物。根据用于ESF与磺酰胺的反应的一般程序,以白色固体形式以78%收率(251毫克)获得2-(4-甲基-N-(丙-2-炔-1-基)苯基磺酰氨基)乙磺酰氟。Rf(己烷/EtOAc–5/1):0.25;m.p.125-126℃;1HNMR(400MHz,CDCl3)δ(ppm):7.74(d,J=8.3Hz,2H),7.35(d,J=8.5Hz,2H),4.15(d,J=2.5Hz,2H),3.87–3.80(m,2H),3.71–3.65(m,2H),2.45(s,3H),2.19(t,J=2.5Hz,1H);13CNMR(101MHz,CDCl3)δ(ppm):144.8,134.5,130.1,127.9,76.2,75.0,50.4(d,J=16.0Hz),41.9,38.8,21.8;19FNMR(376MHz,CDCl3)δ(ppm):55.9;ESI-MS(m/z):320[MH]+。根据用于ESF与磺酰胺的反应的一般程序,以白色固体形式以60%收率(175毫克)获得2,2'-(((4-(3-苯基-5-(三氟甲基)-1H-吡唑-1-基)苯基)磺酰基)氮烷二基)-二乙磺酰氟。Rf(己烷/EtOAc–5/1):0.21;m.p.135-137℃;1HNMR(400MHz,CDCl3)δ(ppm):7.84(d,J=8.6Hz,2H),7.58(d,J=8.6Hz,2H),7.47–7.43(m,1H),7.43–7.39(m,1H),7.28–7.23(m,3H),6.80(s,1H),3.86–3.80(m,4H),3.71–3.66(m,4H);13CNMR(101MHz,CDCl3)δ(ppm):145.4,144.8(d,J=38.3Hz),143.9,135.7,130.0,129.4,129.0,128.8,128.6,117.4(d,J=336.3Hz),107.2,50.7,50.6(d,J=16.1Hz),45.6;19FNMR(376MHz,CDCl3)δ(ppm):+59.4,-62.8;ESI-MS(m/z):588[MH]+。本文中引用的所有参考资料,包括出版物、专利申请和专利经此引用并入本文,就像各参考资料被逐一和明确地指出经此引用并入本文并全文阐述在本文中。在本文中描述了本发明的优选实施方案,包括发明人已知的实施本发明的最佳方式。这些优选实施方案的变动是本领域普通技术人员在阅读上文的描述时显而易见的。发明人期望技术人员酌情利用这样的变动,且发明人预计到以不同于本文中明确描述的方式实施本发明。因此,本发明包括所附权利要求书中列举的主题的视适用法律允许的所有修改和等同物。此外,除非本文中另行规定或除非明显与上下文相悖,本发明包括上述要素在其所有可能的变动下的任何组合。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1