基于CRISPR/Cas9多基因敲除低转染效率细胞系的新方法与流程

文档序号:11230096阅读:803来源:国知局
基于CRISPR/Cas9多基因敲除低转染效率细胞系的新方法与流程

本发明属于分子生物学领域,涉及利用crispr/cas9技术在低转染效率细胞系中实现多基因同时敲除的技术及应用。具体涉及一种基于crispr/cas9多基因敲除低转染效率细胞系的新方法。



背景技术:

crispr/cas9是细菌和古细菌长期演化形成的免疫防御系统,该系统是利用crispr-derivedrna(crrna)通过碱基配对与trans-activatingrna结合形成复合物,cas9内切酶在此复合物引导下对与crrna配对的序列进行定点切割。所以,通过人工设计具有引导作用的sgrna(shortguiderna),可以引导cas9对宿主细胞dna进行定点切割,然后通过非同源性末端接合(nhej)的机制进行修复,实现基因编辑。

目前,crispr/cas9系统被成功应用于真核细胞基因敲除、基因组修饰、条件型knockout和knock-in。但是对于一些较难转染的细胞,如原代细胞、干细胞、不分化的细胞等,磷酸钙或脂质体转染的方法难以成功将表达sgrna与cas9的质粒转入细胞。由于慢病毒不仅能感染分裂或非分裂细胞,对于神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多类型细胞有极高的感染效率,并且慢病毒可以将外源基因有效地整合到宿主染色体上进行持久表达,所以利用慢病毒对较难转染的细胞进行基因敲除具有广阔的应用前景。但是利用慢病毒进行基因敲除时,sgrna与cas9随机整合入基因组中并进行持久表达,当打靶完成后,过表达的sgrna与cas9容易造成脱靶效应。

cre重组酶是1981年从p1噬菌体中发现的,属于λint酶超基因家族。cre重组酶由343个氨基酸组成,cre重组酶不需借助任何辅助因子,可作用于线形、环状或超螺旋dna。cre重组酶能够特异性识别loxp位点,使两个loxp位点间的基因序列被删除或重组。所以利用cre-loxp系统与慢病毒相结合的方式,构建sgrna与cas9介于两个同向loxp之间的慢病毒,待打靶完成后,通过cre-loxp系统将sgrna与cas9去除,从而有效地提高打靶效率,同时降低脱靶的风险。



技术实现要素:

本发明的目的在于利用crispr/cas9技术,提供一种基于crispr/cas9多基因敲除低转染效率细胞系的新方法。

为了实现上述任务,本发明采取如下的技术解决方案:

一种基于crispr/cas9多基因敲除低转染效率细胞系的新方法,其特征在于,包括以下步骤:

1)在目的基因的外显子区域设计并合成相应的sgrna,室温退火后连入载体pu6-sgrna1.0,获得sgrna表达组件;

2)将若干针对目的基因的一个或多个sgrna表达组件进行串联,获得多个sgrna表达组件;

3)将两个同向的loxp位点克隆至pcdh-cmv-mcs-ef1α-puro载体,获得pcdh-cmv-loxp-mcs-loxp-ef1α-puro慢病毒载体;

4)将多个sgrna表达组件与cas9基因克隆至pcdh-cmv-loxp-mcs-loxp-ef1α-puro慢病毒载体,获得pcdh-cmv-loxp-cas9-sgrnas-loxp-ef1α-puro质粒,该质粒与慢病毒包装质粒共转hek293t细胞进行慢病毒包装,获得的慢病毒命名为lenti-cas9-sgrnas;

5)将cre基因克隆至pcdh-cmv-mcs-ef1α-neo慢病毒载体,该质粒与慢病毒包装质粒共转hek293t细胞进行慢病毒包装,获得的慢病毒命名为lenti-cre;

6)lenti-cas9-sgrnas感染待打靶的细胞,感染后加1.0mg/ml的puromycin筛选3~4天后,再用慢病毒lenti-cre感染筛选后的细胞,然后加入1.0mg/ml的新霉素筛选3~4天;

7)获得的细胞采用有限稀释法进行克隆化,获得目的基因敲除的单克隆细胞系。

根据本发明,步骤1)中所述的合成相应的sgrna为针对ecm1外显子6与ecm1外显子7以及针对pgrn外显子5与pgrn外显子6设计的sgrna,其中:

针对ecm1外显子6的sgrna序列为:ggatggcttcccccctggg;

针对ecm1外显子7的sgrna序列为:agctactgaccccctacaa;

针对pgrn外显子5的sgrna序列为:cgtgctgtgttatggtcga;

针对pgrn外显子6的sgrna序列为:cggtgccttctgcgacc。

进一步地,步骤2)中所述的多个sgrna表达组件分别是ecm1与pgrn的四个sgrna表达组件进行串联。

步骤7)中所述的基因敲除的单克隆细胞系为乳腺癌细胞系mda-mb-231。

本发明的基于crispr/cas9多基因敲除低转染效率细胞系的新方法,具有如下优点:

将针对目的基因的sgrna与cas9基因通过慢病毒介导转入待打靶细胞,提高了sgrna与cas9表达水平,从而提高打靶效率;利用cre-loxp系统,通过慢病毒介导在待打靶细胞内表达cre,去除两个同向loxp位点间的sgrna与cas9,降低了过表达的sgrna与cas9产生的细胞毒性,进而降低脱靶风险。

结合了慢病毒具备的能够高效感染较难转染的细胞以及cre重组酶能够使两个同向loxp位点间的基因序列被删除或重组的特点进行基因组编辑,具有毒性小、基因敲除效率高、准确性高,周期短等特点,对于在难转染细胞系中实现多基因敲除意义重大。

附图说明

图1是携带sgrna及cas9的慢病毒载体结构图。

图2是携带cre的慢病毒载体结构图。

图3是sgrna与cas9慢病毒介导的ecm1与pgrn打靶后pcr结果图。

图4是t7e1酶切鉴定sgrna与cas9慢病毒介导的ecm1与pgrn打靶效率检测图。

图5是southernblot检测cre慢病毒介导的sgrna与cas9去除结果图。

图6是sgrna与cas9慢病毒介导的ecm1与pgrn测序结果图。

图7是利用慢病毒敲除ecm1和pgrn基因建立细胞系潜在脱靶检测图。

下面结合附图和实施例对本发明的做进一步的详细说明。

具体实施方式

按照本发明的技术方案,一种基于crispr/cas9多基因敲除低转染效率细胞系的新方法,包括以下步骤:

1)在目的基因的外显子区域设计并合成相应的sgrna,室温退火后连入载体pu6-sgrna1.0,获得sgrna表达组件;

2)将若干针对目的基因的一个或多个sgrna表达组件进行串联,获得多个sgrna表达组件;

3)将两个同向的loxp位点克隆至pcdh-cmv-mcs-ef1α-puro载体,获得pcdh-cmv-loxp-mcs-loxp-ef1α-puro慢病毒载体;

4)将多个sgrna表达组件与cas9基因克隆至pcdh-cmv-loxp-mcs-loxp-ef1α-puro慢病毒载体,获得pcdh-cmv-loxp-cas9-sgrnas-loxp-ef1α-puro质粒,该质粒与慢病毒包装质粒共转hek293t细胞进行慢病毒包装,获得的慢病毒命名为lenti-cas9-sgrnas;

5)将cre基因克隆至pcdh-cmv-mcs-ef1α-neo慢病毒载体,该质粒与慢病毒包装质粒共转hek293t细胞进行慢病毒包装,获得的慢病毒命名为lenti-cre;

6)lenti-cas9-sgrnas感染待打靶的细胞,感染后加1.0mg/ml的puromycin(嘌呤霉素)筛选3~4天后,再用慢病毒lenti-cre感染筛选后的细胞,然后加入neomycin(新霉素,1.0mg/ml)筛选3~4天;

7)获得的细胞采用有限稀释法进行克隆化,获得目的基因敲除的单克隆细胞系。

上述步骤1)中所述的合成相应的sgrna为针对ecm1外显子6与7以及针对pgrn外显子5与6设计的sgrna,其中:

针对ecm1外显子6的sgrna序列为:ggatggcttcccccctggg;

针对ecm1外显子7的sgrna序列为:agctactgaccccctacaa;

针对pgrn外显子5的sgrna序列为:cgtgctgtgttatggtcga;

针对pgrn外显子6的sgrna序列为:cggtgccttctgcgacc。

上述步骤2)中所述的多个sgrna表达组件分别是ecm1与pgrn的四个sgrna表达组件进行串联。

上述步骤7)中所述的基因敲除的单克隆细胞系为乳腺癌细胞系mda-mb-231。

该方法涉及两种慢病毒,一种是表达sgrna及cas9的慢病毒,另一种是表达cre蛋白的慢病毒。其中:

所提供的表达sgrna及cas9的慢病毒载体是将sgrna表达组件和cas9基因的克隆至慢病毒载体pcdh-cmv-loxp-mcs-loxp-ef1αα-puro的mcs区,再将该载体与包装质粒在hek293t细胞内包装,获得用于基因打靶的慢病毒。

所提供的表达cre蛋白的慢病毒,是将cre基因克隆至慢病毒载体pcdh-cmv-mcs-ef1αα-neo,再将该载体与包装质粒在hek293t细胞内包装,获得表达cre蛋白的慢病毒。

所述的sgrna表达组件是针对一个或多个基因设计的一个或多个sgrna。

将多基因的sgrna及cas9同时克隆至慢病毒载体的两个同向loxp之间,在低转染效率的细胞内实现多基因同时敲除,再利用表达cre的慢病毒,对基因组中整合的cas9及sgrna进行有效去除,防止过度表达cas9及sgrna造成脱靶效应。

以下是发明人给出的具体实施例。

实施例1:靶向ecm1和pgrn基因外显子sgrna的设计、合成及载体构建

(1)选取基因主要发挥功能的区域对应的exon,长度大约为400-1200bp;

(2)在exon区找出所有ngg及其前12位碱基在ncbi进行blast,筛选出与目标序列完全匹配并且唯一匹配的序列(若无符合要求的ngg,反向查找ccn),减少潜在脱靶位点;

本实施例设计了ecm1外显子6与ecm1外显子7的sgrna以及针对pgrn外显子5与pgrn外显子6设计的sgrna,其中:针对ecm1外显子6的sgrna序列为:ggatggcttcccccctggg(序列表<210>1);针对ecm1外显子7的sgrna序列为:agctactgaccccctacaa(序列表<210>2),针对pgrn外显子5的sgrna序列为:cgtgctgtgttatggtcga(序列表<210>3);针对pgrn外显子6的sgrna序列为:cggtgccttctgcgacc(序列表<210>4),分别在其5’加上accg得到正向寡核苷酸,获得其互补链,并且在其5’加上aaac得到反向寡核苷酸。将合成的正向和反向寡核苷酸室温退火后连入pu6-sgrna1.0,获得sgrna表达组件。再将若干sgrna表达组件进行串联,获得多个ecm1与pgrnsgrna表达组件。

实施例2:靶向ecm1和pgrn基因的慢病毒构建及包装

(1)将两个同向的loxp位点克隆至pcdh-cmv-mcs-ef1α-puro载体,获得pcdh-cmv-loxp-mcs-loxp-ef1α-puro载体;

(2)将串联的ecm1与pgrnsgrna表达组件及cas9基因克隆至pcdh-cmv-loxp-mcs-loxp-ef1α-puro慢病毒载体,获得同时表达多个pgrn与ecm1sgrna表达组件及cas9基因的慢病毒载体pcdh-cmv-loxp-cas9-ecm1&pgrnsgrnas-loxp-ef1α-puro(如图1所示);

(3)将cre基因克隆至pcdh-cmv-mcs-ef1α-neo载体,获得表达cre蛋白的慢病毒载体pcdh-cmv-cre-ef1α-neo(如图2所示);

(4)慢病毒载体pcdh-cmv-loxp-cas9-ecm1&pgrnsgrnas-loxp-ef1α-puro、pcdh-cmv-cre-ef1α-neo分别与慢病毒包装质粒共转hek293t细胞进行慢病毒包装,获得的慢病毒命名为lenti-cas9-sgrnas与lenti-cre。

实施例3:利用慢病毒特异性敲除ecm1和pgrn基因

以靶向乳腺癌细胞系mda-mb-231的ecm1和pgrn基因为例,其过程如下:

(1)mda-mb-231细胞培养于60mm皿,利用慢病毒lenti-cas9-sgrnas感染,感染后加puromycin(1.0mg/ml)筛选3~4天,获得整合ecm1和pgrnsgrna与cas9的mda-mb-231细胞;收集整合ecm1和pgrnsgrna与cas9的mda-mb-231细胞基因组,使用引物hecm1testfor序列aggtaccgaacgccagctccatttg(序列表<210>5)、hecm1testback序列aagatctggccttccatgtacaggtgtg(序列表<210>6)、hpgrntestfor序列aggtacctgtgtgatgggggagtcacctt(序列表<210>7)和hpgrntestback序列aagatctgctggctccagcccctcactca(序列表<210>8)进行pcr扩增并变性退火(如图3,其中line2为hecm1、line4为hpgrnpcr扩增产物,line1为hecm1和line3为hpgrn野生型对照),将野生型大小条带进行纯化,取500ng进行t7e1酶切检测(如图4所示,左图为hecm1酶切结果,右图为hpgrn酶切结果);

(2)慢病毒lenti-cre感染puromycin筛选后的细胞,然后加入neomycin(1.0mg/ml)筛选3~4天,获得ecm1和pgrnsgrna与cas9去除后的mda-mb-231细胞;

(3)获得的mda-mb-231细胞采用有限稀释法进行多次克隆化,获得ecm1和pgrn基因敲除的mda-mb-231单克隆细胞系。

(4)收集整合ecm1和pgrnsgrna与cas9的mda-mb-231细胞与lenti-cre去除ecm1和pgrnsgrna与cas9的mda-mb-231细胞基因组,使用spei与ndei进行双酶切,再使用由引物cas9southernblotprobefor序列aatcgatgccaccatggacaa(序列表<210>9)和cas9southernblotprobeback序列catatgcgccagcgcgag(序列表<210>10)扩增获得的southernblot探针与酶切后基因组进行杂交,检测cas9基因在基因组中整合与去除情况(如图5所示,line1为整合ecm1和pgrnsgrna与cas9的mda-mb-231细胞、line2为lenti-cre去除ecm1和pgrnsgrna与cas9的mda-mb-231细胞、line3为慢病毒载体pcdh-cmv-loxp-cas9-ecm1&pgrnsgrnas-loxp-ef1α-puro。

实施例4:ta克隆对慢病毒特异性敲除ecm1和pgrn基因的细胞系测序

将实施例3步骤(2)获得的野生型大小条带纯化产物3μl与0.5μlpgem-t连接并转化大肠杆菌dh5α感受态细胞;

(2)挑取单克隆以序列aggtaccgaacgccagctccatttg(序列表<210>5)和序列aggtacctgtgtgatgggggagtcacctt(序列表<210>7)的引物测序,靶基因ecm1和pgrn两个sgrna靶序列发生多种类型突变,基因敲除成功(如图6所示)。

实施例5:利用慢病毒特异性敲除ecm1和pgrn基因建立细胞系脱靶检测

分析ecm1和pgrn基因的sgrna潜在的脱靶位点,潜在的脱靶位点序列:ggatggctgctcccctggg、tgatggattccccccaggg、ccctactgaccctctacaa、atctactgacccctttcaa、caggctgtgttatggccga、gatgctctgttatggtgga、cggtgccttctgctgcc、cggtgcctactgggacc(序列表<210>11~18),并对潜在的脱靶位点进行引物设计,使用引物offtarget1for序列agggctctgtcttatgtcc(序列表<210>19)和offtarget1back序列tggcagcaactttcattt(序列表<210>20)、offtarget2for序列ggcccttatccaacacgagg(如序列表<210>21)和offtarget2back序列actgtggatgcttcacaccc(如序列表<210>22)、offtarget3for序列ccacaggccatgacacttgta(如序列表<210>23)和offtarget3back序列agactagcccggcaacaaag(如序列表<210>24)、offtarget4for序列tgcaccttggttttagggaa(序列表<210>25)、offtarget4back序列agattctcccagtagtggcct(序列表<210>26)、offtarget5for序列taaaagaaagaggacctgtgcg(序列表<210>27)、offtarget5back序列tcccttgcccccatgaaaag(序列表<210>28)、offtarget6for序列tacgcaccatgtgtctagtg(序列表<210>29)、offtarget6back序列aagctgctgcttctgtactct(序列表<210>30)、offtarget7for序列actgaagcacgtctggcata(序列表<210>31)、offtarget7back序列ccgcttggccctgtattttc(序列表<210>32)、offtarget8for序列ggtaaagttaggagcaaggg(序列表<210>33)和offtarget8back序列aagacaatgagggtatcaggtag(序列表<210>34)对lenti-cre去除ecm1和pgrnsgrna与cas9的mda-mb-231细胞进行pcr扩增,并进行测序检测脱靶效率,结果如图7所示,利用lenti-cre去除sgrna与cas9后的细胞,8个潜在脱靶位点未发生脱靶。

核苷酸或氨基酸序列表

<110>陕西师范大学

<120>基于crispr/cas9多基因敲除低转染效率细胞系的新方法

<160>34

<210>1

<211>19

<212>dna

<213>人工合成

<220>

<400>1

ggatggcttcccccctggg

<210>2

<211>19

<212>dna

<213>人工合成

<220>

<400>2

agctactgaccccctacaa

<210>3

<211>19

<212>dna

<213>人工合成

<220>

<400>3

cgtgctgtgttatggtcga

<210>4

<211>17

<212>dna

<213>人工合成

<220>

<400>4

cggtgccttctgcgacc

<210>5

<211>25

<212>dna

<213>人工合成

<220>

<400>5

aggtaccgaacgccagctccatttg

<210>6

<211>28

<212>dna

<213>人工合成

<220>

<400>6

aagatctggccttccatgtacaggtgtg

<210>7

<211>29

<212>dna

<213>人工合成

<220>

<400>7

aggtacctgtgtgatgggggagtcacctt

<210>8

<211>29

<212>dna

<213>人工合成

<220>

<400>8

aagatctgctggctccagcccctcactca<210>9

<211>21

<212>dna

<213>人工合成

<220>

<400>9

aatcgatgccaccatggacaa

<210>10

<211>32

<212>dna

<213>人工合成

<220>

<400>10

catatgcgccagcgcgag

<210>11

<211>19

<212>dna

<213>人工合成

<220>

<400>11

ggatggctgctcccctggg

<210>12

<211>19

<212>dna

<213>人工合成

<220>

<400>12

tgatggattccccccaggg

<210>13

<211>19

<212>dna

<213>人工合成

<220>

<400>13

ccctactgaccctctacaa

<210>14

<211>19

<212>dna

<213>人工合成

<220>

<400>14

atctactgacccctttcaa

<210>15

<211>19

<212>dna

<213>人工合成

<220>

<400>15

caggctgtgttatggccga

<210>16

<211>19

<212>dna

<213>人工合成

<220>

<400>16

gatgctctgttatggtgga

<210>17

<211>17

<212>dna

<213>人工合成

<220>

<400>17

cggtgccttctgctgcc

<210>18

<211>17

<212>dna

<213>人工合成

<220>

<400>18

cggtgcctactgggacc

<210>19

<211>19

<212>dna

<213>人工合成

<220>

<400>19

agggctctgtcttatgtcc

<210>20

<211>18

<212>dna

<213>人工合成

<220>

<400>20

tggcagcaactttcattt

<210>21

<211>20

<212>dna

<213>人工合成

<220>

<400>21

ggcccttatccaacacgagg

<210>22

<211>20

<212>dna

<213>人工合成

<220>

<400>22

actgtggatgcttcacaccc

<210>23

<211>21

<212>dna

<213>人工合成

<220>

<400>23

ccacaggccatgacacttgta

<210>24

<211>20

<212>dna

<213>人工合成

<220>

<400>24

agactagcccggcaacaaag

<210>25

<211>20

<212>dna

<213>人工合成

<220>

<400>25

tgcaccttggttttagggaa

<210>26

<211>21

<212>dna

<213>人工合成

<220>

<400>26

agattctcccagtagtggcct

<210>27

<211>22

<212>dna

<213>人工合成

<220>

<400>27

taaaagaaagaggacctgtgcg

<210>28

<211>20

<212>dna

<213>人工合成

<220>

<400>28

tcccttgcccccatgaaaag

<210>29

<211>20

<212>dna

<213>人工合成

<220>

<400>29

tacgcaccatgtgtctagtg

<210>30

<211>21

<212>dna

<213>人工合成

<220>

<400>30

aagctgctgcttctgtactct

<210>31

<211>20

<212>dna

<213>人工合成

<220>

<400>31

actgaagcacgtctggcata

<210>32

<211>20

<212>dna

<213>人工合成

<220>

<400>32

ccgcttggccctgtattttc

<210>33

<211>20

<212>dna

<213>人工合成

<220>

<400>33

ggtaaagttaggagcaaggg

<210>34

<211>23

<212>dna

<213>人工合成

<220>

<400>34

aagacaatgagggtatcaggtag

核苷酸或氨基酸序列表

<110>陕西师范大学

<120>基于crispr/cas9多基因敲除低转染效率细胞系的新方法

<160>34

<210>1

<211>19

<212>dna

<213>人工合成

<220>

<400>1

ggatggcttcccccctggg

<210>2

<211>19

<212>dna

<213>人工合成

<220>

<400>2

agctactgaccccctacaa

<210>3

<211>19

<212>dna

<213>人工合成

<220>

<400>3

cgtgctgtgttatggtcga

<210>4

<211>17

<212>dna

<213>人工合成

<220>

<400>4

cggtgccttctgcgacc

<210>5

<211>25

<212>dna

<213>人工合成

<220>

<400>5

aggtaccgaacgccagctccatttg

<210>6

<211>28

<212>dna

<213>人工合成

<220>

<400>6

aagatctggccttccatgtacaggtgtg

<210>7

<211>29

<212>dna

<213>人工合成

<220>

<400>7

aggtacctgtgtgatgggggagtcacctt

<210>8

<211>29

<212>dna

<213>人工合成

<220>

<400>8

aagatctgctggctccagcccctcactca

<210>9

<211>21

<212>dna

<213>人工合成

<220>

<400>9

aatcgatgccaccatggacaa

<210>10

<211>32

<212>dna

<213>人工合成

<220>

<400>10

catatgcgccagcgcgag

<210>11

<211>19

<212>dna

<213>人工合成

<220>

<400>11

ggatggctgctcccctggg

<210>12

<211>19

<212>dna

<213>人工合成

<220>

<400>12

tgatggattccccccaggg

<210>13

<211>19

<212>dna

<213>人工合成

<220>

<400>13

ccctactgaccctctacaa

<210>14

<211>19

<212>dna

<213>人工合成

<220>

<400>14

atctactgacccctttcaa

<210>15

<211>19

<212>dna

<213>人工合成

<220>

<400>15

caggctgtgttatggccga

<210>16

<211>19

<212>dna

<213>人工合成

<220>

<400>16

gatgctctgttatggtgga

<210>17

<211>17

<212>dna

<213>人工合成

<220>

<400>17

cggtgccttctgctgcc

<210>18

<211>17

<212>dna

<213>人工合成

<220>

<400>18

cggtgcctactgggacc

<210>19

<211>19

<212>dna

<213>人工合成

<220>

<400>19

agggctctgtcttatgtcc

<210>20

<211>18

<212>dna

<213>人工合成

<220>

<400>20

tggcagcaactttcattt

<210>21

<211>20

<212>dna

<213>人工合成

<220>

<400>21

ggcccttatccaacacgagg

<210>22

<211>20

<212>dna

<213>人工合成

<220>

<400>22

actgtggatgcttcacaccc

<210>23

<211>21

<212>dna

<213>人工合成

<220>

<400>23

ccacaggccatgacacttgta

<210>24

<211>20

<212>dna

<213>人工合成

<220>

<400>24

agactagcccggcaacaaag

<210>25

<211>20

<212>dna

<213>人工合成

<220>

<400>25

tgcaccttggttttagggaa

<210>26

<211>21

<212>dna

<213>人工合成

<220>

<400>26

agattctcccagtagtggcct

<210>27

<211>22

<212>dna

<213>人工合成

<220>

<400>27

taaaagaaagaggacctgtgcg

<210>28

<211>20

<212>dna

<213>人工合成

<220>

<400>28

tcccttgcccccatgaaaag

<210>29

<211>20

<212>dna

<213>人工合成

<220>

<400>29

tacgcaccatgtgtctagtg

<210>30

<211>21

<212>dna

<213>人工合成

<220>

<400>30

aagctgctgcttctgtactct

<210>31

<211>20

<212>dna

<213>人工合成

<220>

<400>31

actgaagcacgtctggcata

<210>32

<211>20

<212>dna

<213>人工合成

<220>

<400>32

ccgcttggccctgtattttc

<210>33

<211>20

<212>dna

<213>人工合成

<220>

<400>33

ggtaaagttaggagcaaggg

<210>34

<211>23

<212>dna

<213>人工合成

<220>

<400>34

aagacaatgagggtatcaggtag

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1