纤维增强的各向异性泡沫体的制作方法

文档序号:11519102阅读:505来源:国知局
纤维增强的各向异性泡沫体的制造方法与工艺

本发明涉及一种由挤出的泡沫体制成的模制品,其中至少一根纤维(f)部分地存在于模制品内,即被挤出的泡沫体包围。因此未被挤出的泡沫体包围的各个纤维(f)的两端各自从相应模制品的一侧伸出。所述挤出的泡沫体通过挤出方法——挤出的泡沫体通过成型模具定型而获得——制造。

本发明还提供了一种面板,其包含至少一个所述模制品和至少一层其他的层(s1)。本发明还提供了由挤出的泡沫体来制造本发明的模制品的方法或制造本发明的面板的方法,以及它们的用途,例如作为风力涡轮机中的转子叶片的用途。

wo2006/125561涉及一种制造增强的多孔材料的方法,其中在第一方法步骤中,在多孔材料中产生至少一个从多孔材料的第一表面向第二表面延伸的孔。在多孔材料的第二表面的另一侧上,提供至少一个纤维束,所述纤维束用针拉引穿过孔至多孔材料的第一侧。然而,在针抓住纤维束之前,首先将针牵引穿过来自多孔材料的第一侧上的特定孔。另外,在wo2006/125561的方法结束时,纤维束部分地存在于多孔材料内,因为它填充了相应的孔,并且各侧上的相应纤维束部分地从多孔材料的第一表面和第二表面伸出。

通过wo2006/125561中记载的方法,可以制造包含所述多孔材料的芯和至少一个纤维束的夹层状部件。可以将树脂层和纤维增强的树脂层施加到该芯的表面上,以便制造实际的夹层状部件。用于形成夹层状部件的芯的多孔材料可例如为聚氯乙烯或聚氨酯。有用的纤维束的实例包括碳纤维、尼龙纤维、玻璃纤维或聚酯纤维。

然而,wo2006/125561没有公开挤出的泡沫体也可以用作制造夹层状部件中的芯的多孔材料。wo2006/125561的夹层状部件适用于航空器结构。

wo2011/012587涉及一种制造用于由复合材料制成的面板的具有整合(integrated)桥接纤维的芯的其他方法。所述芯通过借助针将由轻质材料制成的被称为“饼状物(cake)”的表面上提供的桥接纤维部分或完全地牵引穿过所述饼状物而制成。所述“饼状物”可以由聚氨酯泡沫、聚酯泡沫、聚对苯二甲酸乙二醇酯泡沫、聚氯乙烯泡沫或酚醛泡沫形成,特别是由聚氨酯泡沫形成。原则上所用的纤维可为任何种类的单线或多线和其他纱线。

由此制得的芯转而可成为复合材料制成的面板的一部分,其中在夹层结构中,所述芯的一侧或两侧被树脂基质和树脂基质与纤维的结合物包围。然而,wo2011/012587没有公开挤出的泡沫体可被用于制造相应的芯材料。

wo2012/138445涉及使用多个低密度的多孔材料的纵向长条来制造复合芯面板的方法。在单个的长条之间引入双层纤维垫,并且通过使用树脂使得各个长条粘合,以形成复合芯面板。根据wo2012/138445,形成纵向长条的低密度的多孔材料选自轻木、弹性泡沫体和纤维增强的复合泡沫体。各个长条之间引入的双层形式的纤维垫可例如为多孔玻璃纤维垫。用作粘合剂的树脂可例如为聚酯、环氧树脂或酚醛树脂,或者热活化的热塑性塑料,例如聚丙烯或pet。然而,wo2012/138445没有公开也可以使用挤出的泡沫体作为用于细长条的多孔材料。其中也没有公开单个纤维或纤维束可被纳入多孔材料中用于增强。根据wo2012/138445,在借助树脂的粘合剂粘合单个长条以获得芯材料的情况中,另外构成粘合元件的单独的纤维垫被用于此目的。

gb-a2455044公开了一种制造多层复合制品的方法,其中在第一方法步骤中,提供了大量的热塑性材料的珠粒和发泡剂。所述热塑性材料是聚苯乙烯(ps)和聚苯醚(ppo)的混合物,其包含至少20重量%至70重量%的ppo。在第二步骤中,将珠粒发泡,并且在第三步骤中,在模具中将它们熔接以形成该热塑性材料的闭孔泡沫体,得到模制品,闭孔泡沫体具有模具的形状。在下一方法步骤中,将纤维增强材料层施加到闭孔泡沫体的表面,使用环氧树脂进行各个表面的连接。然而,gb-a2455044没有公开可以将纤维材料引入到多层复合制品的芯中。

类似的方法和类似的多层复合制品(gb-a2455044中的那些)还公开于wo2009/047483中。这些多层复合制品适用于作为例如转子叶片(在风力涡轮机中)或用作船体。

us-b7,201,625公开了一种制造泡沫体产品的方法以及泡沫产品本身,该泡沫体产品可以例如在体育领域中用作冲浪板。该泡沫体产品的芯由模塑泡沫体(例如基于聚苯乙烯泡沫体)形成。该模塑泡沫体在特殊的模具中制造,并且外部塑料表皮包围该模塑泡沫体。外部塑料表皮可例如为聚乙烯薄膜。然而,us-b7,201,625也没有公开用于增强材料的纤维可存在于模塑泡沫体中。

us-b6,767,623公开了具有模制的聚丙烯泡沫体芯层的夹层面板,所述模制聚丙烯泡沫体基于粒径为2-8mm且堆密度为10-100g/l的颗粒。另外,所述夹层面板包括两个纤维增强的聚丙烯的外层,其中单个外层围绕芯布置,以形成夹层结构。为了装饰目的,其他的层也可以任选地存在于夹层面板中。所述外层可以包含玻璃纤维或其他聚合物纤维。

ep-a2420531公开了基于诸如聚苯乙烯的聚合物的挤出的泡沫体,其中存在至少一种粒径≤其中μm的无机填料和至少一种成核剂。这些挤出泡沫体的显著特征是其改进的刚度。另外描述了用于制造这种基于聚苯乙烯的挤出的泡沫体的相应挤出方法。所述挤出的泡沫体可具有闭孔。然而,ep-a2480531并没有说明挤出的泡沫体包含纤维。

wo2005/056653涉及由包含填料的可膨胀的聚合物珠粒形成的模塑泡沫体。该模塑泡沫体可通过熔接由包含填料的可膨胀的热塑性聚合物珠粒形成的预发泡泡沫体珠粒来获得,该模塑泡沫体的密度为8至300g/l。所述热塑性聚合物珠粒尤其包含苯乙烯聚合物。所用的填料可为粉状无机物质、金属、白垩、氢氧化铝、碳酸钙或氧化铝,或珠粒或纤维形式的无机物质,例如玻璃珠、玻璃纤维或碳纤维。

us3,030,256涉及层压面板,其通过使用纤维来增强由泡沫体或膨胀的聚合物制成的芯来制造。所述用于芯的材料是膨胀和挤出的聚苯乙烯,以及酚、环氧化物和聚氨酯。为了引入纤维,使用针来产生从芯的第一侧到芯的第二侧的孔,并且使用相同的针将纤维束拉动穿过从第二侧至第一侧的孔,使得纤维束部分地存在在芯中,并且部分地从第一侧和第二侧伸出。将纤维材料以相对于芯的厚度方向呈0°的角度引入到芯中。

本发明的目的在于提供新的纤维增强的模制品或面板。

根据本发明,该目的通过由挤出的泡沫体制造的模制品来实现,其中至少一根纤维(f)以纤维区域(fb2)存在于模制品中并被挤出的泡沫体包围,同时纤维(f)的纤维区域(fb1)从模制品的第一侧伸出,且纤维(f)的纤维区域(fb2)从模制品的第二侧伸出,其中将纤维(f)以相对于模制品的厚度(d)呈10°至70°的α角引入到挤出的泡沫体中,并且所述挤出的泡沫体通过包括以下步骤的挤出方法制造:

i)在挤出机中提供聚合物熔体,

ii)将至少一种发泡剂引入到步骤i)中提供的聚合物熔体中,以获得可发泡的聚合物熔体,

iii)将步骤ii)中获得的可发泡聚合物熔体从挤出机中通过至少一个模孔挤出到较低压力的区域中,并且使可发泡的聚合物熔体膨胀,以获得膨胀的泡沫体,以及

iv)通过使膨胀的泡沫体通过成型工具而将来自步骤iii)的膨胀的泡沫体定型(calibrating),以获得挤出的泡沫体。

本发明还提供一种由挤出的泡沫体制成的模制品,其中至少一根纤维(f)以纤维区域(fb2)存在于模制品中并被挤出的泡沫体包围,同时纤维(f)的纤维区域(fb1)从模制品的第一侧伸出,且纤维(f)的纤维区域(fb2)从模制品的第二侧伸出,并且所述挤出的泡沫体通过包括以下步骤的挤出方法制造:

i)在挤出机中提供聚合物熔体,

ii)将至少一种发泡剂引入到步骤i)中提供的聚合物熔体中,以获得可发泡的聚合物熔体,

iii)将步骤ii)中获得的可发泡的聚合物熔体从挤出机中通过至少一个模孔挤出到较低压力的区域中,并且使可发泡的聚合物熔体膨胀,以获得膨胀的泡沫体,以及

iv)通过使膨胀的泡沫体通过成型工具而将来自步骤iii)的膨胀的泡沫体定型,以获得挤出的泡沫体。

以下细节和优选适用于由挤出的泡沫体制成的本发明的模制品的两个实施方案。

本发明的模制品具有的有利特征是,低的树脂吸收同时具有良好的界面结合。特别当本发明的模制品被进一步加工以得到本发明的面板时,这种效果是重要的。

在模制品的一个优选实施方案中,由于挤出的泡沫体包含泡孔,且这些泡孔中至少50%、优选至少80%且更优选至少90%是各向异性的,因此挤出的泡沫体和由此得到的模制品的机械性能也是各向异性的,这对于本发明的模制品的用途特别有利,特别是在用于风力涡轮机的转子叶片、交通领域、建筑领域、汽车制造、造船业、轨道车辆构造、集装箱构造、卫生设施和/或航空航天中的用途。

本发明的模制品因其各向异性而在至少一个方向上具有特别高的压缩强度。它们另外的特征在于具有高的闭孔含量和良好的真空稳定性。

在另一个优选的实施方案中,由于将至少一根纤维(f)以相对于各向异性的泡孔的最大维度呈≤60的角度ε引入到挤出的泡沫体中,因此与现有技术中所记载的泡沫体的情况相比,在引入至少一根纤维(f)时,更少数量的泡孔被破环,这同样对经加工以得到面板的模制品的树脂吸收有积极的影响。

此外,由于泡孔的各向异性,与现有技术中记载的泡沫体相比,本发明的一个制造模制品方法的实施方案中,缝合阻力(sewingresistance)更低。这实现了更快的缝合过程;此外,延长了针的使用寿命。这使得本发明的方法特别经济可行。

根据本发明,通过纤维增强挤出的泡沫体,能够使本发明的模制品或由此产生的面板进一步改善粘合同时降低树脂吸收。根据本发明,纤维(单独地或优选以纤维束的形式)可有利地首先以干燥的形式和/或通过机械方法被引入到挤出的泡沫体中。纤维或纤维束没有与相应的挤出的泡沫体表面平齐地方式铺设,而是过度地铺设(因此能够改善粘合)或与本发明面板中的相应外板层直接连接。根据本发明,特别当被施加到本发明模制品上的外板层是形成面板的至少一个其他层(s1)时,尤其存在这种情况。优选施加可以是相同或不同的两层(s1)。更优选地,将两层相同的层(s1)、特别是两层相同的纤维增强的树脂层施加到本发明模制品的相对的侧面上,以形成本发明的面板。这种面板也称为“夹层材料”,在这种情况下,本贩卖那个的模制品也可以称为“芯材料”。

因此,本发明的面板的显著特征是低的树脂吸收连同良好的剥离强度。另外,可以通过泡孔的各向异性和由此得到的泡沫体的机械性能来控制耐皱性。有利地,以这样的方式使用挤出的泡沫体:面板厚度方向上的机械性能处于最高,由此可以实现最大的耐皱性。此外,通过选择纤维类型及其比例和布置,可以以受控的方式建立高强度和刚度性能。低的树脂吸收的效果是重要的,因为在使用所述面板(夹层材料)情况下的共同目标是结构性能应以最小的重量增加。例如,在使用纤维增强的外板层的情况下,除了实际的外板层和模制品(夹层芯)外,模制品(芯材)的树脂吸收对总重量有贡献。然而,本发明的模制品或本发明的面板可降低树脂吸收,这可以减轻重量并节省成本。

在本发明模制品的一个实施方案中,一个特别的优点可被认为是挤出的泡沫体的封闭表面。在将挤出的泡沫体定型之后,通常存在具有高表面质量的密封(封闭)表面,其显著特征是最小的树脂吸收和从挤出的泡沫体的芯到表面的密度梯度,并且密度从挤出的泡沫体的芯到其表面增加。特别是通过与被引入以获得本发明的模制品的纤维的结合,由此可以获得最小的重量,同时具有最大的机械特性。

本发明的模制品或面板的另一个优点被认为是使用挤出的泡沫体和相关的制备,使得向模制品表面引入整合结构例如槽或孔变得相对简单,并使得进一步处理模制品变得相对简单。连续制造使得结构通过成型步骤(例如热成型或材料去除处理)直接在方法中整合。在使用所述模制品(芯材)的情况下,通常将这种结构例如引入到曲面结构(深槽)中用于悬挂(draping),用于改进通过液体树脂工艺(例如真空灌注(孔))的可加工性,以及用于加速上述加工操作(浅槽)。

另外,在制造过程中或在制造之后,可将其他的层(s2)施加到挤出的泡沫体。这样的层可以改善挤出的泡沫体或本发明模制品的整体完整性。

挤出的泡沫体通常由热塑性聚合物制成。因此,挤出的泡沫体和模制品均可以通过热成型形成所需的几何形状,由此避免了材料去除处理步骤。

其他可以实现进一步的改进/优点是将纤维以相对于挤出的泡沫体的厚度方向(d)呈10°至70°、更优选30°至50°的角度α引入到挤出的泡沫体中。通常,以自动方式以0°至<90°的角度引入纤维在工业上是可实现的。

当将纤维不仅以平行的方式引入到挤出的泡沫体中,而且其他纤维以彼此呈优选>0至180°的角度方式引入时,可以实现额外的改进/优点。另外,这实现了对本发明模制品在不同方向上的机械性能的可控改进。

当本发明面板中的(外部)树脂层通过液体注入方法或液体灌注方法(其中纤维在加工过程中可用树脂浸渍,且机械性能得到改进)施加时也是有利的。另外,可以节省成本。

下文进一步说明本发明。

根据本发明,所述模制品包含挤出的泡沫体和至少一根纤维(f)。

所述挤出的泡沫体通过包括以下步骤的挤出方法制造(或可制造或已经制造):

i)在挤出机中提供聚合物熔体,

ii)将至少一种发泡剂引入到步骤i)中提供的聚合物熔体中,以获得可发泡的聚合物熔体,

iii)将步骤ii)中获得的可发泡聚合物熔体从挤出机中通过至少一个模孔挤出到较低压力的区域中,并且使可发泡的聚合物熔体膨胀,以获得膨胀的泡沫体,以及

iv)通过使膨胀的泡沫体通过成型工具而将来自步骤iii)的膨胀的泡沫体定型,以获得挤出的泡沫体。

在步骤i)中的挤出机中提供聚合物熔体的合适方法原则上是本领域技术人员已知的所有方法;例如,可以在挤出机中通过熔融已经预聚合的聚合物而提供聚合物熔体。聚合物可以在挤出机中直接熔融;同样可以将聚合物以熔融的形式进料到挤出机中,从而在步骤i)中的挤出机中提供聚合物熔体。同样在步骤i)中提供聚合物熔体是可能的,因为用于制备聚合物熔体的聚合物所需的相应单体在挤出机中彼此反应,由此提供了聚合物熔体。

在发明上下文中,聚合物熔体应理解为意指聚合物的温度在半结晶聚合物的情况下高于熔融温度(tm)或在无定形聚合物的情况下高于玻璃化转变温度(tg)。

通常,方法步骤i)中的聚合物熔体的温度为100至450合、优选为150至350合且特别优选为160至300选。

在步骤ii)中,将至少一种发泡剂引入到步骤i)中提供的聚合物熔体中。用于此目的的方法本身是本领域技术人员已知的。

合适的发泡剂选自:例如,二氧化碳;烷烃,例如丙烷、异丁烷和戊烷;醇类,例如甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、2-甲基丙醇和叔丁醇;醚类,例如二甲醚;酮类,例如丙酮和甲基乙基酮;卤代烃类,例如氢氟丙烯;水;氮和它们的混合物。

在步骤ii)中,由此获得可发泡的聚合物熔体。该可发泡的聚合物熔体通常包含1重量%至15重量%、优选为2重量%至10重量%且特别优选为3重量%至8重量%的至少一种发泡剂,各自基于该可发泡的聚合物熔体的总重量计。

在步骤ii)中,挤出机中的压力通常为20至500巴、优选为50至400巴,且特别优选为60至300巴。

在步骤iii)中,将步骤ii)中获得的可发泡的聚合物熔体从挤出机中通过至少一个模孔挤出到较低压力的区域中,并且使可发泡的聚合物熔体膨胀,以获得膨胀的泡沫体。

可发泡的聚合物熔体的挤出方法本身是本领域技术人员已知的。

用于挤出可发泡的聚合物熔体的合适的模孔是本领域技术人员已知的全部那些。模孔可具有任何期望的形状;例如,其可为矩形、圆形、椭圆形、正方形或六边形。优选矩形的槽模和圆形的圆形模。

在一个实施方案中,可发泡的聚合物熔体恰好通过一个模孔、优选通过槽模挤出。在另一个实施方案中,可发泡的聚合物熔体通过多个模孔、优选圆形或六边形模孔挤出,以获得大量的线料(strand),该大量的线料在从模孔挤出之后立即合并以形成膨胀的泡沫体。该大量的线料也可以仅在步骤iv)中通过穿过成型工具而合并。

优选地,加热至少一个模孔。特别优选地,当聚合物是无定形聚合物时,将模孔至少加热至在步骤i)中提供的聚合物熔体中存在的聚合物的玻璃化转变温度(tg),并且当聚合物是半结晶聚合物时,将模孔至少加热至步骤i)中提供的聚合物熔体中存在的聚合物的熔融温度(tm);例如,模孔的温度为80至400℃、优选为100至350℃且特别优选为110至300℃。

在步骤iii)中,将可发泡的聚合物熔体挤出到较低压力的区域中。较低压力的区域中的压力通常为0.05至5巴、优选为0.5至1.5巴。

在步骤iii)中,将可发泡的聚合物熔体挤出模孔的压力通常为20至600巴、优选为40至300巴,且特别优选为50至250巴。

在步骤iv)中,通过使膨胀的泡沫体通过成型工具而将来自步骤iii)的膨胀的泡沫体定型,以获得挤出的泡沫体。

膨胀的泡沫体的定型确定了步骤iv)中所得的挤出的泡沫体的外形。定型方法本身是本领域技术人员已知的。

成型工具可以直接设置在模孔处。成型工具同样可以设置在离模孔一定距离处。

用于定型膨胀的泡沫体的成型工具本身是本领域技术人员已知的。合适的成型工具包括,例如片状定型器、滚轴出料器(rollertakeoff)、心轴定型器、链状出料器和带状出料器。为了降低成型工具与挤出的泡沫体之间的摩擦系数,可以对工具进行涂覆和/或加热。

因此,步骤iv)的定型固定了本发明的挤出的泡沫体的横截面在至少一个维度上的几何形状。优选地,挤出的泡沫体具有几乎矩形的横截面。如果定型仅在特定方向部分进行,则挤出的泡沫体会在自由表面处偏离理想的几何形状。挤出的泡沫体的厚度首先由模孔确定,其次由成型工具确定;这同样适用于挤出的泡沫体的宽度。

基于正交坐标系,由此获得的泡沫体的长度称为x方向,宽度称为y方向,厚度称为z方向。x方向对应于泡沫体的挤出方向。

另外,根据本发明优选的是

i)步骤i)中提供的聚合物熔体包含至少一种添加剂,和/或

ii)将至少一种添加剂在步骤ii)期间加入到聚合物熔体中,和/或在步骤ii)和步骤iii)之间加入到可发泡的聚合物熔体中,和/或

iii)将至少一种添加剂在步骤iii)期间施加至膨胀的泡沫体,和/或在步骤iv)期间施加至膨胀的泡沫体,和/或

iv)将至少一层(s2)在步骤iv)期间和/或直接在步骤iv)后施加至挤出的泡沫体,和/或

v)在步骤iv)后,进行以下方法步骤:

v)将步骤iv)中获得的挤出的泡沫体进行材料去除处理。

合适的添加剂原则上是本领域技术人员已知的所有添加剂,例如成核剂、阻燃剂、染料、工艺稳定剂、加工助剂、光稳定剂和颜料。

关于在一个实施方案中施加至挤出的泡沫体的层(s2),适用下文进一步描述的细节和优选。

在步骤v)中,用于将步骤iv)中获得的挤出的泡沫体进行材料去除处理的合适的方法原则上是本领域技术人员已知的所有方法。例如,挤出的泡沫体可以通过锯切、铣削、钻孔或刨削进行材料去除处理。当挤出的泡沫体是热塑性挤出的泡沫体时,热成型也是可能的,通过这种方法可以避免切割损失和对纤维(f)的损坏的材料去除处理。

在本发明的一个实施方案中,将在步骤iv)和/或步骤v)中获得的至少两个挤出的泡沫体彼此粘合,以获得多层的挤出的泡沫体。在本发明的上文中,“多层”应理解为意指至少二层的挤出的泡沫体;挤出的泡沫体同样也可为三层、四层或五层。对本领域技术人员而言显而易见的是,通过将步骤iv)和/或步骤v)中获得的两个挤出的泡沫体结合而获得二层挤出的泡沫体,通过将所获得的三个挤出的泡沫体结合而获得三层挤出的泡沫体,等等。所获得的挤出的泡沫体彼此之间的结合也称为“接合”。用于此目的的合适方法本身是本领域技术人员已知的。例如,所获得的挤出的泡沫体可以通过粘合和/或热熔接彼此结合。显而易见的是,所述至少二层挤出的泡沫体的厚度比在步骤iv)和/或步骤v)中获得的至少两个挤出的泡沫体的厚度更大。

本发明的挤出的泡沫体可以具有任何想要的尺寸。

根据本发明制造的挤出的泡沫体厚度(z方向)通常为4至200mm、优选5至60mm,长度(x方向)为至少200mm,优选为至少400mm,且宽度(y方向)为至少200mm、优选为至少400mm。

挤出的泡沫体长度(x方向)通常不大于4000mm、优选不大于2500mm,和/或宽度(y方向)不大于4000mm、优选不大于2500mm。

挤出的泡沫体本身是本领域技术人员已知的。在一个实施方案中,挤出的泡沫体基于,例如至少一种选自以下的聚合物:聚苯乙烯、聚酯、聚苯醚、由苯醚制备的共聚物、由苯乙烯制备的共聚物、聚芳基醚砜、聚苯硫醚、聚芳醚酮、聚丙烯、聚乙烯、聚酰胺、聚酰胺酰亚胺、聚醚酰亚胺、聚碳酸酯、聚丙烯酸酯、聚乳酸、聚氯乙烯或其混合物,所述聚合物优选选自聚苯乙烯、聚苯醚、聚苯乙烯和聚苯醚的混合物、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚醚砜、聚砜、聚醚酰亚胺、由苯乙烯制备的共聚物,或由苯乙烯制备的共聚物的混合物。更优选地,所述聚合物是聚苯乙烯、聚苯乙烯和聚(2,6-二甲基苯醚)的混合物、苯乙烯-顺丁烯二酸酐聚合物和苯乙烯-丙烯腈聚合物的混合物,或苯乙烯-顺丁烯二酸酐聚合物(sma)。

还适合作为挤出的泡沫体的是热塑性弹性体。热塑性弹性体本身是本领域技术人员已知的。

聚苯醚优选为聚(2,6-二甲基亚苯基醚),也称为聚(2,6-二甲基苯醚)。

由苯醚制备的合适的共聚物是本领域技术人员已知的。适合于苯醚的共聚单体同样是本领域技术人员已知的。

由苯乙烯制备的共聚物优选具有选自以下的单体作为苯乙烯的共聚单体:α-甲基苯乙烯、环卤化的苯乙烯、环烷基化的苯乙烯、丙烯腈、丙烯酸酯、甲基丙烯酸酯、n-乙烯基化合物、顺丁烯二酸酐、丁二烯、二乙烯基苯和二丙烯酸丁二醇酯。

还优选本发明的模制品,其中所述挤出的泡沫体包含泡孔,其中

i)至少50%、优选至少80%且更优选至少90%的泡孔是各向异性的,和/或

ii)至少50%、优选至少80%且更优选至少90%的泡孔的最大维度(a方向)与最小维度(c方向)之比为1.05、优选为1.1至10、特别优选为1.2至5,和/或

iii)至少50%、优选至少80%且更优选至少90%的泡孔的最小维度(c方向)的平均尺寸为小于0.5mm、优选小于0.2mm,和/或

iv)至少50%、优选至少80%且更优选至少90%的泡孔是正交各向异性的或横向同性的,和/或

v)至少50%、优选至少80%且更优选至少90%的泡孔基于其最大维度(a方向)计以相对于模制品的厚度方向(d)呈≤45°、优选≤30°且更优选≤5°的角度γ排列,和/或

vi)挤出的泡沫体的闭孔含量为至少80%、优选至少95%,、更优选至少98%,和/或

vii)纤维(f)相对于挤出的泡沫体的至少50%、优选至少80%且更优选至少90%的泡孔的最大维度(a方向)呈≤60°、优选≤50°的角度ε。

在一个可替代的实施方案中,优选满足上述选项i)至vii)中至少一个的本发明的模制品,除了选项v)外,至少50%、优选至少80%且更优选至少90%的泡孔基于模制品的最大维度(a方向)计以相对于模制品的厚度方向(d)呈50°至130°、优选70°至110°且更优选85°至95°的角度γ排列。

各向异性的泡孔在不同的空间方向上具有不同的尺寸。泡孔的最大维度称为“a方向”且最小维度称为“为方向”;第三维度称为“为方向”。

至少50%、优选至少80%且更优选至少90%的泡孔的最小维度(c方向)的平均尺寸通常为0.01至1mm、优选为0.02至0.5mm且特别为0.02至0.3mm。

至少50%、优选至少80%且更优选至少90%的泡孔的最大维度(a方向)的平均尺寸通常为不大于20mm、优选为0.01至5mm、特别为0.03至1mm且更优选为0.03至0.5mm。

泡孔的维度可例如通过光学显微照片或扫描电子显微照片确定。

正交各向异性泡孔应理解为意指各向异性泡孔的一种特殊情况。正交各向异性意指所述泡孔具有三个对称平面。在对称平面基于正交坐标系彼此正交定向的情况下,所述泡孔的维度在所有三个空间方向,即a方向、b方向和c方向上均是不同的。

横向同性意指所述泡孔具有三个对称平面。然而,所述泡孔相对于围绕两个对称平面交叉轴线的旋转是不变的。在对称平面彼此正交定向的情况下,泡孔的维度仅在一个空间方向上不同于泡孔在两个其他方向上的维度。例如,泡孔的维度在a方向不同于在b方向和c方向,且泡孔在b方向与在c方向上的维度相同。

挤出的泡沫体的闭孔含量根据diniso4590(按照2003年的德国版本)测定。该闭孔含量描述了在挤出的泡沫体总体积中闭孔体积的比例。

挤出的泡沫体的泡孔的各向异性特性是由本发明的挤出方法产生的。借助在步骤iii)中挤出的可发泡的聚合物熔体以及在步骤iv)中定型的由此获得的膨胀的泡沫体,由此制造的挤出的泡沫体通常获得了由各向异性泡孔带来的各向异性性能。该性能还受膨胀性能和出料(takeoff)参数的影响。如果可发泡的聚合物熔体非常显著地膨胀至例如获得膨胀的泡沫体,则它特别在x方向(即长度)上膨胀,这优选导致了泡孔的a方向以相对于厚度方向(d)呈50°至130°的排列。

如果膨胀的泡沫体被快速移出,例如即通过成型工具快速移动,则泡孔的a方向优选以相对于厚度方向(d)呈50°至130°排列。

如果挤出的泡沫体的性能是各向异性的,这意指挤出的泡沫体的性能在不同的空间方向上是不同的。例如,挤出的泡沫体在厚度(z方向)上的压缩强度可能与在长度(x方向)和/或宽度(y方向)上的压缩强度不同。

还优选本发明的模制品,其中

i)挤出的泡沫体的至少一个机械性能、优选所有的机械性能是各向异性的、优选是正交各向异性的或横向同性的,和/或

ii)挤出的泡沫体的至少一个弹性模量、优选所有的弹性模量以各向异性的、优选正交各向异性的或横向同性材料的方式表现,和/或

iii)挤出的泡沫体在厚度方向(z方向)上的压缩强度与挤出的泡沫体在长度方向(x方向)上的压缩强度之比和/或挤出的泡沫体在厚度方向(z方向)上的压缩强度与挤出的泡沫体在宽度方向(y方向)上的压缩强度之比为≥1.1、优选为≥1.5、特别优选为2至10。

机械性能应理解意指本领域技术人员已知的挤出的泡沫体的所有机械性能,例如强度、刚度或弹性、延展性和韧性。

弹性模量本身是本领域技术人员已知的。弹性模量包括例如伸缩性模量、压缩模量、扭转模量和剪切模量。

关于机械性能或弹性模量的“正交各向异性”意指材料具有三个对称平面。在对称平面彼此正交取向的情况下,可以使用正交坐标系。因此,挤出的泡沫体的机械性能或弹性模量在所有的三个空间方向,x方向、y方向和z方向上是不同的。

关于机械性能或弹性模量的“横向同性”意指材料具有三个对称平面,并且模量相对于围绕两个对称平面交叉轴线的旋转是不变的。在对称平面彼此正交取向的情况下,在一个空间方向上的挤出的泡沫体的机械性能或弹性模量与在另外两个空间方向上的机械性能或弹性模量不同,但在另外两个空间方向上是相同的。例如,在z方向上的机械性能或弹性模量不同于在x方向和y方向的机械性能或弹性模量,x方向和y方向上的机械性能或弹性模量相同。

模制品的挤出的泡沫体的压缩强度根据dineniso844(按照2009年10月的德国版本)测定。

挤出的泡沫体在厚度方向(z方向)上的压缩强度通常为0.05至5mpa、优选为0.1至2mpa、更优选为0.1至1mpa。

挤出的泡沫体在长度方向(x方向)和/或在宽度方向(y方向)上的压缩强度通常为0.05至5mpa、优选为0.1至2mpa、更优选为0.1至1mpa。

存在于模制品中的纤维(f)是单根纤维或纤维束,优选纤维束。合适的纤维(f)是本领域技术人员已知的可形成纤维的所有材料。例如,纤维(f)是有机纤维、无机纤维、金属纤维或陶瓷纤维或它们的组合,优选聚合纤维、玄武岩纤维、玻璃纤维、碳纤维或天然纤维,特别优选聚芳酰胺纤维、玻璃纤维、玄武岩纤维或碳纤维;聚合纤维优选为聚酯纤维、聚酰胺纤维、聚芳酰胺纤维、聚乙烯纤维、聚氨酯纤维、聚氯乙烯纤维、聚酰亚胺纤维和/或聚酰胺酰亚胺纤维;天然纤维优选为剑麻纤维、大麻纤维、亚麻纤维、竹纤维、椰子纤维和/或黄麻纤维。

在一个实施方案中,使用纤维束。纤维束由若干单根纤维(单纤维)组成。每束中的单根纤维的数量为至少10根、优选为100至100000根、在玻璃纤维的情况下更优选为300至10000根,在碳纤维的情况下更优选为1000至50000根,并且在玻璃纤维的情况下特别优选为500至5000根且在碳纤维的情况下特别优选为2000至20000根。

根据本发明,至少一根纤维(f)以纤维区域(fb2)存在于模制品中并被挤出的泡沫体包围,同时纤维(f)的纤维区域(fb1)从模制品的第一侧伸出,且纤维(f)的纤维区域(fb3)从模制品的第二侧伸出。

纤维区域(fb1)、纤维区域(fb2)和纤维区域(fb3)可各自占纤维(f)总长度的任意期望的比例。在一个实施方案中,纤维区域(fb1)和纤维区域(fb3)各自独立地占纤维(f)总长度的1%至45%、优选2%至40%且更优选5%至30%,且纤维区域(fb2)占纤维(f)总长度的10%至98%、优选20%至96%且更优选40%至90%。

在另一个优选的实施方案中,纤维(f)的纤维区域(fb1)从中伸出的模制品的第一侧与纤维(f)的纤维区域(fb3)从中伸出的模制品的第二侧相对。

纤维(f)以相对于模制品的厚度方向(d)或以相对于模制品的第一侧(的表面)的垂直方向呈10°至70°的角度α引入到模制品中。优选地,纤维(f)以相对于模制品的厚度方向(d)呈30°至60°、优选30°至50°、甚至更优选30°至45°且特别是45°的角度α引入到挤出的泡沫体中。

在本发明的另一个实施方案中,角度α可为0°至90°的任何所想要的值。例如,这种情况下的纤维(f)以相对于模制品的厚度方向(d)呈0°至60°、优选0°至50°、更优选0°至15°或30°至50°、甚至更优选30°至45°且特别是45°的角度α引入到挤出的泡沫体中。

在另一个实施方案中,至少两根纤维(f)以两个不同的角度α(α1和α2)引入,其中角度α1优选为0°至15°且第二角度α2优选为30°至50°;特别优选地,α1为0°至5°且α2为40°至50°。

优选地,所有的纤维(f)均以相对于模制品的厚度方向呈10°至70°、优选30°至60°、特别优选30°至50°、甚至更优选30°至45°且最优选45°的角度α引入到挤出的泡沫体中。

另外优选的是,除了所述至少一根纤维(f)之外,未将其他纤维引入到挤出的泡沫体中。

优选地,本发明的模制品包含多根纤维(f)、优选纤维束,和/或每m2包含多于10根纤维(f)或纤维束、优选每m2多于1000根,更优选每m2为4000至40000根。优选地,本发明模制品中的所有纤维(f)具有相同的角度α或至少近似相同的角度(差值不大于+/-5°、优选+/-2°、更优选+/-1°)。

所有纤维(f)可以彼此平行地存在于模制品中。根据本发明,同样可能和优选的是,两根或多根纤维(f)以彼此呈角度β存在于模制中。在本发明的上下文中,角度β应理解为意指第一纤维(f1)在模制品的第一面的表面上的正投影与第二纤维(f2)在模制品表面上的正投影之间的角度,两根纤维已被引入到模制品中。

角度β优选为β=360°/n,其中n为整数。优选地,n为2至6、更优选为2至4。例如,角度β为90°、120°或180°。在另一个实施方案中,角度β为80°至100°、110°至130°或170°至190°。在另一个实施方案中,多于两根纤维(f)例如三根或四根纤维(f)以角度β引入。这三根或四根纤维(f)对于两根相邻的纤维可分别具有两个不同的角度β(β1和β2)。优选地,所有的纤维(f)对于两根相邻的纤维(f)具有相同的角度β=β1=β2。例如角度β为90°,在此情况下,第一纤维(f1)与第二纤维(f2)之间的角度β1为90°,第二纤维(f2)与第三纤维(f3)之间的角度β2为90°,第三纤维与第四纤维(f4)之间的角度β3为90°,且第四纤维(f4)与第一纤维(f1)之间的角度β4同样为90°。由此以顺时针方向,第一纤维(f1)(参照)与第二纤维(f2)、第三纤维(f3)和第四纤维(f4)之间的角度β为90°、180°和270°。类似的考虑适用于其他可能的角度。

在此情况下,第一纤维(f1)具有第一方向,且以相对于第一纤维(f1)呈角度β布置的第二纤维(f2)具有第二方向。优选地,在第一方向和第二方向上存在相似数量的纤维。在本发明上下文中“相似”应理解为意指,相对于其他方向的每个方向上的纤维数量之间的差值为<30%、更优选<10%且特别优选<2%。

纤维或纤维束可以规则或不规则图案引入。优选以规则图案引入纤维或纤维束。在本发明的上下文中,“规则图案”应理解为意指所有的纤维彼此平行排列,并且至少一根纤维或纤维束与所有直接相邻的纤维或纤维束具有相同的距离(a)。特别优选地,所有的纤维或纤维束与所有直接相邻的纤维或纤维束具有相同的距离。

在另一优选的实施方案中,引入纤维或纤维束,使得它们基于正交坐标系(其中厚度方向(d)对应于z方向),每个在x方向上距离彼此具有相同的距离(ax)且在y方向上具有相同的距离(ay)。特别优选地,它们在x方向和y方向上具有相同的距离(a),其中a=ax=ay。

如果两根或多根纤维(f)相对彼此呈角度β,则彼此平行的第一纤维(f1)优选具有以第一距离(a1)的规则图案,并且彼此平行且与第一纤维(f1)呈角度β的第二纤维(f2)优选具有以第二距离(a2)的规则方式。在一个优选的实施方案中,第一纤维(f1)和第二纤维(f2)分别具有以距离(a)的规则图案。在此情况下,a=a1=a2。

如果纤维或纤维束以彼此呈角度β引入到挤出的泡沫体中,则纤维或纤维束优选在各个方向上符合规则图案。

在本发明模制品的一个优选实施方案中,

i)模制品的至少一侧的表面具有至少一个凹部,优选地,该凹部是槽或孔,且更优选地,在进行挤出方法的步骤iv)后,在模制品的至少一侧的表面上产生至少一个凹部,和/或

ii)模制品的至少一侧的表面具有至少一个凹部,优选地,该凹部是槽或孔,且更优选地,在进行挤出方法的步骤v)后,在模制品的至少一侧的表面上产生至少一个凹部。

图1示出了由挤出的泡沫体(1)制成的本发明的模制品的一个优选实施方案的透视图的示意图。(2)表示模制品的第一侧的(表面),且(3)表示相应模制品的第二侧。从图1还可以明显看出,模制品的第一侧(2)与该模制品的第二侧(3)相对。纤维(f)由(4)表示。该纤维的一端(4a),由此纤维区域(fb1)从模制品的第二侧(2)伸出,而构成纤维区域(fb3)的纤维的另一端(4b)从模制品的第二侧(3)伸出。中间的纤维区域(fb2)存在于模制品内,并因此被挤出的泡沫体包围。

在图1中,纤维(4)例如为单根纤维或纤维束,优选纤维束以相对于模制品的厚度方向(d)或相对于模制品的第一侧(2)(的表面)的垂直方向呈角度α。角度α为10°至70°、优选为30°至60°、更优选为30°至50°、甚至更优选为30°至45°、特别为45°。为了清楚起见,图1仅示出了单根纤维(f)。

图3以示例的方式示出了一些不同角度的示意图。图3所示的由挤出的泡沫体(1)制成的模制品包括第一纤维(41)和第二纤维(42)。在图3中,为了更清楚,仅示出了两根纤维(41)和(42)从模制品的第一侧(2)伸出的纤维区域(fb1)。第一纤维(41)相对于模制品的第一侧(2)的表面的垂直方向(o)形成了第一角度α(α1)。第二纤维(42)相对于第一侧(2)的表面的垂直方向(o)形成了第二角度α(α2)。第一纤维(41)在模制品的第一侧(2)上的正交投影(41p)与第二纤维(42)在模制品的第一侧(2)上的正交投影(42p)形成了角度β。

图4以示例的方式示出了基于泡孔(8)的最大维度(a方向)的不同角度的示意图。图4所示的由挤出的泡沫体(1)制成的模制品包含纤维(4)和泡孔(8)。为了清楚起见,图4仅示出了一根纤维(4)和一个泡孔(8)。显而易见的是,模制品通常包含多于一个泡孔(8)。泡孔(8)的最大维度(a)相对于模制品的厚度方向(d)具有≤有)°、优选≤选≤°、更优选≤优°的角度γ。纤维(4)以相对于泡孔(8)的最大尺寸(a)呈≤a)°、优选≤选≤°的角度ε引入到挤出的泡沫体中。

本发明还提供了一种面板,其包含至少一个本发明的模制品和至少一层其他层(s1)。在某些情况下,“面板”在专家中也可称为“夹层”、“夹层材料”、“层压材料”和/或“复合制品”。

在面板的一个优选实施方案中,面板具有两层(s1),并且所述两层(s1)各自安装在与该模制品的相应另一侧相对的模制品的一侧上。

在本发明面板的一个实施方案中,层(s1)包含至少一种树脂,优选地,该树脂为反应性热固性或热塑性树脂;更优选地,该树脂基于环氧化物、丙烯酸酯、聚氨酯、聚酰胺、聚酯、不饱和聚酯、乙烯基酯或它们的混合物;且特别地,该树脂是胺固化的环氧树脂、潜在固化的环氧树脂、酸酐固化的环氧树脂或由异氰酸酯和多元醇形成的聚氨酯。这种树脂体系是本领域技术人员已知的,例如,已知于penczek等人(advancesinpolymerscience,184,第1-95页,2005)、pham等人(ullmann′sencyclopediaofindustrialchemistry,第13卷,2012)、fahnler(polyamide,kunststoffhandbuch3/4,1998)和younes(wo12134878a2)。

根据本发明还优选以下面板,其中

i)纤维(f)的纤维区域(fb1)与第一层(s1)部分或完全、优选完全接触,和/或

ii)纤维(f)的纤维区域(fb3)与第二层(s1)部分或完全、优选完全接触,和/或

iii)所述面板在模制品的至少一侧与至少一层(s1)之间具有至少一层(s2),该层(s2)优选由二维纤维材料或聚合物膜构成,更优选由网状物、平纹织物或编织物形式的玻璃纤维或碳纤维组成,和/或

iv)至少一层(s1)包含树脂,且面板的模制品的挤出的泡沫体的表面树脂吸收为≤2000g/m2、优选为≤1000g/m2、更优选为≤500g/m2、最优选为≤100g/m2,和/或

v)至少一层(s1)包含树脂,且面板的耐剥离性为≥200j/m2、优选为≥500j/m2、更优选为≥2000j/m2

对于挤出的泡沫体,例如通过密封表面或通过热切割成型挤出的泡沫体实现了特别低的树脂吸收。

类似地,在本发明的模制品中,可以在制造之后直接使用挤出的泡沫体的封闭表面。在挤出的泡沫体定型之后,通常存在具有高表面质量的密封表面,其特征在于最小的树脂吸收和朝着表面密度不断增加的密度梯度。

在本发明上下文中如实施例中所述,确定了表面树脂吸收和耐剥离性。

在本发明面板的另一个实施方案中,所述至少一层(s1)另外包含至少一种纤维材料,其中

i)所述纤维材料包含以下形式的纤维:一个或多个短切纤维、网状物、平纹织物、针织物和/或编织物的薄层形式,优选平纹织物或编织物的形式,更优选以每平纹织物或编织物基重为150至2500g/m2的平纹织物或编织物的形式,和/或

ii)所述纤维材料包含有机纤维、无机纤维、金属纤维或陶瓷纤维,优选聚合纤维、玄武岩纤维、玻璃纤维、碳纤维或天然纤维,更优选玻璃纤维或碳纤维。

上述细节适用于天然纤维和聚合纤维。

另外包含至少一种纤维材料的层(s1)也称为纤维增强层,如果层(s1)包含树脂,则特别称为纤维增强树脂层。

图2示出了本发明的另一个优选实施方案。示出了本发明面板(7)的二维侧视图,其包含如上所述的例如在图1的实施方案的上下文中的本发明的模制品(1)。除非另有说明,关于其他缩写,图1和图2中的附图标记具有相同的含义。

在图2的实施方案中,本发明的面板包括由(5)和(6)表示的两层(s1)。两层(5)和(6)分别位于模制品(1)相对的侧面。两层(5)和(6)优选为树脂层或纤维增强树脂层。从图2还可以明显看出,纤维(4)的两端被相应的层(5)和(6)包围。

任选地,在模制品(1)和第一层(5)之间和/或在模制品(1)和第二层(6)之间可以存在一个或多个其他的层。如上面对于图1所述,为了简单起见,图2也示出了单根纤维(f)(4)。实际上,关于纤维或纤维束的数量,类似的说明适用于以上对于图1所述的那些。

本发明还提供了一种用于制备本发明的模制品的方法,其中至少一根纤维(f)被部分地引入到挤出的泡沫体中,由此纤维(f)以纤维区域(fb2)存在于模制品中并被挤出的泡沫体包围,而纤维(f)的纤维区域(fb1)从模制品的第一侧伸出,且纤维(f)的纤维区域(fb3)从模制品的第二侧伸出。

本发明还提供了一种用于制备本发明的模制品的方法,其中至少一根纤维(f)被部分地引入到挤出的泡沫体中,由此纤维(f)以纤维区域(fb2)存在于模制品中并被挤出的泡沫体包围,而纤维(f)的纤维区域(fb1)从模制品的第一侧伸出,且纤维(f)的纤维区域(fb3)从模制品的第二侧伸出,其结果是纤维(f)以相对于模制品的厚度方向(d)呈10°至70°的角度α引入到挤出的泡沫体中。

原则上引入纤维(f)和/或纤维束的合适的方法是本领域技术人员已知的那些。合适的方法记载于,例如wo2006/125561或wo2011/012587中。

在本发明方法的一个实施方案中,使用针通过缝制将至少一根纤维(f)部分地引入到挤出的泡沫体中,优选通过步骤a)至f)进行部分引入:

a)任选地将至少一层(s2)施加到挤出的泡沫体的至少一侧上,

b)每根纤维(f)在挤出的泡沫体中和在任意的层(s2)中产生一个孔,所述孔从挤出的泡沫体的第一侧延伸到第二侧,并通过任意的层(s2),

c)在挤出的泡沫体的第二侧上提供至少一根纤维(f),

d)将针从挤出的泡沫体的第一侧穿过孔至挤出的泡沫体的第二侧,并且使针穿过任意的层(s2),

e)在挤出的泡沫体的第二侧上,将至少一根纤维(f)固定在针上,以及

f)将针连同纤维(f)一起通过孔返回,使得纤维(f)以纤维区域(fb2)存在于模制品中并被挤出的泡沫体包围,而纤维(f)的纤维区域(fb1)从模制品的第一侧或从任意的层(s2)伸出,且纤维(f)的纤维区域(fb3)从模制品的第二侧伸出,

更优选地,同时进行步骤b)和d)。

在步骤a)中施加至少一层(s2)可,例如,如上所述在步骤iv)期间和/或在步骤iv)之后直接进行。

在一个特别优选的实施方案中,同时进行步骤b)和d)。在该实施方案中,通过将针从挤出的泡沫体的第一侧穿过至挤出的泡沫体的第二侧产生从挤出的泡沫体的第一侧至第二侧的孔。

在该实施方案中,至少一根纤维(f)的引入可包括例如以下步骤:

a)任选地将层(s2)施加到挤出的泡沫体的至少一侧上,

b)在挤出的泡沫体的第二侧上提供至少一根纤维(f),

c)每根纤维(f)在挤出的泡沫体中和在任意的层(s2)中产生一个孔,该孔从挤出的泡沫体的第一侧延伸至第二侧且通过任意的层(s2),并且通过将针穿过挤出的泡沫体且穿过任意的层(s2)来产生孔,

d)在挤出的泡沫体的第二侧上,将至少一根纤维(f)固定在针上,且

e)将针连同纤维(f)一起通过孔返回,使得纤维(f)以纤维区域(fb2)存在于模制品中并被挤出的泡沫体包围,而纤维(f)的纤维区域(fb1)从模制品的第一侧或从任意的层(s2)伸出,且纤维(f)的纤维区域(fb3)从模制品的第二侧伸出,

f)任选地切断第二侧上的纤维(f),以及

g)任选地切开在针上形成的纤维(f)环。

在一个优选的实施方案中,所用的针是钩针,并且在步骤d)中将至少一根纤维钩在钩针中。

在另一个优选的实施方案中,根据上述步骤,将多根纤维(f)同时引入到挤出的泡沫体中。

本发明还提供了一种用于制造本发明面板的方法,其中优选通过液体浸渍方法、更优选压力-或真空辅助的浸渍法、特别优选真空灌注法或压力辅助的注入法、最优选真空灌注法在本发明的模制品上施加反应性粘性树脂形式的至少一层(s1)并固化。液体浸渍方法本身是本领域技术人员已知的,并详细记载在例如wileyencyclopediaofcomposites(第二版,wiley,2012),parnas等人(liquidcompositemoulding,hanser,2000)和williams等人(compositesparta,27,第517-524页,1997)。

可以使用各种辅助材料来制造本发明的面板。适用于通过真空灌注来制造的辅助材料是,例如,真空膜,优选由尼龙制得;真空密封带;助流剂,优选由尼龙制得;分离膜,优选由聚烯烃制成;分离织物(tearofffabric),优选由聚酯制得;及半透膜,优选隔膜薄膜,更优选ptfe隔膜薄膜;以及吸收绒毛(absorptionfleece),优选由聚酯制得。合适的辅助材料的选择由待制造的部件、所选择的方法和所用的材料,特别是树脂体系的影响。在使用基于环氧化物和聚氨酯的树脂体系的情况下,优选使用由尼龙制成的助流剂、由聚烯烃制成的分离膜、由聚酯制成的分离织物和以ptfe隔膜薄膜形式的半透膜,以及由聚酯制得的吸收绒毛。

在本发明面板的制造方法中,这些辅助材料可以以各种方式来使用。更优选地,面板由模制品通过借助真空灌注施加纤维增强的外板层来制造。在典型的结构中,为了制造本发明的面板,将纤维材料和任选的其他层施加到模制品的上侧和下侧。随后,放置分离织物和分离膜。在液体树脂体系的灌注中,可以使用助流剂和/或隔膜薄膜。特别优选以下变型:

i)仅在结构的一侧使用助流剂,和/或

ii)在结构的两侧均使用助流剂,和/或

iii)具有半透膜的结构(vap结构);优选将半透膜覆盖在模制品的整个区域上,在模制品的整个区域的一侧或两侧上使用助流剂、分离膜和分离织物,并且借助真空密封带将模制品的表面的半透膜密封,将吸收绒毛嵌入远离模制品的半透膜的一侧,由此空气在整个区域上向上排空,和/或

iv)使用由隔膜薄膜制得的真空袋,其被优选放置在与模制品的浇口(gate)一侧相对的位置处,借助真空袋将空气从与浇口相对一侧排空。

随后,使该结构配备用于树脂体系的浇口和用于排空的浇口。最后,在整个结构上施加真空膜并用密封带密封,并且将整个结构排空。在灌注树脂体系之后,在保持真空的条件下进行树脂体系的反应。

本发明还提供了本发明的模制品或本发明的面板在用于风力涡轮机的转子叶片、交通领域、建筑领域、汽车制造、造船业、轨道车辆构造、集装箱构造、卫生设施和/或航空航天中的用途。

以下通过实施例说明本发明。

实施例

实施例1

a)泡沫体的制造

对于本发明的所有实验,使用各种挤出的泡沫体(实施例if1至if6)。为了比较,通过颗粒发泡法制造了聚合物泡沫体(比较实施例cf7和cf8)。表1给出了所使用的泡沫体及其固有性能的概述。按照以下制造了各个泡沫体,然后修剪成20mm用于增强:

if1、if2和if3:

在串联的挤出系统中制造本发明的泡沫平板。将100份聚苯乙烯(ps148h,basf)与阻燃剂和添加剂(0.2份滑石)一起连续供应至熔融挤出机。阻燃剂和添加剂以母料的形式在聚苯乙烯(ps148h,basf)中。通过熔融挤出机(zsk120)中的注入口,将发泡剂(co2,乙醇,异丁烷)连续地进料。包括发泡剂的总吞吐量为750kg/h。将含发泡剂的熔体在下游的冷却挤出机(ke400)中冷却并通过槽模挤出。将发泡熔体通过表面已涂覆有聚四氟乙烯的加热的定型器经传送带以不同的出料速度移出,并形成平板。机械加工前的典型的平板尺寸约为宽700mm(y方向)和厚50mm(z方向)。

if4:

类似于if1,在串联的挤出系统中制造泡沫平板。将聚苯醚母料(ppe/ps母料,norylc6850,sabic)和聚苯乙烯(ps148h,basf)连续供应至熔融挤出机(zsk120),以制造由25份ppe和75份ps组成的完全共混物。另外,通过入口将添加剂例如滑石(0.2份)计量加入作为ps母料(ps148h,basf)。将发泡剂(co2,乙醇和异丁烷)在压力下注入到注入口中。包括发泡剂和添加剂的总吞吐量为750kg/h。将含发泡剂的熔体在下游的冷却挤出机(ke400)中冷却并通过槽模挤出。将发泡熔体通过表面已涂覆有聚四氟乙烯的加热的定型器经传送带移出并形成平板。机械加工前的典型的平板尺寸约为宽800mm(y方向)和厚60mm(z方向)。

if5:

类似于if1,使用具有相同吞吐量的相同的串联挤出系统。所用的聚合物是50份苯乙烯-顺丁烯二酸酐聚合物(sma)(xiransz26080,polyscope)和50份苯乙烯-丙烯腈聚合物(san)(vll25080,basf)的共混物。另外,加入成核剂(0.2份滑石)和稳定剂(0.2份tinuvin234)。所用的发泡剂是co2、丙酮和异丁烷。

if6:

聚酯泡沫体是通过挤出系统中的多孔模头制造的挤出的泡沫体。将热塑性聚合物(干燥的pet珠粒)在双螺杆挤出机(螺杆直径=132mm,长径比=24)的熔融区熔融并与成核剂混合。在熔融后,加入环戊烷作为发泡剂。总吞吐量为约150kg/h。在加入发泡剂之后,将均匀的熔体直接通过下游的壳体和静态混合器冷却。在其到达多孔模头之前,熔体必须通过熔体过滤器。将可膨胀的熔体通过多孔模头发泡,并通过定型器单元将单个的线料结合成块体。随后将挤出的平板通过材料去除而修整成固定外形的几何结构并通过平行于挤出方向的热熔接而接合。泡沫体的平均密度为60kg/m3

cf7:

所用的泡沫体是聚酯基模塑泡沫体。类似于wo2012/020112的实施例7制造可膨胀的珠粒和泡沫平板。

cf8:

所用的泡沫体是聚苯乙烯基模塑泡沫体,其在颗粒发泡机中被制造成泡沫板,然后锯成平板(原料基础:styroporp326,basf)。

b)泡沫体的特征

按照以下测定泡沫体的特性:

-玻璃化转变温度(tg):玻璃化转变温度根据iso11357-2(2014年7月版)以20k/min的加热速率在氮气气氛下由第二次加热运行测定。

-各向异性:为了确定各向异性,对泡沫体的中间区域的泡孔的显微镜图像进行统计学评估。泡孔的最大维度称为“a方向”,并且由此得到其他两个正交取向的维度(b方向和c方向)。各向异性被计算为a方向和c方向之间的商。

-泡孔的a方向相对于厚度方向(d)的取向;角度γ:泡孔的a方向的取向同样通过显微镜图像进行评估。在a方向和厚度方向(d)之间所形成的角度给出了取向。

-泡孔的最小维度(c方向):类似于各向异性,通过显微镜图像的统计学分析来确定泡孔的最小维度。

-在z方向上的压缩强度:压缩强度根据dineniso844(按照2009年10月的德国版本)确定。

-泡沫体在z方向上的压缩强度与泡沫体在x方向上的压缩强度之比(压缩强度z/x):在z方向上的压缩强度与在x方向上的压缩强度之比由这两个单个值的商确定。

-闭孔含量:闭孔含量根据dineniso4590(按照2003年8月的德国版本)确定。

-密度:纯泡沫体的密度根据iso845(2009年10月版)确定。

-树脂吸收:对于树脂吸收,对比将材料通过刨削从表面移除之后的泡沫体。除了所用的树脂体系、泡沫平板和玻璃粗纱之外,还使用以下辅助材料:尼龙真空膜、真空密封带、尼龙助流剂、聚烯烃分离膜、聚酯分离织物和ptfe隔膜薄膜及聚酯吸收绒毛。由模制品通过使用真空灌注施加纤维增强的外板层来制造面板。将两板层quadrax玻璃粗纱(e玻璃se1500,ocv;织物:saertex,每种情况下具有1200g/m2的各向同性层压材料[0°/-45°/90°45°])分别施加到泡沫体的上侧和下侧。为了确定树脂吸收,与标准的面板制造不同,在泡沫体和玻璃粗纱之间插入分离膜。以这种方式,可确定纯泡沫体的树脂吸收。将分离织物和助流剂安装在玻璃粗纱的任一侧。随后,使该结构配备有用于树脂体系的浇口和用于排空的浇口。最后,在整个结构上施加真空膜并用密封带密封,并且将整个结构排空。在电加热阶段制造带有玻璃表面的结构。

所用的树脂体系是胺-固化的环氧化物(树脂:basfbaxxores5400,固化剂:basfbaxxodur5440,根据数据表中的混合比和进一步加工)。在两种组分混合之后,将树脂降低至20mbar下抽真空10分钟。在23+/-2℃的树脂温度下,对预加热的结构进行灌注(阶段温度:35段)。通过随后以0.3k/min的温度梯度从35梯上升至75梯,并在75在下恒温固化6h,可以制造由模制品和玻璃纤维增强的外板层组成的面板。

开始时,根据iso845(2009年10月版)分析泡沫体,以获得泡沫体的表观密度。在树脂体系固化之后,将加工后的面板进行修整以消除边缘区域中由于不完全相配的真空膜而积聚的多余的树脂。随后,除去外板层,并通过iso845再次分析目前的泡沫体。密度差给出了绝对树脂吸收。然后由与泡沫体厚度的乘积得到相应的以kg/m2计的树脂吸收。

-真空稳定性:定性评估真空稳定性。将泡沫体施加到覆盖聚酯绒毛的铝板上,并且在施加真空膜之后,经受10-20毫巴的减压。定性观察尺寸的变化。

-热成型性:定性评估热成型性。为此,在温和的压力下将加热的铝体施加到泡沫体上,在同时避免热降解下评估成型性。

本发明的挤出的泡沫体的显著特征是高各向异性、高闭孔含量和良好的真空稳定性。此外,所有挤出的泡沫体可以通过热处理成形。另外,可在低密度下实现在厚度方向上的高压缩强度,并且特别是在if1至if5的情况下,可以保持非常低的树脂吸收。

c)模制品的制造(泡沫体的增强)

所有泡沫体均用玻璃纤维增强。按照以下制造模制品:模制品的特性示于表2。根据实验,制造了范围达到较大样品的手动试样。

cm1:

泡沫体if1用玻璃纤维(粗纱,s2玻璃,406tex,agy)增强。将玻璃纤维以粗纱的形式以0°的角度α引入。以具有等距a1=a2=12mm的规则矩形图案引入玻璃纤维。在两侧上,在外板层另外留下过量的约5.5mm的玻璃纤维,以便提高与随后作为外板层引入的玻璃纤维垫的粘合。通过组合的针/钩方法以自动方式引入纤维或纤维粗纱。首先,使用钩针(直径约0.80mm)从挤出的泡沫体的第一侧到第二侧完全穿透。在第二侧上,将粗纱钩在钩针的钩中,然后通过针从第二侧拉回到挤出的泡沫体的第一侧。最后,切断第二侧上的粗纱,并在针处切开所形成的粗纱环。钩针因此即用于下一操作。

im2:

类似于cm1,泡沫体if1用玻璃纤维(粗纱,s2玻璃,406tex,agy)增强。将玻璃纤维以粗纱的形式以45°的角度α在四个不同的空间方向上彼此以90°的角度β引入。

cm3:

类似于cm1增强泡沫体if2;仅角度ε不同。

cm4:

类似于cm1增强泡沫体if3。

im5:

类似于im2增强泡沫体if4。

im6:

类似于im2增强泡沫体if4。在增强之前,通过材料去除处理借助圆锯制造带槽的平板。纵向和横向上的槽间隔为30mm。仅在平板的一侧引入槽宽为2mm且槽深为19mm(板厚为20mm)的槽。

im7:

类似于im6来制造。除了引入槽之外,还将纺织品背衬织物(帆布织物,50g/m2,具有热塑性粘合剂的e玻璃)通过热装置施加到无槽的一侧。

im8:

类似于im5增强泡沫体if4。不同之处在于使用不同的钩针(直径约1.12mm)和较粗的粗纱(e玻璃,se1500,900tex,3b)。

im9:

用带倒刺的钩针增强泡沫if4。为此,将由长度为30mm的粗纱(e玻璃)组成的短切玻璃纤维施加到泡沫体的整个区域上,然后压入并通过粘有针杆的针穿过泡沫体,所述针杆具有若干带倒刺的钩针。在针退出之后,大部分纤维留在泡沫体中;通过抽吸除去表面多余的纤维。对所有想要的方向重复该步骤。不同方向上的纤维比例几乎相同。

im10:

类似于im2增强泡沫体if5。

im11:

类似于im2增强泡沫体if6。

cm12:

类似于im2增强泡沫体cf7。

cm13:

类似于im2增强泡沫体cf8。

d)模制品的特征

-悬垂性:定性地确定模制品的悬垂性。为此,将模制品放置在曲率半径为2m的弯曲模具上。对模具曲率的适配以及模制品中材料的损失的避免或缺陷进行评估。

-缝合阻力:为了评估通过粗纱增强的制造相关优势,进行比较渗透试验。针被机械固定在动态试验机上。随后,针被用于在5个不同的点穿透泡沫,并记录力距分布。正弦半波的幅度为25mm,因此针穿透至泡沫体中25mm。当针刺入时,针速为2m/s。根据样品厚度,样品被穿透。样品表面形成测量的零点。通过压电力式传感器测量力。所记录的值是5次测量的平均值,并显示了穿透深度为10毫米处的力(以牛顿(n)计)。

本发明的挤出的泡沫体可以借助纤维以简单且可再现的方式处理,以得到本发明的模制品。有利的是,将纤维以相对于泡孔的最大维度(a方向)成小于60°的角度ε引入纤维,因为由此可以降低增强过程中的穿透阻力(从cm1至cm3看出角度增大且缝合阻力增大)。另外,可以通过减小密度的挤出的泡沫体(cm4)而进一步降低穿透阻力。模制品的悬垂性可以通过在纤维被引入到模制品前被有利地引入的槽来实现(im6对im5)。进一步的改进可以通过背面的纺织品载件来实现,所述纺织品载件阻止切割的泡沫元件断开并提高整体完整性(im7)。最后,可以使用不同的纤维类型(im8)、引入方法(im9)和挤出的泡沫体(im10,im11)。

e)面板的制造

随后,如上文在部分a)中所述(树脂吸收的确定),通过借助真空灌注(vi)施加纤维增强外板层,使用模制品来制造面板。然而,没有使用泡沫体,而是使用模制品;另外,与树脂吸收的确定不同,在模制品和玻璃粗纱之间没有引入分离膜。

f)面板的特征

-剪切刚度和稳定性:剪切特性在23℃和50%相对湿度下根据din53294(1982年2月版)确定。

-耐剥离性:面板的耐剥离性用单悬臂梁(scb)样品确定。样品的成型高度为20mm;外层各自由厚度约2mm的准各向同性玻璃纤维增强的环氧树脂层组成。样品在zwickz050拉力试验机上以5mm/min的速度进行试验,并以重复的方式(3至4次)向每个样品施加负载并将其移除。在每个负载循环(在a)中目视评估裂纹的增长或增加。力-距图用于确定裂纹扩展能(图u)。这被用于确定撕裂强度或耐剥离性为

其中b为样品宽度。

-耐皱性:基于材料测得的基体特性计算外板层耐皱性(微皱)。外板层的耐起皱性可确定为

其中ec3:在厚度方向上的芯的刚度,ef:外层的刚度,gc:芯材料的剪切刚度。

所有本发明的面板的显著特征是高耐皱性和低密度(ip2和ip5至ip11),特别是在主要泡孔轴线取向与平板垂线平行(ip2相对于cp3)的情况下。因此可以避免使用中的潜在故障。另外发现使用通过槽模挤出制造的泡沫体(ip2和ip5至ip10)是特别有利的。在低密度的情况下,耐剥离性和剪切刚度/阻力较高。相比之下,比较泡沫体的耐皱性较差,或实现更高特性所需的密度较高。

实施例2(用于说明优选的纤维角度的面板的设计,理论上确定)

理论上确定包含挤出的泡沫体if4的模制品的机械特性。所用的纤维(f)是玻璃纤维(粗纱,e-玻璃,900tex,3b)。认为纤维(f)被引入时所呈现的角度α为0°至80°。在角度α>0°的情况下,认为纤维(f)在四个不同的空间方向彼此呈角度β度0°、90°、180°、270°)。认为呈现出等距a=16mm,α角为0°,15625玻璃纤维元件/m2的规则矩形图案。

对不同的角度α计算剪切模量。为此,使用具有柔性支杆的拉杆模型来连接上部和下部外层。外层被认为是无限刚性的。挤出的泡沫体的厚度为25mm,剪切刚度g=14mpa,且压缩刚度e=35mpa。泡沫体表面的树脂吸收被认为是0.2kg/m2

纤维束由e玻璃纤维组成。作为制造方法的结果,增强元件的厚度为2x900tex(=1800tex);纤维体积含量被认为是40体积%且直径为1.5mm。这产生了表4中所记录的剪切模量、加工板中模制品的密度和随着角度α变化的比剪切模量(specificshearmoduli)的数据。

表4

可以明显看出,在再次降低以及约60°以上之前,剪切刚度随着纤维角度的增加迅速增大。

对于面板的使用,弯曲刚度或起泡阻力(blisterresistance)通常非常重要。具有平行对称外层的面板的起泡刚度可以用最后引入的标准力如下测定:

其中f是在发生整体气泡之前的力(=起泡阻力),d是面板的弯曲刚度,g是模制品(=芯材料)的剪切模量,t是面板的模制品的厚度,b是面板的宽度,且d是模制品(=芯材料)的厚度加上一个外层的厚度。

面板的弯曲刚度由下式计算:

ed是外层的弹性模量,ek是模制品(=芯材料)的弹性模量,td是每侧外层的厚度,tk是模制品(=芯材料)的厚度,d是芯材的厚度加上一个外层的厚度。

面板的宽度被认为是0.1m;长度为0.4m。模制品的厚度为25mm,外层的厚度为2mm,且外层的弹性模量为39gpa。

所用的模制品是根据实施例cm14至cm23的模制品。

表5表明结果。

表5

可以明显看出,在再次降低以及约60°以上之前,起泡稳定性随着角度α增加迅速增大。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1