一种芳杂环衍生物及其制备方法以及一种有机电致发光器件与流程

文档序号:11124137阅读:1083来源:国知局

技术领域

本发明涉及有机光电材料技术领域,尤其涉及一种芳杂环衍生物及其制备方法以及一种有机电致发光器件。



背景技术:

有机电致发光器件(OLED)是一种新型的平面显示器件,一般由两个对置的电极和插入在该两个电极之间的至少一层有机发光化合物组成。电荷被注入到在阳极和阴极之间形成的有机层中,以形成电子和空穴对,使具有荧光或磷光特性的有机化合物产生了光发射。

有机电致发光器件由于具有节能、响应速度快、颜色稳定、环境适应性强、无辐射、质量轻、厚度薄等特点,随着近几年光电通讯和多媒体领域的迅速发展,有机光电子材料已成为现代社会信息和电子产业的核心。但是,该领域的研究尚有一些关键问题没有得到真正解决,器件寿命短、发光效率低成为制约其广泛应用的瓶颈。



技术实现要素:

有鉴于此,本发明要解决的技术问题在于提供一种芳杂环衍生物及其制备方法以及一种有机电致发光器件,由所述芳杂环衍生物制备的有机电致发光器件具有较高的发光效率以及较长的寿命。

本发明提供了一种芳杂环衍生物,具有式(Ⅰ)所示结构:

其中,

L1、L2、L3、L4独立的选自0或1;

Q1和Q2独立的选自氮、氧、硫、碳原子数6~30的芳基或碳原子数1~30的杂环基;

R1选自氢原子、氰基、碳原子数是1~30的烷基、取代或未取代的碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基、取代或未取代的碳原子数7~30的芳烷氧基或取代或未取代的碳原子数7~30的芳烷巯基;

Ar1、Ar2、Ar3、Ar4独立的选自氢原子、取代或未取代的碳原子数7~50的芳烷基、取代或未取代的碳原子数7~50的芳烷氧基、取代或未取代的碳原子数7~50的芳烷巯基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基。

优选的,所述芳杂环衍生物具有以下结构:

其中,

Z1~Z16独立的选自CH、C或N;

L3和L4独立的选自0或1;

R1选自氢原子、氰基、碳原子数是1~30的烷基、取代或未取代的碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基、取代或未取代的碳原子数7~30的芳烷氧基或取代或未取代的碳原子数7~30的芳烷巯基;

Ar1、Ar2、Ar3、Ar4独立的选自氢原子、取代或未取代的碳原子数7~50的芳烷基、取代或未取代的碳原子数7~50的芳烷氧基、取代或未取代的碳原子数7~50的芳烷巯基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基。

优选的,所述芳杂环衍生物中,-R1选自以下结构:

-O-R1';-S-R1';

其中,

Z1~Z8独立的选自CH、C或N;

R'1和R'2独立的选自碳原子数是1~30的烷基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基或取代或未取代的碳原子数6~30的芳香族胺基。

优选的,所述芳杂环衍生物中,-Ar1、-Ar2、-Ar3、-Ar4独立的选自以下式(1)~式(35)所示结构:

其中,

X和Y独立的选自氢原子、卤素原子、氰基、取代或未取代的碳原子数1~30的烷基、取代或未取代的碳原子数1~30的烷氧基、取代或未取代的碳原子数2~30的烯基、取代或未取代的碳原子数7~30的芳烷基、取代或未取代的碳原子数7~30的芳烷氧基、取代或未取代的碳原子数6~30的芳基、取代或未取代的碳原子数6~30的芳氧基、取代或未取代的碳原子数5~30的杂环基或者取代或未取代的碳原子数7~30的芳香族胺基。

优选的,当Q1和Q2都是苯基、R1为氰基或苯基时,Ar1和Ar2独立的选自取代或未取代的碳原子数7~50的芳基、取代或未取代的碳原子数5~50的杂环基或者取代或未取代的碳原子数7~30的芳香族胺基。

优选的,L1和L2不同时为0。

本发明还提供了一种芳杂环衍生物的制备方法,包括:

将式(Ⅲ)所示的化合物与式(IV)所示的化合物和式(V)所示的化合物进行反应,得到式(I)所示的芳杂环衍生物;

其中,

X′为卤原子,Y′与Y1′独立的选自B(OH)2或H;

L1、L2、L3、L4独立的选自0或1;

Q1和Q2独立的选自氮、氧、硫、碳原子数6~30的芳基或碳原子数1~30的杂环基;

R1选自氢原子、氰基、碳原子数是1~30的烷基、取代或未取代的碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基、取代或未取代的碳原子数7~30的芳烷氧基或取代或未取代的碳原子数7~30的芳烷巯基;

Ar1、Ar2、Ar3、Ar4独立的选自氢原子、取代或未取代的碳原子数7~50的芳烷基、取代或未取代的碳原子数7~50的芳烷氧基、取代或未取代的碳原子数7~50的芳烷巯基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基。

本发明还提供了一种有机电致发光器件,包括上述芳杂环衍生物或上述制备方法制备的芳杂环衍生物。

优选的,上述有机电致发光器件包括第一电极、第二电极和设置于所述第一电极与第二电极之间的有机物层;所述有机物层包括上述芳杂环衍生物或上述制备方法制备的芳杂环衍生物。

本发明还提供了一种有机光电材料,包括权利要求1~6任意一项所述的芳杂环化合物或权利要求7所述的制备方法制备的芳杂环化合物;所述有机光电材料包括有机太阳电池、电子纸、有机感光体或有机晶体管。

与现有技术相比,本发明提供了一种芳杂环衍生物,具有式(Ⅰ)所示结构,其中,L1、L2、L3、L4独立的选自0或1;Q1和Q2独立的选自氮、氧、硫、碳原子数6~30的芳基或碳原子数1~30的杂环基;R1选自氢原子、氰基、碳原子数是1~30的烷基、取代或未取代的碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基、取代或未取代的碳原子数7~30的芳烷氧基或取代或未取代的碳原子数7~30的芳烷巯基;Ar1、Ar2、Ar3、Ar4独立的选自氢原子、取代或未取代的碳原子数7~50的芳烷基、取代或未取代的碳原子数7~50的芳烷氧基、取代或未取代的碳原子数7~50的芳烷巯基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基。与现有技术相比,本发明提供的芳杂环衍生物是在吡啶并[3,4-g]芳杂环衍生物中引入Q1、Q2、Ar1、Ar2、Ar3与Ar4基团,可提高电子密集度及技能,同时,R1可以改善芳杂环衍生物的性能,从而使包含式(I)所示的芳杂环衍生物的有机电致发光器件具备较高的亮度、较好的耐热性、长寿命及高效率等特点。

具体实施方式

本发明提供了一种芳杂环衍生物,具有式(Ⅰ)所示结构:

其中,

L1、L2、L3、L4独立的选自0或1;

Q1和Q2独立的选自氮、氧、硫、碳原子数6~30的芳基或碳原子数1~30的杂环基;

R1选自氢原子、氰基、碳原子数是1~30的烷基、取代或未取代的碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基、取代或未取代的碳原子数7~30的芳烷氧基或取代或未取代的碳原子数7~30的芳烷巯基;

Ar1、Ar2、Ar3、Ar4独立的选自氢原子、取代或未取代的碳原子数7~50的芳烷基、取代或未取代的碳原子数7~50的芳烷氧基、取代或未取代的碳原子数7~50的芳烷巯基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基。

本发明提供的芳杂环衍生物是在吡啶并[3,4-g]芳杂环衍生物中引入Q1、Q2、Ar1、Ar2、Ar3与Ar4基团,可提高电子密集度及技能,同时,R1可以改善芳杂环衍生物的性能,从而使包含式(I)所示的芳杂环衍生物的有机电致发光器件具备较高的亮度、较好的耐热性、长寿命及高效率等特点。

本发明所提供的式(Ⅰ)所示芳杂环衍生物中,所述L1、L2、L3与L4独立的选自0或1,优选L1、L2、L3与L4不同时为0;更优选的,L1、L2不同时为0;在本发明的某些具体实施例中,L1、L2均为1,L3与L4独立的选自0或1。

Q1和Q2独立的选自氮、氧、硫、碳原子数6~30的芳基或碳原子数1~30的杂环基;优选为氮、氧、硫、碳原子数6~24的芳基或碳原子数1~24的杂环基;更优选为氮、氧、硫、碳原子数6~14的芳基或碳原子数1~14的杂环基。

本发明中,优选当Q1和Q2都是苯基、R1为氰基或苯基时,Ar1和Ar2独立的选自取代或未取代的碳原子数7~50的芳基、取代或未取代的碳原子数5~50的杂环基或者取代或未取代的碳原子数7~30的芳香族胺基。

本发明优选的,所述芳杂环衍生物具有以下任意结构:

其中,

Z1~Z16独立的选自CH、C或N。

R1选自氢原子、氰基、碳原子数是1~30的烷基、取代或未取代的碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基、取代或未取代的碳原子数7~30的芳烷氧基或取代或未取代的碳原子数7~30的芳烷巯基;优选为氢原子、氰基、碳原子数是1~15的烷基、取代或未取代的碳原子数6~14的芳基、取代或未取代的碳原子数5~14的杂环基、取代或未取代的碳原子数7~14的芳香族胺基、取代或未取代的碳原子数7~14的芳烷氧基或取代或未取代的碳原子数7~14的芳烷巯基。

本发明中,R1更优选为H,即所述杂芳环衍生物具有以下任意结构:

本发明中,R1还优选为以下任意结构:

-O-R1';-S-R1';

即,所述芳杂环衍生物具有以下任意结构:

其中,

Z1~Z8独立的选自CH、C或N;

R'1和R'2独立的选自碳原子数是1~30的烷基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基或取代或未取代的碳原子数6~30的芳香族胺基;更优选为碳原子数是1~15的烷基、碳原子数6~30的芳基、取代或未取代的碳原子数5~30的杂环基或取代或未取代的碳原子数6~15的芳香族胺基;在本发明的某些具体实施例中,R1选自以下基团:苯基、吡啶基、喹啉基、邻菲罗啉基、N,N-二苯基胺基、吡啶-4-基氧基、吡啶-4-基巯基或C5~C15烷基。

L3、L4、R1、Ar1、Ar2、Ar3、Ar4与上述L3、L4、R1、Ar1、Ar2、Ar3、Ar4的范围相同,在此不再赘述。

本发明中,Ar1、Ar2、Ar3、Ar4独立的选自氢原子、取代或未取代的碳原子数7~50的芳烷基、取代或未取代的碳原子数7~50的芳烷氧基、取代或未取代的碳原子数7~50的芳烷巯基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基。更优选为氢原子、取代或未取代的碳原子数7~30的芳烷基、取代或未取代的碳原子数7~30的芳烷氧基、取代或未取代的碳原子数7~30的芳烷巯基、碳原子数6~30的芳基、取代或未取代的碳原子数5~30的杂环基、取代或未取代的碳原子数7~14的芳香族胺基。在本发明的某些具体实施例中,Ar1、Ar2、Ar3、Ar4独立的选自以下式(1)~式(35)所示结构:

本发明中,上述取代的芳基、取代的杂环基、取代的芳香族胺基、取代的芳烷氧基、取代的芳烷巯基、取代的芳烷基、取代的烯基、取代的芳氧基中,所述取代的是指含有取代基的,所述取代基优选选自卤素、C1~C30的烷基、C2~C30的烯基、C2~C30的炔基、羟基、C1~C30的烷氧基、氨基、硝基、巯基、硫醚基、亚胺基、氰基、酰胺基、膦酸根、膦、羧基、硫代羰基、磺酰基、氨磺酰基、羰基、醛基、酯基、乙酰基、乙酰氧基、氨基甲酰基、氧代基(=O)、卤代烷基、取代的氨酰基和氨基烷基、环烷基(可为单环、稠合多环或非稠合多环)、杂环基(可为单环、稠合多环或非稠合多环)、单环或稠合或非稠合多环芳基(如苯基、萘基、吡咯基、吲哚基、呋喃基、噻吩基、咪唑基、噁唑基、异噁唑基、噻唑基、三唑基、四唑基、吡唑基、喹啉基、异喹啉基、吖啶基、吡嗪基、哒嗪基、嘧啶基、苯并咪唑基、苯并噻吩基或苯并呋喃基)、氨基、-O-C1~C20的烷基、O-芳基、芳基、芳基-C1~C20的烷基、-CO2CH3、-CONH2、-OCH2CONH2、-NH2、-SO2NH2、-OCHF2、-CF3、-OCF3。这些取代基可任选地进一步被选自上述基团的取代基取代。本发明中,所述取代基更优选选自以下式36~65中的任一取代基:

本发明还提供了一种芳杂环衍生物的制备方法,包括:

将式(Ⅲ)所示的化合物与式(IV)所示的化合物和式(V)所示的化合物进行反应,得到式(I)所示的芳杂环衍生物;

其中,

X′为卤原子,Y′与Y1′独立的选自B(OH)2或H;

L1、L2、L3、L4独立的选自0或1;

Q1和Q2独立的选自氮、氧、硫、碳原子数6~30的芳基或碳原子数1~30的杂环基;

R1选自氢原子、氰基、碳原子数是1~30的烷基、取代或未取代的碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基、取代或未取代的碳原子数7~30的芳烷氧基或取代或未取代的碳原子数7~30的芳烷巯基;

Ar1、Ar2、Ar3、Ar4独立的选自氢原子、取代或未取代的碳原子数7~50的芳烷基、取代或未取代的碳原子数7~50的芳烷氧基、取代或未取代的碳原子数7~50的芳烷巯基、碳原子数6~50的芳基、取代或未取代的碳原子数5~50的杂环基、取代或未取代的碳原子数7~30的芳香族胺基。

其中,所述L1、L2、L3、L4、Q1、Q2、Ar1、Ar2、Ar3、Ar4与R1均同上所述,在此不再赘述。

本发明对上述反应原料的来源并没有特殊的限制,可为市售也可为制备。本发明中所述式(Ⅲ)所示的化合物优选按照以下方法进行制备:

本发明中,当Q1或Q2为C6~C30的芳基或C1~C30的杂环基时,Y′或Y1′为B(OH)2,式(Ⅲ)所示的化合物与式(IV)所示的化合物或式(V)所示的化合物在催化剂作用下进行Suzuki偶联反应,所述反应条件为本领域技术人员熟知的反应条件即可,并无特殊的限制。

当所述Q1或Q2为N、O或S时,Y′或Y1′为H,此时,式(Ⅲ)所示的化合物与式(IV)所示的化合物或式(V)所示的化合物进行置换反应;所述置换反应的条件为本领域技术人员熟知的置换反应条件即可,并无特殊的限制。

上述反应式中,所述R1、X‘均同上所述,在此不再赘述。

本发明中,当Y'为B(OH)2时,所述式(IV)所示的化合物优选按照以下方法制备:

X"为卤素原子。

当Y1′为B(OH)2时,式(V)所示的化合物,优选按照以下方法制备:

X"为卤素原子。

在本发明中,当所述L1与L2同时为0时,将式(Ⅲ)所示的化合物还原即可得到式(I)所示的化合物。

本发明提供的芳杂环衍生物制备方法简单,易于产业化。

本发明还提供了一种有机电致发光器件,包括上述的式(I)所示的芳杂环衍生物。

所述有机电致发光器件为本领域技术人员熟知的有机电致发光器件即可,本发明优选包括第一电极、第二电极和设置于所述第一电极与第二电极之间的有机物层;所述有机物层包含上述的芳杂环衍生物。

本发明中,所述有机物层是指有机电致发光器件第一电极和第二电极之间的全部层。所述有机物层中的至少一层为发光层。

按照本发明,所述有机物层优选包括空穴注入层、空穴传输层、既具备空穴注入又具备空穴传输技能层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层与既具备电子传输又具备电子注入技能层中的一层或多层,更优选包括依次设置的空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层与电子注入层或依次设置的既具备空穴注入又具备空穴传输技能层、电子阻挡层、发光层、空穴阻挡层与既具备电子传输又具备电子注入技能层。

当本发明有机物层包含空穴注入层、空穴传输层或既具备空穴注入又具备空穴传输技能层时,优选所述空穴注入层、空穴传输层或既具备空穴注入又具备空穴传输技能层中至少一层包含空穴注入物质、空穴传输物质或既具备空穴注入又具备空穴传输技能的物质。

当本发明有机物层为单层结构时,所述有机物层为发光层,当所述有机物层为多层结构时,所述有机物层包括发光层;所述发光层中优选包括磷光主体、荧光主体、磷光掺杂材料与荧光掺杂材料中的一种或多种;所述磷光主体、荧光主体、磷光掺杂材料与荧光掺杂材料中的一种或多种为式(I)所示的芳杂环衍生物。

所述发光层还可优选为红色、黄色或青色发光层,所述芳杂环衍生物为红色、黄色或青色发光层的主体或掺杂物质。如,当所述发光层为青色发光层时,所述式(I)所示的芳杂环衍生物在用于青色主体或青色掺杂时,可提供高效率、高亮度、高分辨率及长寿命的有机发光器件。

当所述有机物层包括电子传输层时,所述电子传输层可包括式(I)所示的芳杂环衍生物和/或金属化合物。所述金属化合物为本领域技术人员熟知的用于电子传输的物质即可,并无特殊的限制。

当所述有机物层同时包括发光层与电子传输层时,所述发光层与电子传输层可分别包括结构相同或不相同的式(I)所示的芳杂环衍生物。

本发明提供的有机电致发光器件,利用式(I)所示的芳杂环衍生物及常规材料制成即可,本发明对所述有机电致发光器件的制备方法并无限定,本领域常规方法即可,本发明优选利用薄膜蒸镀、电子束蒸发或物理气相沉积等方法在基板上蒸镀金属及具有导电性的氧化物及它们的合金形成阳极,然后在其上形成有机物层及蒸镀阴极,得到有机电致发光器件。

所述有机物层可以同时包括上述的空穴注入层、空穴传输层、发光层、空穴阻挡层及电子传输层的多层结构,并且这些多层结构可按照上述薄膜蒸镀、电子束蒸发或物理气相沉积等方法蒸镀,也可使用多样的高分子材料溶剂工程替代蒸镀方法,如旋转涂膜(spin-coating)、薄带成型(tape-casting)、刮片法(doctor-blading)、丝网印刷(Screen-Printing)、喷墨印刷或热成像(Thermal-Imaging)等方法减少层数制造。

本发明提供的有机电致发光器件按照使用的材料也可分为前面发光、背面发光或两面发光;并且该有机电致发光器件可以同样原理应用在有机发光器件(OLED)、有机太阳电池(OSC)、电子纸(e-paper)、有机感光体(OPC)或有机薄膜晶体管(OTFT)上。

本发明提供的式(I)所示的芳杂环衍生物在有机太阳电池、照明用OLED、柔性OLED、有机感光体及有机晶体管等有机器件中也可按照适用有机发光器件的原理适用。

本发明还提供了一种有机光电材料,包括上述式(I)所示的异喹啉类化合物;所述有机光电材料包括有机太阳电池、电子纸、有机感光体或有机晶体管。

为了进一步说明本发明,下面结合实施例对本发明提供的芳杂环衍生物及其制备方法以及有机电致发光器件进行详细描述。

实施例1

中间体2-氯-5-苯基吡嗪(A-1)的合成:

将2-溴-5-氯吡嗪(21.3g,0.11mol),苯硼酸(12.2g,0.10mol),四三苯基磷钯0.5g,加入到1000mL反应瓶中,加入甲苯400mL,碳酸钠水溶液(2N,150mL)氮气保护,油浴80℃反应24小时。后处理过程:反应体系降温,静置30分钟分液,保留有机层,旋干甲苯,固体加入少量二氯甲烷溶解,过柱分离,用石油醚:二氯甲烷=1:1(体积比)冲柱,得固体(A-1)(10.7g,y=56%)。

实施例2

中间体A-2~A-5的合成:

按照上述实施例1中间体A-1的合成方法,用相同摩尔量比制备得到表1所示的化合物,表1是本发明实施例2反应物质、生成物质及产率汇总。

表1实施例2反应物质、生成物质及产率汇总

实施例3

中间体5-氯-N,N-二苯基吡嗪-2-胺(A-6)的合成:

将二苯胺(16.9g,0.10mol)和叔丁醇钠(28g,0.30mol),甲苯400mL加入到反应瓶中,搅拌30分钟,氮气保护,然后加入2-溴-5-氯吡嗪(23.2g,0.12mol)、三(二亚卞基丙酮)二钯1.5g,最后加入三叔丁基膦4g,升温到100℃反应24小时。后处理过程:体系降温,加入水终止反应,过滤,滤液分液,旋干甲苯,加入少量二氯甲烷溶解固体,石油醚:二氯甲烷=3:1(体积比)过柱分离,得固体(A-6)(14.1g,y=50%)。

实施例4

按照上述实施例3中间体A-6的合成方法,用相同摩尔量比制备得到表2所示化合物,表2是本发明实施例4反应物质、生成物质及产率汇总。

表2本发明实施例4反应物质、生成物质及产率汇总

实施例5

中间体5-氯-2,3-二苯基吡嗪(A-9)的合成:

将苯硼酸(24.4g,0.20mol),2,3-二溴-5-氯喹啉(27.3g,0.10mol),四三苯基膦钯(7.0g,3%)加入到反应瓶中,加入甲苯600mL,碳酸钠水溶液(2N,250mL)氮气保护,油浴90℃反应,过夜。后处理过程:体系降温,分液,旋干甲苯,剩余物用二氯甲烷全溶,再加入等量的石油醚,过硅胶漏斗,并用二氯甲烷:石油醚=1:2(体积比)冲洗,直到无产品点流出,收集滤液,并旋干溶剂,得深色固体(A-9)(21.3g,y=80%)。

实施例6

按照上述实施例5中间体A-9的合成方法,用相同摩尔量比制备得到表3所示化合物,表3是本发明实施例6反应物质、生成物质及产率汇总。

表3本发明实施例6反应物质、生成物质及产率汇总

实施例7

中间体5-(4-吡啶基)嘧啶-2-基硼酸(A-13)的合成:

取5-(4-吡啶基)-2-溴嘧啶(10g,42.4mmol)加入到三口瓶中,加入THF 100mL,氮气保护,-78℃搅拌30分钟,然后加入正丁基锂(2.5M)21mL,反应1小时,再加入硼酸三异丙酯14g,低温反应1小时,逐渐恢复室温。后处理过程,体系中加入2M盐酸使溶液PH值为4-5,静置分液,水层用乙酸乙酯萃取一遍,合并有机层,旋干,得白色固体(A-13)(6.8g,y=80%)。

实施例8

按照上述实施例7中间体A-13的合成方法,用相同摩尔量比制备得到表4所示化合物,表4是本发明实施例8反应物质、生成物质及产率汇总。

表4本发明实施例8反应物质、生成物质及产率汇总

实施例9

中间体2-(吡啶-2-羰基)吡啶甲酸甲酯(B-1)的合成:

将3-溴吡啶(15.9g,0.1mol)溶于300mL无水乙醚中,干冰浴-78℃,氮气保护,加入44mL的BuLi(2.5M),搅拌反应1小时,再加入3,4-吡啶二甲酸二乙酯(19.5g,0.1mol),反应2小时,后逐渐升到室温,加入水终止反应。后处理过程:体系分液,分去水层,水层用乙酸乙酯萃取一遍,合并有机层并旋干有机溶剂,用二氯甲烷:石油醚=9:1(体积比)过柱分离,得白色固体(B-1)(12.1g,Y=50%)。

实施例10

按照上述实施例9中间体B-1的合成方法,用相同摩尔量比制备得到表5所示化合物,表5是本发明实施例10反应物质、生成物质及产率汇总。

表5本发明实施例10反应物质、生成物质及产率汇总

实施例11

中间体吡啶并[3,4-g]异喹啉-5,10-二酮(C-1)的合成:

将实施例9制备的B-1(10g,41.5mmol)溶解于300mL的THF中,降温到0℃,加入混合液LTMP(LTMP的合成:在500mL的THF中,保持0℃溶解0.13mol BuLi,0.14mol的2,2,6,6-四甲基哌啶)。0℃搅拌反应2小时,加入200mL水终止反应,分去水层,有机层旋干,用二氯甲烷:石油醚=10:1(体积比)过柱分离,得固体(C-1)(3.5g,y=44%)。

实施例12

按照上述实施例11中间体C-1的合成方法,用相同摩尔量比制备得到表6所示化合物,表6是本发明实施例12反应物质、生成物质及产率汇总。

表6本发明实施例12反应物质、生成物质及产率汇总

实施例13

中间体5,10-二氯吡啶并[3,4-g]异喹啉(D-1)的合成:

准确称取实施例11制备的C-1(10g,47.8mmol)加入到反应瓶中,加入200mL乙腈,再称取30g三氯氧磷缓慢滴加到反应瓶中,滴加完毕后缓慢升温到60℃,反应时间为5小时。反应完毕后,加入水小心萃灭,再加放大量的碳酸钠饱和溶液调PH值7-8,再加入二氯甲烷,萃取三次,旋干得固体(D-1)(7.5g,y=63%)。

实施例14

按照上述实施例13中间体D-1的合成方法,用相同摩尔量比制备得到表7所示化合物,表7是本发明实施例14反应物质、生成物质及产率汇总。

表7本发明实施例14反应物质、生成物质及产率汇总

实施例15

5,10-二(4-吡啶基)吡啶并[3,4-g]异喹啉(E-1)的合成:

将实施例13制备的5,10-二氯-吡啶并[g]喹啉D-1(14.8g,0.6mmol),4-硼酸吡啶(18g,0.146mmol),四三苯基膦钯4g加入到反应瓶中,再加入甲苯、乙醇和水2:1:1(体积比)混合液共计600mL,氮气保护,搅拌升温到110℃反应24小时。后处理过程:体系降温,分液,旋干甲苯。加入二氯甲烷溶解固体,过柱,石油醚:乙酸乙酯=2:1(体积比)冲洗,得固体(E-1)(13g,y=65%)。

采用核磁共振氢谱对制备的化合物结构进行表征,结果如下:1H NMR(500MHz,Chloroform)δ9.29(s,2H),8.71(s,4H),8.52(s,2H),7.90(s,4H),7.63(s,2H)。可见,本发明制备得到了上述化合物E-1。

实施例E-2~E-23

按照上述实施例15中间体E-1的合成方法,用相同摩尔量比制备得到表8所示化合物,表8是本发明实施例E-2~E-23反应物质、生成物质及产率汇总。

表8本发明实施例E-2~E-23反应物质、生成物质及产率汇总

实施例F-1~F-9

按照上述实施例15E-1的合成方法,以实施例14制备的化合物D2~D9为原料,用相同摩尔量比制备得到表9所示化合物,表9是本发明实施例F-1~F-9反应物质、生成物质及产率汇总。

表9本发明实施例F-1~F-9反应物质、生成物质及产率汇总

采用核磁共振氢谱对制备的化合物F-1结构进行表征,结果如下:1H NMR(500MHz,Chloroform)δ9.54(s,1H),9.29(s,1H),8.71(s,4H),8.52(s,1H),8.33(s,2H),8.12(s,1H),7.90(s,4H),7.63(s,1H),7.52(d,J=30.0Hz,3H)。可见,本发明制备得到了上述化合物F-1。

采用核磁共振氢谱对制备的化合物F-9结构进行表征,结果如下:1H NMR(500MHz,Chloroform)δ9.23(d,J=85.0Hz,2H),8.32(s,1H),7.65(d,J=5.0Hz,5H),7.55(s,4H),7.42(d,J=10.0Hz,3H),2.71(s,2H),1.63(s,2H),1.27(d,J=15.0Hz,12H),0.89(s,3H)。可见,本发明制备得到了上述化合物F-9。

实施例16

N,N-二苯基-10-(吡啶-4-基氧基)吡啶并[3,4-g]异喹啉-5-胺(G-1)的合成:

1)10-氯-N,N-二苯基吡啶并[3,4-g]异喹啉-5-胺的合成

按照实施例3中间体A-6的合成方法,以5,10-二氯吡啶并[3,4-g]异喹啉(6.0g,24mmol),二苯胺(4.4,24mmol)为原料进行反应,得中间体10-氯-N,N-二苯基吡啶并[3,4-g]异喹啉-5-胺(4.6g,y=50%)。

2)N,N-二苯基-10-(吡啶-4-基氧基)吡啶并[3,4-g]异喹啉-5-胺(G-1)的合成

取4-羟基吡啶(10g,0.1mol)溶于100mL无水四氢呋喃中,搅拌,准确称量NaH(0.96g,0.4mol)分批次加到反应瓶中,不要太快,防止太多气泡产生,加完后溶液呈现黄色,再加入10-氯-N,N-二苯基吡啶并[3,4-g]异喹啉-5-胺(42.0g,0.11mol),也要分批加入,室温反应过夜。后处理过程:过滤,除去固体物质,滤液旋干,加入二氯甲烷溶解,过柱用石油醚:乙酸乙酯=1:5(体积比)冲柱,得固体(G-1)(22.0g,y=50%)。

采用核磁共振氢谱对制备的化合物G-1结构进行表征,结果如下:1H NMR(500MHz,Chloroform)δ9.61(s,1H),9.29(s,1H),8.51(d,J=15.0Hz,2H),8.39(s,2H),7.65(d,J=25.0Hz,2H),7.24(s,4H),7.14–6.93(m,8H)。可见,本发明制备得到了上述G-1所示化合物。

实施例17

N,N-二苯基-10-(吡啶-4-基硫)吡啶并[3,4-g]异喹啉-5-胺(G-2)的合成:

将4-吡啶硫醇(1.1g,10mmol),10-氯-N,N-二苯基吡啶并[3,4-g]异喹啉-5-胺(3.8g,10mmol),氢氧化钾(840mg,15mmol),mPANI/pFe3O4(2.5g,5mol%)H2O(30mL)混合,加热8小时。通过乙酸乙酯萃取有机相,并采用乙酸乙酯:石油醚=4:1(体积比)过柱分离,得白色固体(G-2)(1.73g,y=38%)。

采用核磁共振氢谱对制备的化合物G-2结构进行表征,结果如下:1H NMR(500MHz,Chloroform)δ9.29(s,2H),8.88(s,2H),8.52(s,2H),7.73(s,1H),7.63(s,1H),7.43(s,2H),7.24(s,4H),7.04(d,J=40.0Hz,6H)。可见,本发明制备得到了上述G-2所示化合物。

实施例18

5,10-二(吡啶-4-基氧基)吡啶并[3,4-g]异喹啉(G-3)的合成:

按照实施例16中G-1的合成方法,投入D-1(5.0g,20mmol),4-羟基吡啶(4.0g,42mmol),得固体(G-3)(3.4g,y=46%)。

采用核磁共振氢谱对制备的化合物G-3结构进行表征,结果如下:1H NMR(500MHz,Chloroform)δ9.42(s,2H),8.50(s,2H),8.39(s,4H),7.76(s,2H),6.98(s,4H)。可见,本发明制备得到了上述G-3所示化合物。

实施例19

5,10-二(吡啶-4-基硫)吡啶并[3,4-g]异喹啉(G-4)的合成:

按照实施例17中G-2的合成方法,加入4-吡啶硫醇(2.2g,20m mol),5,10-二氯吡啶[3,4-g]异喹啉(2.5g,10mmol)得白色固体(G-4)(1.4g,y=35%)。

采用核磁共振氢谱对制备的化合物G-4结构进行表征,结果如下:1H NMR(500MHz,Chloroform)δ9.29(s,1H),8.88(s,2H),8.52(s,1H),7.63(s,1H),7.43(s,2H)。可见,本发明制备得到了上述G-4所示化合物。

实施例20

将费希尔公司涂层厚度为的ITO玻璃基板放在蒸馏水中清洗2次,超声波洗涤30min,然后按异丙醇、丙酮、甲醇按顺序洗涤30min,再用蒸馏水反复清洗2次,超声波洗涤10min,干燥,转移到等离子体清洗机中,将上述基板洗涤5min,送到蒸镀机中;将已经准备好的ITO透明电极上蒸镀空穴注入层2-TNATA蒸镀空穴传输层a-NPD蒸镀青色主体ADN/掺杂5%的TPPDA蒸镀空穴阻挡层及空穴传输层如表10所示蒸镀阴极LiFAl得到有机电致发光器件;上述过程有机物蒸镀速度是保持LiF是Al是

上述方法得到的有机发光器件的电子发光特性见表10。

表10实施例20中空穴阻挡层及空穴传输层物质种类与有机电致发光器件的电子发光特性

从上述表10中可以看出利用本发明的芳杂环衍生物制备的有机电致发光器件的发光效率及寿命特性均有显著的提高。

本发明利用新的芳杂环衍生物制备得到有机电致发光器件,具有较高的发光效率和较长的寿命结果,因此可应用于实用性高的OLED产业。本发明的有机电致发光器件可适用于平面面板显示、平面发光体、照明用面发光OLED发光体、柔性发光体、复印机、打印机、LCD背光灯或计量机类的光源、显示板、标识等。

以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1