一种预辐照高分子材料接枝亲水性单体的方法

文档序号:10504055阅读:765来源:国知局
一种预辐照高分子材料接枝亲水性单体的方法
【专利摘要】本发明公开了一种预辐照高分子材料接枝亲水性单体的方法,其包括以下的步骤:(1)将结晶度大于40%的高分子材料的粉体或者粉末预辐照;(2)与接枝单体进行接枝聚合反应即可。该方法克服现有技术中预辐照高分子接枝亲水性单体的方法接枝工艺复杂、接枝率不高、生成单体均聚物较多、反应需要惰性气体保护成本较高等的不足,工艺简单、接枝率高,单体均聚物减少,反应简便,成本低,适于工业化生产。
【专利说明】
一种预辐照高分子材料接枝亲水性单体的方法
技术领域
[0001] 本发明为材料领域,具体涉及一种预辐照高分子材料接枝亲水性单体的方法。
【背景技术】
[0002] 辐射接枝技术是利用高能射线(通常为伽马射线或电子束)辐照高分子材料产生 自由基从而引发含双键单体(如丙烯酸及其衍生物)的接枝聚合。辐射接枝技术与化学接 枝技术完全不同。化学接枝中,需要基材高分子链段提供可供反应的活性基团,若高分子材 料化学惰性高(即化学稳定性高),链段中无可供反应的基团,则化学接枝无法进行。而在 辐射接枝技术中,由于辐照所用高能射线的能量高(通常在1兆电子伏特左右),约为共价 键(通常为几个电子伏特)的百万倍,则可以轻易地打开高分子链段,产生自由基,从而实 现对惰性高分子材料的接枝改性,这是化学接枝无法实现也无法比拟的。在辐照下主要发 生如下反应:
[0003] 大分子自由基产生:-CH2CH2CH2- - -CH2CH · CH2-
[0004] 接枝反应:-CV/2Cf/ ·CTZ2 --,-UUi=CHX^-CH1CHiCH2 -CHX)nCH2 -
[0005] 预辐照高分子接枝亲水性单体技术将辐照过程与接枝聚合过程分离,使辐射接枝 改性产业化成为可能,为新型材料的开发提供前沿的科技平台。预辐照高分子接枝亲水性 单体,即将待改性高分子材料单独在辐射场中接受辐照,使其产生大量活性中心(如自由 基或过氧化物),然后将待改进高分子材料移出辐射场后,加入单体溶液进行接枝聚合。根 据聚合物结构等因素,预辐照接枝可分为两种:1、陷落自由基引发:这一方法适用于室温 下处于玻璃态或结晶态的聚合物,聚合物在辐照后可以产生寿命较长的陷落自由基。低温 下,陷落自由基可以有很长的使用寿命。而氧是自由基有效的捕获体,因此使用这种方法 时,必须在辐照前抽真空或通氮除氧且接枝反应需在样品从辐射场取出后尽快进行。2、过 氧化物法:与陷落自由基引发法不同,过氧化物法中聚合物在有氧条件下进行辐照,生成烷 基过氧化物。该烷基过氧化物在室温下稳定,便于较长时间保存。接枝反应同样在辐射场 外进行,采用紫外、加热、通氮的方法使过氧化物分解产生含氧自由基,含氧自由基可以有 效地引发单体接枝反应。这种方法有效地减少了单体均聚物的生成,但不能完全消除。尤 其是烷基过氧化氢分解时会产生小分子自由基可能会引起单体的均聚反应。
[0006] 由上可见,现有技术中预辐照高分子接枝亲水性单体的方法具有接枝工艺复杂、 接枝率不高、生成单体均聚物较多、反应需要惰性气体保护成本较高等的不足,因此亟需一 种接枝率高,反应工艺简便,适于工业化生产的预辐照高分子材料接枝亲水性单体的方法。

【发明内容】

[0007] 本发明所要解决的技术问题在于克服现有技术中预辐照高分子接枝亲水性单体 的方法接枝工艺复杂、反应需要惰性气体保护成本较高、生成单体均聚物较多、接枝率较低 等的不足,提供一种接枝工艺简单、接枝率高,单体均聚物减少,反应简便,成本低,适于工 业化生产的预辐照高分子材料接枝亲水性单体的方法。
[0008] 本发明提供一种预辐照高分子材料接枝亲水性单体的方法,其包括以下的步骤: (1)将结晶度大于40%的高分子材料的粉体或者粉末预辐照;(2)与接枝单体进行接枝聚 合反应即可。
[0009] 步骤(1)中,所述结晶度的测试方法为本领域常规的结晶度测试方法,具体可如X 射线衍射法(X射线衍射法的实施步骤参见高聚物结晶度的X射线衍射测定,范雄等,理化 检验-物理分册,1998,第34卷第12期)。所述结晶度大于40%的高分子材料具有明显的 熔点;处于固体状态时,呈规则排列,强度较强,拉力也较强;熔解时比容积变化大,熔解后 密度变低,固化后较易收缩。
[0010] 较佳地,所述结晶度大于40%的高分子材料为聚偏氟乙烯(PVDF)或聚丙烯(PP); 所述的聚偏氟乙烯的结晶度一般为45%,所述的聚丙烯的结晶度一般为50%。其中,所述 聚偏氟乙烯较佳地购自美国苏威公司,货号为6020 ;所述聚丙烯较佳地购自日本普瑞曼公 司,货号为P108 ;最佳地为购自美国苏威公司货号为6020的聚偏氟乙烯。
[0011] 所述的粉体或粉末为本领域常规的粉体或粉末;较佳地为粒径20 μ m-5mm的粉体 或粉末;更佳地为粒径20 μ m~100 μ m的粉体或粉末。
[0012] 所述的预辐照为本领域常规的预辐照;较佳地为将所述结晶度大于40%的高分 子材料的粉体或者粉末在钴源γ射线条件下进行或在电子加速器条件下进行。较佳地, 将所述的高分子材料在钴源γ射线条件下进行预辐照,所述钴源γ射线的预辐照剂量为 25kGy ~30kGy。
[0013] 步骤(2)中,所述的接枝聚合反应较佳地为非真空或非惰性气体保护,即在常温 空气条件下接枝效果优异;其中,所述的惰性气体包括氩气、氮气等。
[0014] 所述的接枝单体为本领域常规的接枝单体;较佳地为丙烯基亲水性单体,所述丙 烯基亲水性单体包括丙烯酸、丙烯酰胺、丙烯酸羟乙酯或甲基丙烯酸;更佳地为丙烯酸或丙 烯酰胺。
[0015] 较佳地,所述的接枝单体的体积浓度为30%~70%。更佳地,所述的接枝单体为 丙烯酸羟乙酯,所述的结晶度大于40 %的高分子材料为聚偏氟乙烯,所述的接枝单体的体 积浓度为30%~40%。更佳地,所述的接枝单体为丙烯酸或丙烯酰胺,所述的结晶度大于 40%的高分子材料为聚偏氟乙烯,所述的接枝单体的体积浓度为60%~70%。更佳地,所 述的接枝单体为甲基丙烯酸,所述的结晶度大于40%的高分子材料为聚丙烯,所述的接枝 单体的体积浓度为30 %~35 %。
[0016] 所述的常温为20°C~35°C ;较佳地为25°C。
[0017] 所述的接枝聚合反应的温度为本领域常规的温度;较佳地为70°C~80°C水浴;更 佳地为75°C~80°C水浴。
[0018] 较佳地,所述的接枝聚合反应在反应体系里加入阻聚剂,所述的阻聚剂为二价铜 离子盐或亚铁离子盐;更佳地,所述的阻聚剂为二价铜离子盐;最佳地,为硫酸铜。更佳地, 所述的阻聚剂在反应体系中的浓度为0.0 Olmol/L~0. 006mol/L ;最佳地,所述阻聚剂在反 应体系中的浓度为〇· OOlmol/L~0· 004mol/L〇
[0019] 较佳地,所述的接枝聚合反应中调节反应体系的pH值至1~6 ;更佳地,调节反应 体系的pH值至3。
[0020] 较佳地,步骤(2)完成后,还包括除去所述的接枝单体的单体聚合物的步骤。更佳 地,所述的接枝单体的单体聚合物易溶于水,将所述的接枝反应后获得的粉末过滤,回收滤 液,将过滤后的粉末在水中加热后干燥,即可除去所述的接枝单体的单体聚合物。最佳地, 所述的干燥为真空干燥。更佳地,所述的接枝单体的单体聚合物不溶于水,将所述的接枝反 应后获得的粉末利用抽提装置进行抽提,即可除去所述的接枝单体的单体聚合物。
[0021] 本发明的一个较佳实例是:每150g粒径为20 - 100 μ m聚偏氟乙烯粉体在空气条 件下利用钴60伽马射线源福照至30kGy与540mL 40%的丙稀酸轻乙酯溶液和硫酸铜(硫 酸铜在混合体系中终浓度为〇. 〇〇4mol/L)混合进行接枝反应,在空气条件下后放入75°C的 水浴中反应17小时。反应结束后,除去均聚物。采用氟含量测试的方式测定接枝率,测得 的丙烯酸接枝率为60. 2%。
[0022] 在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实 例。
[0023] 本发明所用试剂和原料均市售可得。
[0024] 本发明的积极进步效果在于:本发明所述的方法不再需要惰性气体等特殊条件, 降低成本、操作简便,适于工业化生产;并且所述的方法还包括除去接枝单体均聚物等杂质 的步骤,使终产物中单体均聚物减少;此外,本发明所述的方法采用高分子材料的粉体或粉 末,并且针对不同的高分子材料和接枝单体调整了接枝单体的体积浓度,从而提高了接枝 率。
【附图说明】
[0025] 图1为按所述的方法制得的PVDF接枝丙烯酸和丙烯酰胺产品的红外图谱。其中 1表示PVDF-g-PAAm,即聚偏氟乙烯接枝聚丙烯酰胺;2表示PVDF-g-PAAc即聚偏氟乙烯接 枝聚丙烯酸;3表示PVDF,即聚偏氟乙酸。
【具体实施方式】
[0026] 下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实 施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商 品说明书选择。
[0027] 其中,本发明利用红外光谱对预辐射接枝聚合物的接枝率进行定量分析,所用红 外光谱仪为:FTIR-ATR红外光谱仪,Aatar 370型,美国Thermo Nicolet公司,波数范围 4000~400cm ^固体粉末与KBr压片。红外的测试方法按照参考文献(Bo Deng, Ming Yuj Xuanxuan Yang, et al Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride)powder synthesized via pre-irradiation induced graft polymerization[J]. J. Membrane. Sci. 2010, 350:252-258.)
[0028] 对含氟高分子材料,如聚偏氟乙烯(PVDF),本发明通过测定固体样品中氟元素含 量的方法测定接枝率。氧瓶燃烧和氟离子选择电极联用法测量PVDF粉体接枝率步骤如 下:按文南犬(R· Ikenishi, M. Kanai, M. Ishida, et al. Determination of fluoride ion in animal bone by micro-diffusion analysis[J]· Anal. Chem. 1990,62(23):2636-2639)中 的方法配制总离子强度缓冲液(TISAB)。称取不同质量的NaF,溶于TISAB溶液中,配制成相 应浓度的NaF标准液。用氟离子选择电极测定其电位值E。然后以E-Ig [F ?作图,获得曲 线斜率k和截距b(E = k lg[F_]+b)。称取IOmg左右的PVDF粉体样品,以无灰滤纸包好, 置于石英氧瓶的铂金丝上,加入50mL TISAB溶液于氧瓶中,通氧气,点燃样品,并以TISAB 溶液将氧瓶瓶口液封,燃烧完15min后,以TISAB溶液清洗氧瓶,并定容至100mL,以氟离子 选择电极测定其电位值。
[0029] F含量F的计算式为:
[0030] F = 19X10? ^ b)/k/m
[0031] 式中,E为样品的电位值,k和b分别为标准曲线的斜率和截距,m为样品质量。
[0032] 样品的接枝率(DG)的计算式为:
[0033] DG = [(F0-F)/F] X100%
[0034] 式中,F。为纯PVDF粉体中F的含量,F为接枝后粉体F的含量。
[0035] 对丙烯酸,甲基丙烯酸等带酸根单体,酸碱滴定的方法测定接枝率的方法为:称取 经加热洗涤、烘干的改性聚偏氟乙烯粉体置入锥形瓶中,向锥形瓶中加入过量的〇. Imol/ L氢氧化钠水溶液,剧烈搅拌24小时,使接枝粉体上的酸基团与氢氧化钠充分反应。分三 次量取定量的反应后的上清液,用O.lmol/L稀盐酸进行滴定(酚酞作为指示剂);扣除同 条件下辐照后未经改性处理的聚合物粉体的酸基团含量,按下列公式计算改性粉体的接枝 率:
[0037] 式中,Wsanip代表接枝丙烯酸或甲基丙烯酸改性的PVDF粉体的重量,A Tcital是由酸碱 返滴定法测得的PVDF接枝丙烯酸或甲基丙烯酸改性后粉体的每1摩尔含有的酸基团的含 量。M aa。是丙烯酸的摩尔质量。ACpvdf是同样剂量辐照并经抽提洗净的空白PVDF粉体含有 的酸基团含量。
[0038] 所述丙烯基酸、丙烯酰胺和丙烯酸羟甲酯溶液的浓度百分比为体积百分比。
[0039] 所述的常温为20°C~35°C。
[0040] 本发明实施例中,所述聚偏氟乙烯(PVDF)购自美国苏威公司,货号为6020 ;所述 聚丙烯(PP)购自日本普瑞曼公司货号为P108。
[0041] 实施例1
[0042] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为14.4%。红外光谱的检测结果 说明已经发生了丙烯酸单体和聚偏氟乙烯的接枝,结果如图1中线2所示,在1716cm 1附近 出现了新的峰,属于羧酸集团中羰基的不对称伸缩振动吸收峰,由此说明丙烯酸单体已经 接枝上了聚偏氟乙烯上。
[0043] 实施例2
[0044] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在80°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为13. 9 %。
[0045] 实施例3
[0046] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入70% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为15. 04%。
[0047] 实施例4
[0048] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酰胺溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置 于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟 乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热, 以除去反应中产生的均聚物(聚丙烯酰胺均聚物易溶于水),反复进行三次水浴加热每次 加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。 最后采用氟含量测试的方式测定接枝率,测得的丙烯酰胺接枝率为8. 6 %。红外光谱的检测 结果说明已经发生了丙烯酸单体和聚偏氟乙烯的接枝,结果如图1中线1所示,在1670cm 1 和3217cm 1附近出现了新的峰,属于C = 0伸缩振动吸收峰和酰胺的N-H伸缩振动峰,由此 说明丙烯酰胺单体已经接枝上了聚偏氟乙烯上。
[0049] 实施例5
[0050] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利 用钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入 70 %的丙烯基亲水性单体丙烯酰胺溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为 0.004mol/L)。将体系置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后, 过滤获得接枝后的聚偏氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水 在75°C水浴锅中进行加热,以除去反应中产生的均聚物(聚丙烯酰胺均聚物易溶于水),反 复进行三次水浴加热每次加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在 60°C下真空干燥至恒重。最后采用氟含量测试的方式测定接枝率,测得的丙烯酰胺接枝率 为 8.9%〇
[0051] 实施例6
[0052] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至20kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为8. 15 %。
[0053] 实施例7
[0054] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至25kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为11 %。
[0055] 实施例8
[0056] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至28kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为13. 21%。
[0057] 实施例9
[0058] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至25kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酰胺溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置 于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟 乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热, 以除去反应中产生的均聚物(聚丙烯酰胺均聚物易溶于水),反复进行三次水浴加热每次 加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。 最后采用氟含量测试的方式测定接枝率,测得的丙烯酰胺接枝率为8. 2%。
[0059] 实施例10
[0060] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酰胺溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置 于常温空气条件下后放入70°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟 乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热, 以除去反应中产生的均聚物(聚丙烯酰胺均聚物易溶于水),反复进行三次水浴加热每次 加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。 最后采用氟含量测试的方式测定接枝率,测得的丙烯酰胺接枝率为6. 5%。
[0061] 实施例11
[0062] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 常温空气条件下后放入80°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为10. 5%。
[0063] 实施例12
[0064] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酰胺溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置 于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟 乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热, 以除去反应中产生的均聚物(聚丙烯酰胺均聚物易溶于水),反复进行三次水浴加热每次 加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。 最后采用氟含量测试的方式测定接枝率,测得的丙烯酰胺接枝率为9. 5%。
[0065] 实施例13
[0066] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 006mol/L)。将体系置于 常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙 烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以 除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热 2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后 采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为15. 13%。
[0067] 实施例14
[0068] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙稀酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L),调节至pH为 1。将体系置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝 后的聚偏氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅 中进行加热,以除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴 加热每次加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥 至恒重。最后采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为20. 41 %。
[0069] 实施例15
[0070] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙稀酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L),调节至pH为 3。将体系置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝 后的聚偏氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅 中进行加热,以除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴 加热每次加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥 至恒重。最后采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为15. 13%。
[0071] 实施例16
[0072] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入60% 的丙稀酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L),调节至pH为 6。将体系置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝 后的聚偏氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅 中进行加热,以除去反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴 加热每次加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥 至恒重。最后采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为12.97%。
[0073] 实施例17
[0074] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入30% 的丙烯酸羟乙酯溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体 系置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚 偏氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行 加热,以除去反应中产生的均聚物(接枝时产生的聚丙酸羟乙甲酯均聚物聚合程度较低, 易溶于水),反复进行三次水浴加热每次加热2h使均聚物得以除去。其中较高聚合程度的 单体聚合物不溶于水,然后再将所述的接枝反应后获得的粉末利用抽提装置进行抽提,BP 可除去所述的接枝单体的单体聚合物。最后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥 至恒重。最后采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为40. 1%。
[0075] 实施例18
[0076] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入35% 的丙烯酸羟乙酯溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体 系置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚 偏氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行 加热,以除去反应中产生的均聚物(接枝时产生的聚丙酸羟乙酯均聚物聚合程度较低是易 溶于水),反复进行三次水浴加热每次加热2h使均聚物得以除去。其中较高聚合程度的单 体聚合物不溶于水,然后再将所述的接枝反应后获得的粉末利用抽提装置进行抽提,即可 除去所述的接枝单体的单体聚合物。最后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至 恒重。最后采用氟含量测试的方式测定接枝率,测得的丙烯酸羟乙酯接枝率为58%。
[0077] 实施例19
[0078] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι在空气条件下利用 钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入40% 的丙烯酸羟乙酯溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体 系置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚 偏氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行 加热,以除去反应中产生的均聚物(接枝时产生的聚丙酸羟乙酯均聚物聚合程度较低的是 易溶于水),反复进行三次水浴加热每次加热2h使均聚物得以除去。其中较高聚合程度的 单体聚合物不溶于水,然后再将所述的接枝反应后获得的粉末利用抽提装置进行抽提,BP 可除去所述的接枝单体的单体聚合物。最后采用氟含量测试的方式测定接枝率,测得的丙 酸羟乙酯接枝率为60. 2%。
[0079] 实施例20
[0080] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι,在空气条件下利 用钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入30% 的甲基丙稀酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系 置于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏 氟乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加 热,以除去反应中产生的聚甲基丙烯酸均聚物和未参加反应的单体,反复进行三次水浴加 热每次加热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至 恒重。最后采用氟含量测试的方式测定接枝率,测得的甲基丙烯酸接枝率为10. 21%。
[0081] 实施例21
[0082] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι- 100 μπι,在空气条件下利 用钴60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入35% 的甲基丙烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置 于常温空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟 乙烯粉末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热, 以除去反应中产生的聚丙烯酸均聚物和未参加反应的单体,反复进行三次水浴加热每次加 热2h使均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最 后采用氟含量测试的方式测定接枝率,测得的丙烯酸接枝率为11. 4%。
[0083] 实施例22
[0084] 用电子天平称取150g聚丙烯(PP)粉体,粒径为20 μπι-5mm,在空气条件下利用钴 60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入45%的丙 烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于常温 空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚丙烯粉体,回 收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以除去反应 中产生的聚丙烯酸均聚物和未参加反应的单体,反复进行三次水浴加热每次加热2h使均 聚物得以除去。然后将接枝后的聚丙烯粉体在60°C下真空干燥至恒重。最后采用酸碱滴定 的方式测定接枝率,测得的丙烯酸接枝率为9. 67%。
[0085] 实施例23
[0086] 用电子天平称取150g聚丙烯(PP)粉体,粒径为20 μπι-5mm,在空气条件下利用钴 60伽马射线源辐照至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入50%的丙 烯酸溶液540mL和硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于常温 空气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚丙烯粉体,回 收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以除去反应 中产生的聚丙烯酸均聚物和未参加反应的单体,反复进行三次水浴加热每次加热2h使均 聚物得以除去。然后将接枝后的聚丙烯粉体在60°C下真空干燥至恒重。最后采用酸碱滴定 的方式测定接枝率,测得的丙烯酸接枝率为10. 3%。
[0087] 对比实施例1
[0088] 用电子天平称取150g聚醚砜树脂(PES),在空气条件下利用钴60伽马射线源辐照 至30kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入20%的丙烯酸溶液540mL和 浓度为硫酸铜(硫酸铜在混合体系中终浓度为〇. 〇〇4mol/L)。将体系置于空气条件下后放 入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚醚砜树脂,回收滤液,将过滤 出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以除去反应中产生的均聚物 (聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热2h使均聚物得以除去。然 后将接枝后的聚醚砜树脂在60°C下真空干燥至恒重。最后采用酸碱滴定的方式测定接枝 率,测得的丙烯酸接枝率为〇. 1 %。
[0089] 所述的聚醚砜(PES)结晶度较低,一般认为PES为非结晶型聚合物,结晶度低于 10%〇
[0090] 对比实施例2
[0091] 用电子天平称取150g聚偏氟乙烯粉体,粒径为20 μπι - 100 μπι在空气条件下利用 钴60伽马射线源辐照至15kGy。然后将辐照后粉体置入1000 mL的锥形瓶,依次加入55% 的丙烯酸溶液和540mL硫酸铜(硫酸铜在混合体系中终浓度为0. 004mol/L)。将体系置于 氮气条件下后放入75°C的水浴中反应17h。反应结束后,过滤获得接枝后的聚偏氟乙烯粉 末,回收滤液,将过滤出来的粉末放入烧杯中加去离子水在75°C水浴锅中进行加热,以除去 反应中产生的均聚物(聚丙烯酸均聚物易溶于水),反复进行三次水浴加热每次加热2h使 均聚物得以除去。然后将接枝后的聚偏氟乙烯粉体在60°C下真空干燥至恒重。最后采用氟 含量测试的方式测定接枝率,测得的丙烯酸接枝率为7. 5%。
[0092] 应理解,在阅读了本发明的上述内容之后,本领域技术人员可以对本发明作各种 改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
【主权项】
1. 一种预辐照高分子材料接枝亲水性单体的方法,其特征在于,其包括以下的步骤: (1)将结晶度大于40%的高分子材料的粉体或者粉末预辐照;(2)与接枝单体进行接枝聚 合反应即可。2. 如权利要求1所述的方法,其特征在于,所述结晶度大于40 %的高分子材料为聚偏 氟乙烯或聚丙烯;较佳地为购自美国苏威公司货号为6020的聚偏氟乙烯或购自日本普瑞 曼公司货号为P108的聚丙烯;更佳地为购自美国苏威公司货号为6020的聚偏氟乙烯。3. 如权利要求1所述的方法,其特征在于,所述的粉体或粉末为粒径20 μ m~5mm的粉 体或粉末,较佳地为20 μ m~100 μ m ;和/或,步骤(2)所述的接枝聚合反应的条件为非真 空或非惰性气体保护。4. 如权利要求1所述的方法,其特征在于,所述的预辐照为将所述结晶度大于40 %的 高分子材料的粉体或者粉末在钴源γ射线条件下进行或在电子加速器条件下进行;较佳 地,所述的预福照的剂量为25kGy~30kGy。5. 如权利要求1所述的方法,其特征在于,所述的接枝单体的体积浓度为30 %~70 %。6. 如权利要求5所述的方法,其特征在于,所述的接枝单体为丙烯酸羟乙酯,所述的结 晶度大于40%的高分子材料为聚偏氟乙烯,所述的接枝单体的体积浓度为30%~40% ;所 述的接枝单体为丙烯酸或丙烯酰胺,所述的结晶度大于40%的高分子材料为聚偏氟乙烯, 所述的接枝单体的体积浓度为60%~70%;和/或,所述的接枝单体为甲基丙烯酸,所述的 结晶度大于40%的高分子材料为聚丙烯,所述的接枝单体的体积浓度为30%~35%。7. 如权利要求1所述的方法,其特征在于,所述的接枝聚合反应的温度为70°C~80°C 水浴;较佳地为75°C~80°C水浴。8. 如权利要求1所述的方法,其特征在于,所述的接枝聚合反应在反应体系里加入阻 聚剂,所述的阻聚剂为二价铜离子盐或亚铁离子盐;较佳地为硫酸铜;所述的阻聚剂在反 应体系中的浓度为0. 〇〇lmol/L~0. 006mol/L,较佳地为0. 001mol/L~0. 004mol/L。9. 如权利要求1所述的方法,其特征在于,所述的接枝聚合反应中调节反应体系的pH 值至1~6 ;较佳地为调节反应体系的pH值至3。10. 如权利要求1所述的方法,其特征在于,步骤(2)完成后,还包括除去所述的接枝单 体的单体聚合物的步骤;较佳地,若所述的接枝单体的单体聚合物溶于水,将所述的接枝反 应后获得的粉末过滤,回收滤液,将过滤后的粉末在水中加热后干燥,即可;若所述的接枝 单体的单体聚合物不溶于水,将所述的接枝反应后获得的粉末利用抽提装置进行抽提,gp 可。
【文档编号】C08J7/18GK105860124SQ201510031470
【公开日】2016年8月17日
【申请日】2015年1月22日
【发明人】李景烨, 李海霞, 虞鸣, 张伯武, 马红娟, 李林繁, 周保昌
【申请人】中国科学院上海应用物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1