一种热处理制备疏水性聚氨酯薄膜的方法与流程

文档序号:11245197阅读:1126来源:国知局
一种热处理制备疏水性聚氨酯薄膜的方法与流程

本发明涉及一种热处理制备疏水性聚氨酯薄膜的方法,属于聚氨酯材料技术领域。



背景技术:

聚氨酯是一类重要的高分子材料,其化学合成主要是通过二异氰酸酯与二元醇的加聚反应来进行的。聚合物的结构设计与合成不仅是高分子化学的基础,也逐渐延伸到材料学、分子催化、生物医药等领域。因此,探索聚氨酯合成方法、开发新型聚氨酯材料,具有重要的理论意义和潜在的应用价值。

随着涂料安全和环保指标的日益重视,水性聚氨酯因其低危害、低污染等特性逐渐为市场所接受。水性聚氨酯的分散介质以水为主,具有低毒、无污染、无气味、voc含量低等优点,对环境的污染比溶剂型聚氨酯小得多。但是,受合成工艺的限制,水性聚氨酯的分子量较低、涂膜内存在羧基等亲水基团。因此,水性聚氨酯成膜后耐水性不佳,物理、化学性能不如溶剂型聚氨酯。

表面疏水改性是提高聚合物薄膜性能的重要途径,改性后形成的疏水膜能大幅提高水性涂料的耐水性能,因此得到了广泛深入的研究。目前,聚合物的表面疏水改性的研究主要依赖于特殊的化学反应,即首先获得具有特定功能基团的聚氨酯,然后在其表面实施易于发生的click反应,引入疏水性能基团进行改性。fournier等人(fournierd,degeestbg,duprezfe.on-demandclickfunctionalizationofpolyurethanefilmsandfoams[j].polymer,2009,50(23):5362-5367.)首先从比利时recticel公司购买了表面功能化的聚氨酯海绵(表面基团为炔基),然后用带有疏水烷基链的叠氮化合物与其进行1,3-偶极环加成反应,从而得到表面具有疏水性能的聚氨酯海绵材料。nystrom等人(nystromd,lindqvistj,ostmarke,etal.superhydrophobicandself-cleaningbio-fibersurfacesviaatrpandsubsequentpostfunctionalization[j].acsappliedmaterials&interfaces,2009,1(4):816-823.)、xu等人(xuj,boyerc.visiblelightphotocatalyticthiol–enereaction:anelegantapproachforfastpolymerpostfunctionalizationandstep-growthpolymerization[j].macromolecules,2015,48(3):520-529.)也分别在购自sigma-aldrich公司的功能化纤维素、功能化聚丁二烯表面引入了疏水烷基链,达到提高疏水性的目的。然而,这种疏水改性方式均需要聚合物表面带有特殊的功能基团,而且,为了确保后续改性反应的顺利实施,这些功能基团(如炔基、烯基、叠氮等)的化学性质往往较为活泼、易于发生副反应而变质,导致这类聚合物的合成难度大,并不适用于目前普遍使用的聚氨酯材料的表面改性。



技术实现要素:

针对现有技术的不足,本发明提供一种热处理制备疏水性聚氨酯薄膜的方法。

本发明的技术方案如下:

一种热处理制备疏水性聚氨酯薄膜的方法,包括步骤如下:

(1)聚氨酯薄膜的制备

将二异氰酸酯和聚四氢呋喃混合,于80-120℃反应1-10h;加入交联剂、扩链剂,再加入二羟甲基丙酸和催化剂,于60-90℃反应1-10h,得聚氨酯溶液(pu);然后成膜并热处理,即得聚氨酯薄膜;

(2)长链烷基重氮甲烷的制备

将4,4′-二羟基二苯甲酮与长链卤代烷反应,得4,4′-双-长链烷氧基二苯甲酮;4,4′-双-长链烷氧基二苯甲酮与水合肼反应得4,4′-双-长链烷氧基二苯甲酮腙;4,4′-双-长链烷氧基二苯甲酮腙经氧化反应得长链烷基重氮甲烷;

(3)疏水性聚氨酯薄膜的制备

将长链烷基重氮甲烷溶于溶剂中,均匀涂覆到聚氨酯薄膜表面,于100-250℃热处理1-60min,即得疏水性聚氨酯薄膜。

根据本发明,优选的,步骤(1)中所述的二异氰酸酯为4,4′-二环己基甲烷二异氰酸酯,所述的交联剂为三羟甲基丙烷,所述的扩链剂为1,6-己二醇,所述的催化剂为二月硅酸二丁基锡;

优选的,二异氰酸酯、聚四氢呋喃、交联剂、扩链剂、二羟甲基丙酸和催化剂的质量比为1:(0.8-1.2):(0.01-0.1):(0.1-1):(0.01-0.1):(0.001-0.01);

优选的,交联剂溶于丙酮后加入反应体系,交联剂的丙酮溶液中,交联剂的质量与丙酮的体积之比为1:(5-100)g/ml;

优选的,扩链剂溶于丙酮后加入反应体系,扩链剂的丙酮溶液中,扩链剂的质量与丙酮的体积之比为1:(5-100)g/ml;

优选的,成膜后热处理温度范围为25-200℃,热处理的时间为1-10h。

根据本发明,优选的,步骤(2)中所述的长链卤代烷为1-溴代十二烷;

优选的,4,4′-二羟基二苯甲酮与长链卤代烷的质量比为1:(2-20);

优选的,反应温度为80-200℃,反应时间为10-100h;

4,4′-二羟基二苯甲酮与长链卤代烷反应后生成氯化氢,优选的,添加碳酸钾用于中和氯化氢,加快反应速率。4,4′-二羟基二苯甲酮与碳酸钾的质量比为1:(2-20)。

根据本发明,优选的,步骤(2)中4,4′-双-长链烷氧基二苯甲酮的质量与水合肼的体积比为1:(1-10)g/ml;

优选的,4,4′-双-长链烷氧基二苯甲酮与水合肼的反应过程中以乙醇为溶剂,乙酸为催化剂,于70-100℃反应10-100h;进一步优选的,4,4′-双-长链烷氧基二苯甲酮的质量与乙醇的体积制备为1:(10-100),4,4′-双-长链烷氧基二苯甲酮的质量与乙酸的体积比为1:(0.05-0.5)g/ml。

根据本发明,优选的,步骤(2)中4,4′-双-长链烷氧基二苯甲酮腙的氧化反应过程中使用的氧化剂为二氧化锰、吸水剂为无水硫酸钠、碱为氢氧化钾。

优选的,4,4′-双-长链烷氧基二苯甲酮腙、二氧化锰、无水硫酸钠和氢氧化钾的质量比为1:(0.2-2):(0.25-1):(0.01-0.1);

优选的,反应过程中避光反应,反应温度为-40-40℃,反应时间为1-10h。

根据本发明,优选的,步骤(3)中热处理温度为100-140℃,热处理时间为10-30min;

优选的,所述的溶剂为环己烷,长链烷基重氮甲烷的质量与溶剂的体积之比为1:(1-50)g/ml。

本发明的原理:

本发明另辟新径,用长链烷基重氮甲烷对已经成型的聚氨酯材料进行表面修饰,使其表面均匀覆盖一层疏水基团,由于现行的疏水性聚氨酯的制备难度大,因此本发明将会扩大聚氨酯材料的应用领域。

本发明的长链烷基重氮甲烷在加热后会生成高活性卡宾,然后迅速与聚氨酯薄膜表面的羧基发生反应,且与聚氨酯链的c-h键发生插入反应,把长链烷基修饰到聚氨酯表面,使其表面具有疏水性。

本发明长链烷基重氮甲烷的合成与聚氨酯薄膜的疏水修饰的原理如下:

本发明的有益效果如下:

1、本发明通过先制备聚氨酯薄膜,然后利用高分子链自身的c-h键和水性聚氨酯自带的羧基实现聚氨酯材料的疏水性表面修饰。即不必预先在聚氨酯分子内引入高活性反应基团,简化了反应过程,避免了疏水性聚氨酯合成难度大的问题。

2、本发明聚氨酯薄膜的制备过程中加入二羟甲基丙酸,所得聚氨酯薄膜具有亲水性,与水的接触角小于85°;通过本发明方法的疏水改性,所得疏水性聚氨酯薄膜与水的接触角显著增大(>100°),表明疏水表面改性后的聚氨酯薄膜变为疏水性。

附图说明

图1为试验例1中二羟甲基丙酸的质量百分数为1%没有疏水改性的聚氨酯薄膜的水接触角照片。

图2为试验例1中二羟甲基丙酸的质量百分数为1%经过热处理疏水改性的聚氨酯薄膜的水接触角照片。

具体实施方式

下面通过具体实施例对本发明做进一步说明,但不限于此。

实施例中所用原料如无特殊说明均为常规市购产品。

实施例1-3

一种热处理制备疏水性聚氨酯薄膜的方法,包括步骤如下:

(1)聚氨酯薄膜的制备

在一个100ml的三口瓶中加入4,4′-二环己基甲烷二异氰酸酯(7.5g)和聚四氢呋喃(7.9g),用数显电动搅拌器恒温90℃下搅拌2小时进行预聚合反应,反应完毕后将温度降至70℃;将三羟甲基丙烷(0.178g)、1,6-己二醇(2.21g)溶于丙酮(15ml)中并倒入三口烧瓶中,之后加入质量百分数分别为1%(实施例1)、3%(实施例2)、5%(实施例3)的二羟甲基丙酸,二月硅酸二丁基锡3滴,温度升至80℃继续反应3h。反应完毕后旋蒸除去大部分丙酮溶剂,待混合溶液温度降为室温时,将其均匀倒入聚四氟乙烯模具,在60℃下鼓风干燥。所用的各原料的比例如表1所示。

表1不同配方的pu薄膜及其力学性能

(2)长链烷基重氮甲烷的合成

①4,4′-双-十二烷氧基二苯甲酮的合成

在单口烧瓶中加入二甲基甲酰胺(30ml),4,4′-二羟基二苯甲酮(2.14g,0.01mol),1-溴代十二烷(5g,0.02mol),碳酸钾(6.9g,0.05mol),在80℃下反应24h,然后回流搅拌24h,反应完毕后冷却至室温,得到白色絮状物固体,在真空干燥箱中干燥12h。yield:70%;1h-nmr:0.878(t,3h,-ch2ch3),1.238(m,2h,-ch2-ch2),1.465(m,2h,o-ch2-ch2-ch2),1.789(m,2h,o-ch2ch2),4.040(t,2h,o-ch2),6.962(d,1h,ph-h),7.794(d,1h,ph-h);13c-nmr(50mhz,cdcl3):193.8(1c,co)161.9,131.6,130.1,113.4(4c,c-ph),67.8(1c,o-ch2),31.3,29.1,28.8,25.5(4c,-ch2),22.1(1c,-ch2ch3),13.5(1c,-ch2ch3);ir(kbr,cm-1):3398.57,2954.95,2850.79,1633.71,1602.85,1309.67,1253.73.

②4,4′-双-十二烷氧基二苯甲酮腙的合成

将第一步反应后的固体(1.39g,2.53mmol)溶于20ml的乙醇中,倒入100ml的单口瓶中,加入水合肼(2.45ml,50.6mmol),再加入几滴冰乙酸(0.4ml)作为催化剂,加热至80℃回流搅拌48h,反应完毕后把乙醇蒸干,然后将其溶于二氯甲烷(60ml)中,用蒸馏水(60ml)洗涤4次,加入无水硫酸镁干燥有机层,旋蒸得到淡黄色固体,在真空干燥箱中干燥24h。yield:75%;1h-nmr:0.88(t,3h,-ch2-ch3),1.277(m,2h,-ch2ch3),1.453(m,2h,o-ch2),1.754(m,2h,o-ch2-ch2),4.06(t,2h,o-ch2),7.0(s,2h,c=n-nh2),7.405,7.248,7.023,6.837(d,1h,ph-h);12c-nmr:158.9(1c,c=n),161.9,130.9,124.4,114.6(4c,c-ph),67.7(1c,o-ch2),31.4(1c,-ch2-ch2-ch3),29.1(4c,-ch2),25.6(1c,o-ch2-ch2-ch2),13.6(1c,-ch2-ch3).ir(kbr:cm-1):3471.86,2954.95,2850.79,1604.71,1508.33,1247.94.

③4,4′-双-十二烷氧基重氮甲烷的合成

将第二步产物(1.015g,1.8mmol)溶于二氯甲烷(15ml)中,加入二氧化锰(0.57g,6.51mmol),无水硫酸钠(0.50g,3.50mmol),氢氧化钾(0.15g,2.75mmol),在室温下避光搅拌2h,反应完毕后抽滤,有机层经旋蒸后将得到紫色固体。yield:50%;1h-nmr:0.89(t,3h,-ch2-ch3),1.26(m,2h,-ch2),1.29(m,2h,-ch2),1.43(m,2h,o-ch2-ch2-ch2),1.77(m,2h,o-ch2-ch2),3.97(t,2h,o-ch2),6.95(d,1h,ph-h),7.19(d,1h,ph-h)。13c-nmr:156.8,126.0,120.8,114.9(4c,c-ph),67.7(1c,o-ch2),31.4(1c,-ch2-ch2-ch3),29.1(4c,-ch2),25.6(1c,o-ch2-ch2-ch2),13.6(1c,-ch2ch3).ir(kbr:cm-1):3361.93,2918.30,2852.72,2059.71,1510.26,1473.62,1249.87,1024.20.

(3)疏水性聚氨酯薄膜的制备

先将制备好的聚氨酯薄膜切成2×2cm的小方块。然后采用热处理法对薄膜进行表面修饰:

热处理法:首先将4,4′-双-十二烷氧基重氮甲烷(0.1g)溶于环己烷(15ml)中,然后用胶头滴管将溶液滴到聚氨酯薄膜的表面,待溶剂挥发干净后,将聚氨酯薄膜放入温度为120℃电热鼓风干燥箱中加热10min,冷却至室温后用环己烷冲洗薄膜,即得疏水性聚氨酯薄膜。

实施例4

如实施例1所述,不同的是:

步骤(1)中预聚合反应温度为100℃,加入二羟甲基丙酸和二月硅酸二丁基锡后反应温度为70℃;

步骤(3)中热处理温度为140℃。

实施例5

如实施例1所述,不同的是:

步骤(1)中二异氰酸酯、聚四氢呋喃、交联剂、扩链剂、二羟甲基丙酸和催化剂的质量比为1:1.1:0.024:0.28:0.02:0.003。

试验例1、疏水性测试

为了验证本发明制得的疏水性聚氨酯薄膜的疏水性能,采用了接触角测试仪来测薄膜表面的水接触角。聚氨酯薄膜未修饰前,因二羟甲基丙酸单体引入的羧基使薄膜为亲水性。为了研究二羟甲基丙酸的含量对聚氨酯薄膜的表面疏水性能的影响,测试了二羟甲基丙酸的质量百分数分别为1%、3%、5%的聚氨酯薄膜的水接触角;测试结果如表2所示。

表2聚氨酯薄膜的水接触角数据

由表2可知,因聚氨酯的制备过程通常加入二羟甲基丙酸,所得聚氨酯薄膜通常具有亲水性。聚氨酯薄膜在饰前接触角均小于85°,经过热处理修饰的聚氨酯薄膜的水接触角显著增大(>100°),表明修饰后的聚氨酯薄膜变为疏水性。随着二羟甲基丙酸含量的增加,薄膜的水接触角变化不大,这说明二羟甲基丙酸的含量对薄膜疏水性能的影响不大。

本试验例中聚氨酯薄膜的水接触角照片如图1-2所示。从图1-2也可以看出,经过修饰后的聚氨酯薄膜表面的水接触角增大,证明薄膜从亲水性变为疏水性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1