一种检测GSH的有机化合物及其应用的制作方法

文档序号:15510989发布日期:2018-09-22 00:15阅读:626来源:国知局

本发明涉及检测谷胱甘肽(gsh)的荧光探针,具体地说,是一种基于新型花菁荧光团检测谷胱甘肽的化合物及其应用。



背景技术:

谷胱甘肽(gsh)是细胞抗氧化防御系统内最丰富的非蛋白硫醇。谷胱甘肽是许多细胞活动的关键介质,包括维持细胞内氧化还原平衡、异生代谢、细胞内信号转导和基因调节。谷胱甘肽(gsh)具有抗氧化性,细胞保护性以及氧化还原性。谷胱甘肽通过细胞内一系列的氧化还原信号来调节细胞功能。除此之外,在一定条件下生物体内的还原型谷胱甘肽与氧化型谷胱甘肽处于一个氧化还原的平衡状态。详尽的了解谷胱甘肽在正常和疾病状态下的产生、分布和生理功能对阐明细胞信号转导机制有着重要的意义。

由于生物体内环境的多样性和复杂性,因此发展一种选择性好和灵敏度高的分析方法是很有必要的。荧光生物成像技术支撑的可视化研究,在生命分域中扮演非常重要的角色。利用荧光探针高灵敏度、可控开关操作、选择性好、响应时间短等优点,易实现实时原位检测和观察。

chenl.等公开了一种基于硒-硫键交换反应的gsh的荧光探针cyo-dise(结构见图1,chen,lx.etal.chem.sci.2017,8,6991-7002.),与gsh作用后探针的荧光增强从而检测gsh的存在。谷胱甘肽能引起硒-硫键交换反应,酯键加速了-seh基团的亲核加成反应,释放荧光团。但是上述探针合成方法复杂,产率低,耗时耗力。而且这类荧光探针基于比率检测,由于谈着的呢光谱有重叠,因而检测信号受检测背景干扰严重。不能用于精确地检测活体内的gsh的存在。因此,开发易于合成、具有良好选择性,激发发射波长处于近红外荧光区的gsh荧光探针已经成为环境和生命体系中gsh分析研究必不可少的工具。



技术实现要素:

本发明目的在于提供一种基于花菁荧光团检测谷胱甘肽的化合物及其应用。

为实现上述目的,本发明采用技术方案为:

一种检测gsh的有机化合物,化合物为基于新型花菁荧光团(式ii)的有机化合物,结构式如通式ⅰ所示,

通式ⅰ中,x为se或s。

检测gsh的有机化合物的中间体,所述中间体为通式ⅰ所示化合物检测gsh的中间体,其为式ii所示化合物,

一种检测gsh的有机化合物应用,所述通式ⅰ化合物在检测gsh中的应用。

所述通式ⅰ所示化合物作为检测gsh荧光探针的应用。

一种检测gsh的有机化合物的中间体的应用,所述式ii所示化合物中的花菁荧光团具有近红外光谱吸收和荧光发射,化合物在细胞线粒体定位中的应用。

一种检测gsh的荧光探针,检测gsh的荧光探针为通式ⅰ所示化合物,荧光探针以式ii化合物苯并花菁染料作为荧光母体,并在母体上通过酯键引入双(2-羟乙基)二硒化物作为响应基团。

所述通式ⅰ所示探针用于检测环境、生理条件下、细胞以及活体内的gsh。

所述荧光探针定性/定量检测gsh具体为:

将式ⅰ应用于检测gsh时,其是与待测gsh作用后,生成具有式ii结构的化合物,从而导致荧光强度的改变;

将浓度呈梯度变化的gsh水溶液分别加入式ⅰ的hepes缓冲溶液中,分别测定加入gsh前后体系的荧光强度,然后以gsh溶液的浓度和最大发射波长处的荧光强度值为横坐标、纵坐标作图,根据荧光强度值,即可从图中读出溶液中gsh的含量。

本发明的有益效果:

本发明化合物采用花菁染料作为荧光母体,该荧光团拥有高量子产率,并且发射波长处于近红外区,可以最大限度地提高组织穿透力,同时最大限度地减少血红蛋白和肌红蛋白中的血红素,水和脂类的吸收。考虑到吸电子基团能猝灭荧光团的荧光,选择双(2-羟乙基)二硒化物作为响应基团,同时通过酯键连接与苯并花菁荧光团而调节荧光的开关情况,这能够高选择性和高灵敏性的响应gsh。通过引入酯键将荧光团与识别配体连接。通过光诱导电子转移过程来操纵荧光发射以实现选择性地检测gsh;利用检测到gsh后释放荧光团前后导致化合物荧光性质的改变,对整个化合物荧光强度的影响作为识别的检测信号,并将化合物用于检测细胞内gsh的荧光成像。

本发明化合物可作为用于选择性检测模拟生理环境和细胞内gsh的荧光探针,此探针可以选择性地与gsh作用,作用后荧光强度发生明显改变,可实现对gsh的检测。

本发明化合物用作gsh荧光探针,在gsh存在下荧光强度发生变化,可用于gsh的定性定量检测,提高检测灵敏度。尤其是,这类化合物用作荧光探针,可用于细胞、组织以及活体中gsh的检测,这对深入研究gsh在生物体内的产生、输送及累积等过程的动力学机理,进一步了解过gsh的生理和毒理作用具有重要意义。

附图说明

图1为背景技术中所举的已公开的gsh荧光探针结构示意图;

图2为本发明探针检测原理示意图;

图3为本发明实施例提供的新型荧光团和探针bcy-dise的合成路线;

图4为本发明实施例提供的新型荧光团的合成路线;

图5为本发明实施例提供的荧光探针对gsh的选择性示意图;

图6为本发明实施例提供的探针在加入gsh前后的紫外吸收光谱图;

图7为本发明实施例提供的荧光探针bcy-dise荧光强度随gsh浓度变化的示意图,插图表示726nm荧光变化图;

图8为本发明实施例提供的荧光探针bcy-dise用于检测hepg2细胞外源性gsh的共聚焦显微镜照片。

具体实施方式

下面结合附图及实施例用于进一步说明本发明,但本发明不限于实施例。

本发明化合物如结构式ⅰ所示,以所述化合物作为gsh的荧光探针。本发明提供了一种可用于选择性检测细胞内gsh的荧光探针,在gsh存在下荧光强度发生明显降低,可用于gsh的检测,并可大大降低外部检测条件的干扰,提高检测精度。这类化合物作为荧光探针可用于细胞内外gsh水平的检测,这对深入研究gsh在生物体内的产生、输送及累积等过程的动力学机理,具有重要的生物医学意义。

实施例1

式ii所示化合物新型荧光团bcy=o的合成:

如图3所示,取250ml圆底烧瓶,向其中加入乙基苯并吲哚(238.35mg,1mmol)和2-羟基间苯二甲醛(75mg,0.5mmol),100ml溶剂为甲苯:正丁醇=1:1(v/v)回流3小时后旋干二氯甲烷萃取,所得粗产物用柱层析色谱分离纯化得式ii所示化合物,所用硅胶为200-300目。(产率76%)1h-nmr:8.53-8.50(d,1h),8.45-8.43(d,1h),8.32-8.12(m,6h),7.86-7.82(m,3h),7.60-7.57(d,1h),7.45-7.42(m,1h),7.25-7.14(m,4h),6.91-6.89(d,1h),6.09-6.07(d,1h),4.87-4.83(q,2h),3.37-3.33(q,2h),2.04(s,6h),1.58(s,3h),1.54-1.51(t,3h),1.29(s,3h),1.19-1.16(t,3h).1c-nmr:182.14,162.76,159.33,153.24,144.89,138.67,138.60,133.89,133.56,131.53,130.73,130.51,130.13,129.85,129.46,129.17,128.89,127.61,127.54,127.30,127.00,124.85,123.55,121.89,121.38,121.16,119.53,116.28,113.52,110.55,109.65,107.67,55.42,54.19,54.06,42.62,37.80,26.12,21.45,14.86,14.36.lc-ms:589.3.

实施例2(探针的合成)

式ⅰ所示x为se的化合物探针bcy-dise的合成:如图4所示,取250ml圆底烧瓶,向其中加入所得荧光团式ii(84mg,0.1mmol)化合物2(0.12g,0.1mmol)和三光气(0.09g,0.3mmol)溶解在无水二氯甲烷(50ml)中,加入1mln,n-二异丙基乙胺反应30min后,旋蒸除去溶剂,加入无水二氯甲烷(50ml)、n,n-二异丙基乙胺(1ml)、4-二甲氨基吡啶(20mg)和(2-羟乙基)二硒化物(0.050g,0.2mmol)。在25℃条件下反应36h,用旋转蒸发仪除去有机溶剂。所得粗产物用柱层析色谱分离纯化,所用硅胶为200-300目,用二氯甲烷和甲醇作为梯度洗脱剂分离纯化(产率53%)。1h-nmr:8.62-8.59(m,1h),8.48-8.17(m,5h),8.06-7.68(m,6h),7.47-7.45(t,1h),7.28-7.25(t,2h),7.15-7.13(d,1h),6.85-6.83(d,1h),6.80-6.79(d,1h),5.65(s,1h),4.82-4.79(m,2h),4.69-4.65(m,2h),3.24(s,1h),3.48-3.33(m,2h),1.59(s,12h),1.35-1.27(t,4h),1.20-1.17(t,6h).13c-nmr:179.72,173.27,159.33,144.76,138.67,138.61,138.47,138.22,137.71,136.83,133.49,133.10,132.83,131.56,131.26,130.38,130.03,129.47,129.38,129.18,129.06,128.85,127.58,127.45,127.37,127.19,126.96,124.80,123.24,121.89,121.22,119.63,116.17,113.09,110.38,107.66,65.59,55.80,54.84,54.06,53.24,42.56,37.66,26.72,26.59,25.95,14.52,13.95.lc-ms:433.1.

式ⅰ所示x为s的化合物探针bcy-dis的合成:如图4所示,取250ml圆底烧瓶,向其中加入所得荧光团式ii(84mg,0.1mmol)化合物2(0.12g,0.1mmol)和三光气(0.09g,0.3mmol)溶解在无水二氯甲烷(50ml)中,加入1mln,n-二异丙基乙胺反应30min后,旋蒸除去溶剂,加入无水二氯甲烷(50ml)、n,n-二异丙基乙胺(1ml)、4-二甲氨基吡啶(20mg)和(2-羟乙基)二硫化物(0.050g,0.2mmol)。在25℃条件下反应36h,用旋转蒸发仪除去有机溶剂。所得粗产物用柱层析色谱分离纯化,所用硅胶为200-300目,用二氯甲烷和甲醇作为梯度洗脱剂分离纯化(产率73%)。1h-nmr:8.76-8.58(m,3h),8.44-8.27(m,3h),8.14-7.80(m,5h),7.53-7.47(m,2h),7.34-7.17(m,3h),6.88-6.87(m,4h),5.74(s,1h),4.91-4.90(t,2h),4.74-4.70(q,2h),4.24(s,1h),3.48-3.37(m,2h),3.27-3.25(m,2h),2.87-2.74(m,4h),2.09-2.08(s,12h),1.64-1.61(t,6h).13c-nmr:182.34,181.97,159.69,153.51,149.75,149.53,149.31,145.12,138.96,138.56,137.03,136.83,136.63,133.85,131.95,130.41,129.76,129.58,129.46,129.18,127.53,127.31,125.16,124.51,124.31,124.11,122.25,121.62,119.95,116.47,113.49,110.75,107.98,65.90,55.35,54.42,54.22,42.94,38.03,27.20,27.09,26.32,14.93,14.42.lc-ms:385.2.

实施例3(bcy-dise对谷胱甘肽的选择性):

于10ml比色管中加入10.0μmbcy-dise,再加入10mmhepesph7.4到5ml,摇匀,然后加入各种待测物,最后用ph7.4的hepes定容到10ml。摇匀溶液,平衡10min,将上述溶液倒进荧光皿测定荧光光谱(参见图5)。

bcy-dise对谷胱甘肽的选择性如图5所示,待测物工作液依次为:1,gsh(10mm);2,cys(100μm);3,hcy(100μm);4,nahs(10μm);5,selenocysteine(10μm);6,ascorbicacid(10μm);7,trxr(10μm);8,n-acetyl-l-cysteine(10μm);9,ala(10μm)。由图5可见bcy-dise对谷胱甘肽具有很好的选择性,与谷胱甘肽作用后,bcy-dise对应的730nm荧光升高。测定条件下各类的氨基酸和活性硫物质对探针的荧光强度几乎没有影响。所以bcy-dise对谷胱甘肽具有良好的选择性,适合用于细胞以及生物体的研究。

实施例4(bcy-dise对谷胱甘肽的定量检测):

于10ml比色管中加入10.0μmbcy-dise,再加入10mmhepesph7.4到5ml,摇匀,然后加入不同浓度谷胱甘肽,最后用ph7.4的hepes定容到10ml。摇匀溶液,平衡0.5min,将工作液倒进荧光皿测定荧光光谱(参见图6和7)。

定容后谷胱甘肽浓度:0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5mm。

由图6可见谷胱甘肽的加入引起体系紫外吸收强度及位移的变化情况,表明谷胱甘肽浓度的增加,探针的紫外吸收变化明显。

图7表示随谷胱甘肽浓度的变化体系荧光强度的变化,表明随谷胱甘肽浓度的增加,体系730nm荧光强度升高,插图表示在730nm处的荧光强度的随谷胱甘肽浓度变化的线性拟合曲线,线性拟合曲线的线性回归常数为0.9946,表明探针能定量的测定谷胱甘肽的浓度。

实施例5(bcy-dise用于细胞内源性bcy-dise检测):

a组选取smmc-7721细胞,加入10mm的n乙酰马来酰亚胺清除所有的谷胱甘肽,在培养箱中孵育1h,用dmem清洗3遍,然后用5μmbcy-dise孵育hepg2细胞20min作为对照组,进行共聚焦成像。

b组细胞,选取smmc-7721细胞,加入5μmbcy-dise孵育hepg2细胞20min,再用dmem清洗3遍,进行共聚焦成像。(参见图8)。

由图8的a所示,细胞显示很弱的荧光;b所示,荧光增强;可见bcy-dise能够用于检测细胞内源性的谷胱甘肽。

图8中从左到右分别是:细胞荧光图a和b。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。作为荧光染料是本发明新化合物的一种用途,不能认定本发明的化合物仅用于荧光染料,对于本发明所属技术领域的普通技术人员来说,在基于本发明化合物用作荧光染料的相同作用机理的考虑下,还可以做出若干简单推理,得出本发明的化合物的其他应用用途,都应当视为属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1