含寡聚醚侧链的三苯胺类聚合物及其在溶液法制备有机光电器件中的应用的制作方法

文档序号:11097106阅读:1231来源:国知局
含寡聚醚侧链的三苯胺类聚合物及其在溶液法制备有机光电器件中的应用的制造方法与工艺

本发明涉及有机光电材料领域,具体涉及含寡聚醚侧链的三苯胺类聚合物及其在溶液法制备有机光电器件中的应用。



背景技术:

有机/聚合物发光二极管(O/PLED)是一类以有机小分子和聚合物材料为基础的发光二极管。具有质轻、主动发光、视角广、低成本、低能耗、易制作柔性和大尺寸面板等优势,在有机平板显示和白光照明领域中有着广阔的应用前景。有机太阳能电池材料是一类新型的可持续再生的低成本绿色能源材料,且易制备大面积柔性电池,有着巨大的应用潜力。有机场效应晶体管是以有机半导体材料作为有源层的晶体管器件,以其低成本、柔性可弯曲以及可制备大面积器件的特点而受到广泛关注。因此,在有机光电领域吸引了世界上众多的研究机构和科研团队的关注和投入,而开发新型高效稳定的材料更是有机光电领域中备受关注的焦点。

空穴传输性能占主导的P型材料是有机光电领域中重要的一类材料,广泛应用于空穴注入、空穴传输、空穴产生及活性层中以提高器件的效率和稳定性。作为最重要的P型材料之一,三苯胺在有机光电领域得到了广泛的研究与应用。如N,N’-二(1-萘基)-N,N’-二苯基-1,1’-联苯-4,4’-二胺(NPB)、1,1-双[4-[N,N-二(对甲苯基)氨基]苯基]环己烷(TAPC)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-MeOTAD)和聚[双(4-苯基)(4-丁基苯基)胺](Poly-TPD)等广泛使用的空穴传输材料。传统的三苯胺类P型材料大多是蒸镀加工,蒸镀型材料存在易结晶,材料损失大,能耗高等缺点。少数溶液加工型三苯胺类P型材料也只是用甲苯、氯苯等弱极性溶剂型加工,这与活性层存在溶剂侵蚀的问题。

解决不同有机层溶剂侵蚀,实现正交加工是溶液法制备有机光电器件的热点问题之一。曹镛课题组报道的侧链含氨基芴类聚合物可溶于甲醇(含微量乙酸),作为PLED器件的阴极界面修饰层得到的器件性能与Ba/Al作为电子注入的器件性能相当[Chem.Mater.,2004,16;708-716.];侧链含磺酸钠基团的三苯胺类聚合物可溶于甲醇,DMF和DMSO等强极性,不溶于甲苯、二甲苯等弱极性溶剂,用于正装PLED器件的空穴注入或传输层,可提高器件效率[J.Mater.Chem.,2006,16,2387-2394;CN200610033514.2]。Mark C.Lonergan报道了侧链含磺酸钠和三甘醇单甲醚(TEG)芴类聚合物,可溶于甲醇、或DMF或水等强极性溶剂中[Macromolecules 2013,46,4361-4369]。Klaus Müllen报道了侧链含聚乙二醇的芴类聚合物,可溶解在甲醇中进行旋涂加工,作为电子传输层,将蓝光PLED效率提高了2倍以上[Adv.Funct.Mater.2013,23,4897–4905]。Sumitomo Chemical Company,Limited的Ken Sakakibara报道了一系列侧链含聚乙烯醇和羧酸盐的三芳胺类化合物,这些化合物可以溶于强极性溶剂,可应用于有机光电器件[US2014/02311717]。大邱庆北科学技术院和艾尼股份公司报道了一些含聚醚侧链的用于染料敏化太阳能电池有机染料[CN103811185A;CN104781249A]。杨楚罗和Lai Yee-Hing课题组报道了基于桥连型平面三苯胺小分子空穴传输材料[Chem.Mater.2011,23,771–777;J.Mater.Chem.,2012,22,15397-15404]。

本发明所述的含寡聚醚侧链的三苯胺类聚合物,以三苯胺为主链,保证了聚合物较高的空穴迁移率。通过三苯胺类单元与不同P型单元(如苯、噻吩、咔唑等)共聚,可实现能级和空穴迁移率的有效调节。桥连的平面三苯胺衍生物具有更好的平面性,引入到聚合物中有利于提高空穴迁移率。

在聚合物侧链引入寡聚醚结构,可在中等极性溶剂中(如二氧六环、二氧五环、四氢呋喃等)可溶,在强极性溶剂(如N,N-二甲基甲酰胺、二甲基亚砜、水等)中不溶。这种选择性的溶解特性使得该类聚合物在多层溶液加工器件有更多的溶剂正交加工选择。



技术实现要素:

本发明目的在于提供含寡聚醚侧链的三苯胺类聚合物及其在溶液法制备有机光电器件中的应用。

本发明通过如下技术方案实现。

含寡聚醚侧链的三苯胺类聚合物,具有如下结构式:

式中,x为单元组分的摩尔分数,满足:0.5≥x≥0;聚合度n=1~300;

m1、m2、m3分别为0或1;

R为n1=1~3,n2=1~6;

R’为苯基或甲基;

Ar为以下结构中的一种以上:

其中,R1、R2分别为H、n1=1~3,n2=1~6;R3为n1=1~3,n2=1~6。

所述含寡聚醚侧链的三苯胺类聚合物在制备有机光电器件中的应用,将所述含寡聚醚侧链的三苯胺类聚合物通过溶液法制膜,制备的膜作为空穴传输层或空穴产生层用于制备叠层(倒置型)有机电致发光器件、有机光伏器件或有机场效应晶体管。

与现有技术相比,本发明具有如下优点和有益效果:

(1)本发明聚合物的寡聚醚侧链使得聚合物在包括二氧六环、二氧五环或四氢呋喃的含氧环烷烃的中等极性溶剂中有良好的溶解性,而在N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)和水等强极性溶剂中的溶解性很差,使聚合物在多层溶液加工器件中有更多的溶剂正交选择;

(2)本发明聚合物以三苯胺通过桥连反应得到的平面三苯胺单元为主链,有利于提高空穴迁移率,使聚合物具有较高的空穴传输能力,是很好的空穴注入/传输/产生材料;

(3)本发明聚合物结构简单、易于合成,聚合物的HOMO/LUMO能级可调,三苯胺与不同的Ar单元聚合可得到不同能级的聚合物材料,与发光器件的活性层能级更加匹配。

附图说明

图1为聚合物P1和P2薄膜的循环伏安曲线图;

图2为聚合物P1和P4薄膜的吸收光谱图;

图3为聚合物P1和P4薄膜的发射光谱图;

图4为ITO/ZnO/PEIE/P-PPV/P3/MoO3/Al倒置型有机发光器件结构下的电致发光光谱图。

具体实施方式

下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。

实施例1

4,4’-二溴-4”(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(2)的合成

(1)4,4’-二溴-4”-羟基三苯胺(1)的合成:氮气保护下,将4,4’-二溴-4”-甲氧基三苯胺(4.33g,10mmol)溶解在50ml的无水二氯甲烷中,然后在室温下缓慢滴加溶解在10ml无水二氯甲烷中的三溴化硼(5g,20mmol)溶液中,当三溴化硼溶液滴加完毕后,在室温下继续反应8小时;停止反应,将反应液倒入冰水中,用二氯甲烷萃取三遍,再用饱和氯化钠水溶液和水分别洗涤三次,无水硫酸镁中干燥,过滤,减压旋转蒸发除去二氯甲烷溶液,粗产物通过柱层析法提纯,淋洗剂为石油醚:二氯甲烷=1:3,得到灰色固体,产率85%。(质谱-APCI:419.2)。

(2)4,4’-二溴-4”(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(2)的合成:氮气保护下,4,4’-二溴-4”-羟基三苯胺(4.19g,10mmol)溶解在50ml DMF中,再加入碳酸钠(2.76g,20mmol),加热至100℃,反应1小时,将2-(2-(2-甲氧乙氧基)乙氧基)乙-4-甲基苯磺酸酯(2.86g,9mmol)一次性加入到反应液中,在100℃下继续反应8h;停止反应、冷却至室温,将反应液倒入到水中,用乙酸乙酯萃取,再用饱和氯化钠水溶液洗涤三次,无水硫酸镁中干燥,过滤,旋转蒸发除去乙酸乙酯,粗产物通过柱层析法提出,以石油醚:乙酸乙酯=4:1为淋洗剂,获得无色粘稠状的液体,甲醇重结晶,低温下静置得到白色固体,产率78%。1H NMR(500MHz,CDCl3)δ(ppm):7.32-7.27(m,4H),7.03-6.68(m,2H),6.90-6.84m,6H),4.12(t,2H),3.86(t,2H),3.76-3.72(m,2H),3.71-3.64(m,4H),3.58-3.54(m,2H),3.38(s,3H)。

实施例2

4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(3)的合成

在氮气气氛下,将4,4’-二溴-4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(5.65g,10mmol)溶解在100m L无水四氢呋喃(THF)溶液中,降温到-78℃,缓慢滴加2.5mol/L的n-BuLi(14mL,35mmol),保持此温度下搅拌2小时后,迅速将2-异丙基-4,4,5,5-四甲基-1,3,2-二氧杂硼烷(7.44g,40mmol)加入,自然升至室温,搅拌24h,用5ml蒸馏水淬灭反应,旋转蒸发除去THF,用二氯甲烷萃取产物,再用饱和氯化钠水洗涤洗涤3遍,用无水硫酸镁干燥,旋蒸除去溶剂,粗产物在甲醇/四氢呋喃混合溶液中重结晶得到白色固体,产率65%。1H NMR(500MHz,CDCl3)δ(ppm):7.65(d,J=8.5Hz,4H),7.03m,6H),6.85(d,J=9.0Hz,2H),4.12(t,2H),3.87(t,2H),3.77-3.72(m,2H),3.71-3.64(m,4H),3.58-3.53(m,2H),3.38(s,3H),1.33(s,24H)。

实施例3

4,4’-二溴-4”-((甲氧基甲氧基)甲氧基)三苯胺(5)的合成

(1)(甲氧基甲氧基)甲氧基-4-甲基苯磺酸酯(4)的合成:氮气保护下,(甲氧基甲氧基)甲醇(0.92g,10mmol),三乙胺(1.01g,10mmol)溶于20ml无水二氯甲烷中,冰浴降温至0℃,再将溶有对甲基苯磺酰氯(1.90g,10mmol)的10ml无水二氯甲烷溶液滴加进反应瓶,滴加完毕,自然升至室温再反应8h;二氯甲烷萃取,饱和氯化钠溶液水洗3次,无水硫酸镁干燥,旋蒸除去溶剂,粗产物通过柱层析法提纯,淋洗剂为石油醚:乙酸乙酯=5:1,得到无色液体,产率82%。(质谱-APCI:246.4)。

(2)4,4’-二溴-4”-((甲氧基甲氧基)甲氧基)三苯胺(5)的合成:氮气保护下,4,4’-二溴-4”-羟基三苯胺(4.19g,10mmol)溶解在50ml DMF中,再加入碳酸钠(2.76g,20mmol),加热至100℃反应1小时,将(甲氧基甲氧基)甲氧基-4-甲基苯磺酸酯(2.22g,9mmol)一次性加入到反应液中,在100℃下继续反应8h;停止反应、冷却至室温,将反应液倒入到水中,用乙酸乙酯萃取,再用饱和氯化钠水溶液洗涤三次,无水硫酸镁中干燥,过滤,旋转蒸发除去乙酸乙酯,粗产物通过柱层析法提出,以石油醚:乙酸乙酯=4:1为淋洗剂,得到白色固体,产率85%。(质谱-APCI:493.1)。

实施例4

4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-((甲氧基甲氧基)甲氧基)-三苯胺(6)的合成

在氮气气氛下,将4,4’-二溴-4”-((甲氧基甲氧基)甲氧基)-三苯胺(4.93g,10mmol)溶解在100m L无水四氢呋喃溶液中,降温到-78℃,缓慢滴加2.5mol/L的n-BuLi(14m L,35mmol),保持此温度下搅拌2小时之后,迅速将2-异丙基-4,4,5,5-四甲基-1,3,2-二氧杂硼烷(7.44g,40mmol)加入,自然升至室温,搅拌24h;用5ml蒸馏水淬灭反应,THF通过旋转蒸发仪除去,用乙酸乙酯产物,再用饱和氯化钠水洗涤洗涤3遍,用无水硫酸镁干燥,有机层通过旋蒸除去溶剂,粗产物在甲醇/四氢呋喃混合溶液中重结晶得到白色固体,产率69%。(质谱-APCI:587.4)。

实施例5

4,4’-二溴-4”-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-三苯胺(7)的合成

氮气保护下,4,4’-二溴-4”-羟基三苯胺(4.19g,10mmol)溶解在50ml DMF中,再加入碳酸钠(2.76g,20mmol),加热至100℃,反应1小时,将2-(2-(2-溴乙氧基)乙氧基)乙-1-醇(1.92g,9mmol)一次性加入到反应液中,在100℃下继续反应8h;停止反应、冷却至室温,将反应液倒入到水中,用乙酸乙酯萃取,再用饱和氯化钠水溶液洗涤三次,无水硫酸镁中干燥,过滤,旋转蒸发除去乙酸乙酯,粗产物通过柱层析法提出,以石油醚:乙酸乙酯=4:1为淋洗剂,获得无色粘稠状的液体,甲醇重结晶,低温下静置得到白色固体,产率66%。(质谱-APCI:551.1)。

实施例6

4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-三苯胺(8)的合成

氮气保护下,将4,4’-二溴-4”(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-三苯胺(5.51g,10mmol),双-3,3-二甲基-2-丁酮二硼酯(7.62g,30mmol),乙酸钾(2.45g,25mmol)和[1,1’-双(二苯基膦基)二茂铁]二氯化钯(365mg,5mol%)溶于100ml无水二氧六环中,加热至80℃反应12h后,减压蒸去二氧六环,用二氯甲烷萃取产物,饱和食盐水洗涤3遍,无水硫酸镁中干燥,过滤,旋转蒸发除去二氯甲烷,粗产物通过柱层析法提出,以石油醚:乙酸乙酯=3:1为淋洗剂,获得无色粘稠状的液体,甲醇/四氢呋喃混合溶剂重结晶,低温下静置得到白色固体,产率70%。(质谱-APCI:645.4)。

实施例7

2,7-二溴-10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)-9,9-二甲基-吖啶(11)的合成

(1)10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)吖啶酮(9)的合成:氮气保护下,将吖啶酮(1.95g,10mmol),1-溴-4-(2-(2-甲氧乙氧基)乙氧基)苯(2.75g,10mmol),叔丁醇钠(2.88g,30mmol),三(二亚苄基丙酮)二钯(458mg,0.5mmol)和1,1'-双(二苯基膦)二茂铁(333mg,0.6mmol)加入30ml甲苯中,加热至90℃反应12小时;用二氯甲烷萃取产物,饱和食盐水洗涤3遍,蒸干有机层后用柱层析法提纯,以石油醚:乙酸乙酯=3:1为淋洗剂,得到白色固体产物,产率85%。(质谱-APCI:389.2)。

(2)10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)-9,9-二甲基-吖啶(10)的合成:在氮气保护下,10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)吖啶酮(3.89g,10mmol)溶于20ml无水甲苯中,冰浴将反应液降温至0℃,缓慢滴加21ml三甲基铝的甲苯溶液(1M,21mmol),滴加完毕后,自然升至室温反应12小时;用二氯甲烷萃取产物,饱和食盐水洗涤3遍,蒸干有机层后用柱层析法提纯,以石油醚:乙酸乙酯=3:1为淋洗剂,得到无色粘稠液体,产率92%。(质谱-APCI:403.2)。

(3)2,7-二溴-10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)-9,9-二甲基-吖啶(11)的合成:在氮气保护下,将10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)-9,9-二甲基-吖啶(4.03g,10mmol)溶于30ml N,N-二甲基甲酰胺中,将N-溴代丁二酰亚胺(3.74g,21mmol)分三次加入,避光条件下反应12小时;用二氯甲烷萃取产物,饱和食盐水洗涤3遍,蒸干有机层后用柱层析法提纯,以石油醚:乙酸乙酯=3:1为淋洗剂,得到白色固体产物,产率88%。(质谱-APCI:561.0)。

实施例8

2,6-二溴-10-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(17)的合成

(1)2,2’,2”-三甲酸甲酯基三苯胺(12)的合成:氮气保护下,将邻氨基苯甲酸甲酯(1.51g,10mmol)、邻碘苯甲酸甲酯(7.86g,30mmol)、碳酸钾(0.55g,4mmol)、碘化亚铜(95mg,0.5mmol)和铜粉(32mg,0.5mmol)加入30ml苯醚中,加热至180℃反应24小时;冷却后用二氯甲烷萃取产物,饱和食盐水洗涤3遍,有机层通过减压蒸馏除去溶剂,用柱层析法提纯产物,淋洗剂为石油醚:乙酸乙酯=4:1,得到亮黄色固体,产率53%。(质谱-APCI:419.1)。

(2)4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(13)的合成:氮气保护下,溴苯(15.70g,100mmol)溶于80ml无水四氢呋喃中,降温至-78℃,缓慢滴加42ml丁基锂(2.5M,105mmol),-78℃下反应2小时;再将溶有2,2’,2”-三甲酸甲酯基三苯胺(4.19g,10mmol)的30ml无水四氢呋喃溶液缓慢滴加至反应液,滴加完毕后,自然升至室温继续反应12小时;用3ml水粹灭反应,加压蒸馏除去四氢呋喃,所得固体倒入装有200ml乙醇的烧杯中,加热至80℃搅拌2小时,待溶液冷却后抽滤,滤渣用100ml乙醇洗涤,得到黄色固体;氮气保护下,将该黄色固体加入100ml乙酸中,加热至115℃,往反应液加入5ml浓盐酸,继续在115℃下反应8小时;冷却后,将反应液倒入冰水中,抽滤,滤渣用200ml乙醇洗涤,得粗产物;继续用柱层析法提纯产物,淋洗剂为石油醚:二氯甲烷=10:1,得到白色固体,产率83%。(质谱-APCI:737.3)。

(3)2-溴-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(14)的合成:氮气保护下,4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(7.38g,10mmol)溶于500ml氯仿:N,N-二甲基甲酰胺混合溶液(v:v=1:1),避光条件下,将N-溴代丁二酰亚胺(1.78g,10mmol)分3次加入,常温下反应12小时;用二氯甲烷萃取产物,饱和食盐水洗涤3遍,有机层通过减压蒸馏除去溶剂,用柱层析法提纯产物,淋洗剂为石油醚:二氯甲烷=10:1,得到白色固体,产率75%。(质谱-APCI:815.2)。

(4)4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶-2-酚(15)的合成:氮气保护下,2-溴-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(8.17g,10mmol)溶于500ml无水四氢呋喃中,降温至-78℃,缓慢滴加4ml丁基锂(2.5M,10mmol),-78℃下反应10分钟,然后加入干燥的的硝基苯(3.08g,25mmol),自然升至室温反应4小时;再加入10ml水,用二氯甲烷萃取产物,饱和食盐水洗涤3遍;有机层通过减压蒸馏除去溶剂,用柱层析法提纯产物,淋洗剂为石油醚:二氯甲烷=3:1,得到灰色固体,产率55%。(质谱-APCI:753.3)。

(5)10-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(16)的合成:氮气保护下,4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶-2-酚(7.54g,10mmol)溶解在50ml甲苯:N,N-二甲基甲酰胺混合溶剂(v:v=1:1)中,再加入碳酸钠(2.76g,20mmol),加热至100℃,反应1小时;将2-(2-(2-甲氧乙氧基)乙氧基)乙-4-甲基苯磺酸酯(3.18g,10mmol)一次性加入到反应液中,在100℃下继续反应8小时;停止反应、冷却至室温,将反应液倒入到水中,用乙酸乙酯萃取,再用饱和氯化钠水溶液洗涤三次,无水硫酸镁中干燥,过滤,旋转蒸发除去乙酸乙酯,粗产物通过柱层析法提出,以石油醚:乙酸乙酯=4:1为淋洗剂,得到白色固体,产率83%。(质谱-APCI:899.4)。

(6)2,6-二溴-10-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(17)的合成:氮气保护下,10-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(9.00g,10mmol)溶于500ml氯仿:N,N-二甲基甲酰胺混合溶液(v:v=1:1),避光条件下,将N-溴代丁二酰亚胺(3.74g,21mmol)分3次加入,常温下反应12小时;用二氯甲烷萃取产物,饱和食盐水洗涤3遍;有机层通过减压蒸馏除去溶剂,用柱层析法提纯产物,淋洗剂为石油醚:乙酸乙酯=4:1,得到白色固体,产率87%。(质谱-APCI:1057.2)。

实施例9

聚4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺-alt-苯(P1)的合成

氮气保护下,将4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(197.8mg,0.3mmol)和对二溴苯(70.8mg,0.3mmol)溶解在8mL甲苯中,再加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg),升温至85℃反应24小时,然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(300ml)中,过滤,稍干燥后,粗产物先后用甲醇,正己烷抽提,用甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂,浓缩溶有聚合物的甲苯溶液至10ml,再次沉析在甲醇(200ml)溶液中,过滤,干燥,得到淡黄绿色聚合物。(GPC:Mn=2.64×104,PDI=1.87)。

实施例10

聚4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺-alt-噻吩(P2)的合成

氮气保护下,将4,4’-二溴-4”(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(169.7mg,0.3mmol)和2,5-二(三甲基锡)噻吩(122.9mg,0.3mmol)溶解在8ml无水甲苯中,再加入三(二亚苄基丙酮)二钯(4mg)和三(2-甲苯基)膦(8mg),85℃下反应24小时,用2-(三丁基锡)噻吩(20mg)进行第一次封端,反应6小时后,用2-溴噻吩(30mg)进行第二次封端,继续反应6小时;结束反应,降到室温后,将反应液沉析在甲醇(200ml)中;过滤得到的聚合物先后用甲醇、正己烷进行索氏抽提,用20ml甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂;浓缩溶有聚合物的甲苯溶液至10ml,再次沉析在甲醇(200ml)溶液中,过滤,干燥,得到黄绿色聚合物。(GPC:Mn=3.03×104,PDI=2.11)。

实施例11

均聚4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(P3)的合成

氮气保护下,将4,4’-二溴-4”(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(169.7mg,0.3mmol)和4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(197.8mg,0.3mmol)溶解在10mL甲苯中,再加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg),升温至80℃反应24小时,然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(300ml)中,过滤,稍干燥后,粗产物先后用甲醇,正己烷抽提,用20ml甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂,浓缩溶有聚合物的甲苯溶液至10ml,再次沉析在甲醇(200ml)溶液中,过滤,干燥,得到淡黄绿色聚合物。(GPC:Mn=2.05×104,PDI=1.96)。

实施例12

聚4”-((甲氧基甲氧基)甲氧基)三苯胺-alt-9,9-二(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)芴(P4)的合成

氮气保护下,将4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4’’-((甲氧基甲氧基)甲氧基)三苯胺(176.2mg,0.3mmol)和2,7-二溴-9,9-二(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)芴(184.9mg,0.3mmol)溶解在10mL甲苯中,加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg),升温至80℃反应24小时;然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时。反应停止,冷却后,将有机相沉析在甲醇(300ml)中,过滤,干燥后,粗产物先后用甲醇,正己烷抽提;用20ml甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂;浓缩溶有聚合物的甲苯溶液至10ml,再次沉析在甲醇(200ml)溶液中,过滤,干燥,得到淡黄绿色聚合物。(GPC:Mn=3.68×104,PDI=2.22)。

实施例13

聚4”-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-三苯胺三苯胺-alt-9-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)咔唑(P5)的合成

氮气保护下,将4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-三苯胺(193.6mg,0.3mmol)和2,7-二溴-9-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)咔唑(94.2mg,0.3mmol)溶解在8mL四氢呋喃中,再加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg),升温至80℃反应24小时,然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在正己烷(300ml)中,过滤,干燥后,粗产物用正己烷抽提;用20ml四氢呋喃溶解聚合物,用中性氧化铝进行柱层析提纯,四氢呋喃为淋洗剂;浓缩溶有聚合物的四氢呋喃溶液至10ml,再次沉析在正己烷(200ml)溶液中,过滤,干燥,得到淡黄绿色聚合物。(GPC:Mn=1.64×104,PDI=2.35)。

实施例14

聚2,7-10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)-9,9-二甲基-吖啶-alt-苯(P6)的合成

氮气保护下,将2,7-二溴-10-(4-(2-(2-甲氧乙氧基)乙氧基)苯基)-9,9-二甲基-吖啶(168.4mg,0.3mmol)和1,4-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)苯(99.0mg,0.3mmol)溶解在10mL甲苯中,加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg),升温至80℃反应24小时;然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(300ml)中,过滤,稍干燥后,粗产物先后用甲醇,正己烷抽提;用20ml甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂;浓缩溶有聚合物的甲苯溶液至10ml,再次沉析在甲醇(200ml)溶液中,过滤,干燥,得到淡黄绿色聚合物。(GPC:Mn=1.68×104,PDI=2.19)。

实施例15

聚10-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶-alt-苯(P7)的合成

氮气保护下,将2,6-二溴-10-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-4,4,8,8,12,12-六苯基-苯并[9,1]喹啉[3,4,5,6,7-defg]吖啶(317.4mg,0.3mmol)和1,4-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)苯(99.0mg,0.3mmol)溶解在10mL甲苯中,加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg),升温至80℃反应24小时;然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(300ml)中,过滤,干燥后,粗产物先后用甲醇,正己烷抽提;用20ml甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂;浓缩溶有聚合物的甲苯溶液至10ml,在甲醇(200ml)溶液中再次沉析,过滤,干燥,得到黄绿色聚合物。(GPC:Mn=1.21×104,PDI=1.78)。

实施例16

聚4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺-alt-10-(4-乙烯基苯基)-吩噻嗪(P8)的合成

氮气保护下,将4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(197.8mg,0.3mmol)和3,7-二溴-10-(4-乙烯基苯基)-吩噻嗪(137.8mg,0.3mmol)溶解在8mL甲苯中,再加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg),升温至80℃反应24小时,然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(300ml)中,过滤,干燥后,粗产物先后用甲醇,正己烷抽提;用甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂;浓缩溶有聚合物的甲苯溶液至10ml,再次沉析在甲醇(200ml)溶液中,过滤,干燥,得到黄色聚合物。(GPC:Mn=1.64×104,PDI=2.34)。

实施例17

聚4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺-co-苯-co-9-(4-乙烯基苯基)-咔唑(P9)的合成

氮气保护下,将4,4’-二-(4,4,5,5-1,3,2-二氧杂硼烷-二基)-4”-(2-(2-(2-甲氧乙氧基)乙氧基)乙氧基)-三苯胺(197.8mg,0.3mmol),对二溴苯(35.4mg,0.15mmol)和2,7-二溴-9-(4-乙烯基苯基)-咔唑溶解在8mL甲苯中,再加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg);升温至80℃反应24小时,然后加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(300ml)中,过滤,干燥后,粗产物先后用甲醇,正己烷抽提;用甲苯溶解聚合物,用中性氧化铝进行柱层析提纯,甲苯为淋洗剂;浓缩溶有聚合物的甲苯溶液至10ml,再次沉析在甲醇(200ml)溶液中,过滤,干燥,得到黄色聚合物。(GPC:Mn=2.89×104,PDI=2.03)。

实施例18

有机电致发光器件的制备

取预先做好的方块电阻为10Ω的氧化铟锡(ITO)玻璃,依次用丙酮、洗涤剂、去离子水和异丙醇超声清洗,等离子处理10分钟;

将二水合乙酸锌与乙醇胺溶解于2-甲氧基乙醇中形成Zn含量为0.5mol L-1的溶液,加热至60℃,搅拌12小时,即得到ZnO前驱体溶液;将配好的ZnO前驱体溶液滴在ITO上,旋涂形成一层40nm厚的ZnO薄膜,空气中200℃加热1小时,自然冷却后,用丙酮和异丙醇先后超声清洗10分钟,真空烘干;

在ZnO薄膜上旋涂一层80%乙氧基化的聚乙烯亚胺PEIE(70000g mol-1)作为阴极修饰层(PEIE溶解于2-甲氧基乙醇),厚度为10nm,空气中120℃加热10分钟;然后在手套箱内旋涂由对二甲苯溶解的聚对苯撑乙烯(P-PPV)有机层,形成一层80nm后的发光层;

将2mg三苯胺类P型聚合物(P-type Polymer:P3,P4,P5,P6,P7)溶于1ml二氧六环中,在发光层上面旋涂一层P型聚合物膜,厚度为20nm,作为空穴传输层;再在聚合物P膜上旋涂参杂有聚苯乙烯磺酸的聚乙氧基噻吩(PEDOT:PSS)膜,厚度为40nm;最后在3×10-4Pa的高真空下,蒸镀10nm的MoO3和120nm的Al作为阳极。

器件结构:ITO/ZnO/PEIE/P-PPV/P-type Polymer/MoO3/Al,不同三苯胺类P型聚合物为空穴传输层的器件发光效率如表1所示。

表1不同三苯胺类聚合物为空穴传输层的倒置型发光器件效率

由表1可知,三苯胺类聚合物为空穴传输层的倒置发光器件都具有较低的启亮电压(3.0~3.2V),且都有大于10000cd m-2的高亮度,不同的三苯胺类聚合物为空穴传输层得到的器件色坐标都为(0.45,0.53),说明在器件中加入不同的空穴传输层不会影响电致发光光谱,都是P-PPV的本征发射,具有很好的光谱稳定性。同时,不同的空穴传输层都得到较高的流明效率,以P3为空穴传输层的效率最高,达到了15.6cd A-1,P4-P7略低,这与P型聚合物的HOMO能级及空穴迁移率差异有关。

图1为聚合物P1和P2薄膜的循环伏安曲线图,由图1可知,聚合物P1和P2薄膜都表现出明显的氧化和还原过程,测得聚合物P1的氧化和还原电位为0.61V和-1.93V,对应的HOMO和LUMO能级分别为-5.01eV和-2.47,聚合物P2的氧化和还原电位为0.72V和-2.12V,对应的HOMO和LUMO能级分别为-5.12eV和-2.28eV。

图2为聚合物P1和P4薄膜的吸收光谱图,由图2可知,聚合物P1和P4薄膜都表现出一个主链π-π*跃迁的吸收峰,聚合物P1和P4的最大的吸收波长分别是386nm和395nm,吸收边分别为444nm和441nm,根据公式计算得到聚合物P1和P4的光学带隙分别为2.79eV和2.81eV。

图3为聚合物P1和P4薄膜的发射光谱图,由图3可知,聚合物P1和P4薄膜都表现出蓝光发射,最大发射波长分别为462nm和458nm。

图4为ITO/ZnO/PEIE/P-PPV/P3/MoO3/Al倒置型有机发光器件结构下的电致发光光谱图,由图4可知,在P-PPV和MoO3之间旋涂一层聚合物P3膜,发光器件表现出很强的绿光发射。在此器件中,聚合物P3膜用二氧六环溶液旋涂,P-PPV不溶于二氧六环,MoO3膜采用蒸镀方式加工,可实现正交加工,聚合物P3作为器件的空穴传输层。

实施例19

有机电致发光器件的制备

取预先做好的方块电阻为10Ω的氧化铟锡(ITO)玻璃,依次用丙酮、洗涤剂、去离子水和异丙醇超声清洗,等离子处理10分钟;

将配好的ZnO前驱体的甲氧基乙醇溶液滴在ITO上,旋涂形成一层40nm厚的薄膜,空气中200℃加热1小时,自然冷却后,用丙酮和异丙醇先后超声清洗10分钟,真空烘干;

在ZnO薄膜上旋涂一层80%乙氧基化的聚乙烯亚胺PEIE(70000g mol-1)作为阴极修饰层(PEIE溶解于2-甲氧基乙醇),厚度为10nm,空气中120℃加热10分钟;然后在手套箱内旋涂由对二甲苯溶解的P-PPV有机层,形成一层70nm后的发光层;

在发光层上面旋涂一层40nm厚的PEDOT(水溶解)作为空穴传输层,真空烘箱中70℃下烘干;将2mg三苯胺类P型聚合物(P-type Polymer:P1,P2,P3,P4,P5)溶于1ml二氧六环中,在发光层上面旋涂一层P型聚合物膜,厚度为15nm,作为空穴产生层;在P型聚合物膜上甩一层ZnO(甲氧基乙醇前驱体溶液)作为电子产生层,膜厚为20nm;再在ZnO膜上甩一层20nm厚的聚[9,9-二((3-乙基)氧杂环丁烷-3-乙氧基)-己基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN-ox,溶解于甲醇和微量醋酸的混合溶液),120℃下热交联10分钟;然后再甩第二层P-PPV发光层,厚度为70nm;最后在3×10-4Pa的高真空下,蒸镀10nm的MoO3和120nm的Al作为阳极。

器件结构:ITO/ZnO/PEIE/P-PPV/PEDOT/P-type Polymer/ZnO/PFN-ox/P-PPV/MoO/Al,不同三苯胺类聚合物为空穴产生层的倒置型叠层有机电致发光器件性能如表2所示。

表2不同三苯胺类聚合物为空穴产生层的倒置型叠层有机电致发光器件性能

由表2可知,以三苯胺类聚合物为空穴产生层的倒置型叠层有机电致发光器件实现了两层发光层的发光效率叠加,在发射光谱色坐标基本不变的情况下,实现了流明效率大于20cd A-1的绿光发射,且亮度也有大幅提升。不同的P型聚合物为空穴产生层的倒置型叠层有机电致发光器件效率有差异,这与P型聚合物的HOMO能级和空穴迁移率有关。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1