一种高拉伸强度尼龙cs共混膜的制备方法

文档序号:10564785阅读:541来源:国知局
一种高拉伸强度尼龙cs共混膜的制备方法
【专利摘要】本发明涉及一种高拉伸强度尼龙CS共混膜的制备方法,该方法无需对尼龙和壳聚糖表面做后续处理,也不需要在共混物中加入增溶剂,而是在相转化成膜过程中同时施加交流电场,当交流电场作用在壳聚糖?甲酸?尼龙体系中,随着溶剂的不断挥发,CS与PA开始发生相分离,PA与CS不同的介电性质使得电场在相界面处形成静电应力,静电应力和界面张力的协同作用能够诱导高分子链在界面处发生微相混合,通过调整电场强度和交流频率参数,结合偶极取向对电场环境的响应特征,调整界面处的静电应力强度、方向和链段松弛行为,进而强化界面处的微相混合效果,从而改善共混物的相容性,提高共混物的拉伸性能,且整个制备过程成本低廉、清洁、高效。
【专利说明】
一种高拉伸强度尼龙CS共混膜的制备方法
技术领域
[0001 ]本发明涉及一种高拉伸强度尼龙CS共混膜的制备方法。
【背景技术】
[0002]壳聚糖(CS)是一种十分重要的天然高分子材料,因其廉价易得、生物相容性优异和易降解等特点而广泛应用于膜分离、食品包装和药物释放等领域。然而,CS较低的机械强度却限制了它的应用范围。将尼龙与CS共混,能够大幅改进CS的亲水性、抗菌性、稳定性。但是,由于CS分子链上大量的极性官能团和聚阳离子等本质特征,使其与尼龙(PA)共混后往往存在宏观尺度的相分离,致使共混物的力学强度低,甚至还不及CS本身的力学强度。
[0003]相转化法是制备高分子共混薄膜的主要方法之一。以壳聚糖-甲酸-尼龙体系为例,甲酸能够与PA分子链上的极性官能团形成氢键,使得分子链周围形成由氢键连接的溶剂化层,促进PA分子链的溶解和稳定分散。在甲酸的作用下,CS分子链上的-NH2被质子化为-NH3+,形成聚阳离子的高分子主链,分子链内因-NH2质子化形成的静电斥力使CS链段在甲酸溶液中形成伸展的构象(J.Am.Chem.Soc.2015,137,13024-13030)。然而,由于CS的质子化程度对溶液浓度十分敏感,随着甲酸的不断挥发,-NH2的质子化程度迅速下降,致使分子链间静电斥力减弱,甚至消失,链段构象变得卷曲。此时,CS主链上大量的-OH和-NH2会在分子链内和分子链间形成氢键,使得CS链卷曲程度加剧,并诱使分子链发生团聚,这导致PA分子链很难进入CS分子链间,难以实现分子链尺度上的均匀混合,共混物的界面强度极低。成膜时,由于CS的密度(p?1.75g/cm3)高于PA(p?0.89g/cm3),最终导致了PA富集于膜上层,而CS沉积于膜下层,延膜厚方向存在明显的相界面和宏观尺度的相分离(Polymer,1999,40,1657-1666)。
[0004]专利CN104975504A公布了一种制备CS与PA共混物的方法,其将尼龙部分水解并对尼龙分子链进行羧基和氨基的改性;随后将壳聚糖进行氨基改性;最后,利用酰胺缩合反应制备混合均匀的尼龙/壳聚糖共混膜。复合膜的抗菌、透气性明显提升。然而,该方法工艺复杂,接枝改性过程容易造成CS分子链的断链行为,大大损失了天然高分子原有的特性。

【发明内容】

[0005]本发明所要解决的技术问题是针对现有技术的现状,提供一种能有效改善共混物的相容性、提高共混物拉伸性能的尼龙/CS共混膜的制备方法。
[0006]本发明解决上述技术问题所采用的技术方案为:一种高拉伸强度尼龙CS共混膜的制备方法,其特征在于包括以下步骤:
[0007](I)将尼龙溶于有机溶剂中,制备母液;
[0008](2)向母液中加入壳聚糖,壳聚糖与尼龙的重量比为10%?90%,搅拌24?72h后,静止4?8h,得到共混液;
[0009](3)将共混液置于导电成膜平板上,在导电成膜平板上施加垂直于导电成膜平板的交流电场,该交流电场促使溶剂脱离母液并挥发,直至获得尼龙/壳聚糖共混膜。
[0010]在上述方案中,所述导电成膜平板的上方设置有导电成膜上板,所述的导电成膜平板接地,所述的导电成膜上板接电源负极;所述的交流电场电压为0.01?30kV/m,交流频率为 0.01 ?200Hz。
[0011]作为优选,所述的有机溶剂为无水甲酸,所述共混液中尼龙与甲酸的填加比为0.001?lg/mL。
[0012]优选地,所述尼龙选自尼龙6、尼龙66、尼龙1010及其混合物。
[0013]优选地,所述壳聚糖的脱乙酰度为70%?100%。
[0014]优选地,所述尼龙的分子量为1000?100000g/mol,所述CS的分子量为2000?200000g/molο
[0015]与现有技术相比,本发明的优点在于:本发明无需对尼龙和壳聚糖表面做后续处理,也不需要在共混物中加入增溶剂,而是在相转化成膜过程中同时施加交流电场,当交流电场作用在壳聚糖-甲酸-尼龙体系中,随着溶剂的不断挥发,CS与PA开始发生相分离,PA与CS不同的介电性质使得电场在相界面处形成静电应力,静电应力和界面张力的协同作用能够诱导高分子链在界面处发生微相混合,通过调整电场强度和交流频率参数,结合偶极取向对电场环境的响应特征,即当交变频率较慢时,氢键中的偶极取向会延电场方向的改变而变化,二者之间没有相位差;当交变频率较快时,偶极取向的变化速度与交变频率存在明显的相位差,形成介电损耗,这会促进高分子链的松弛行为;当交变频率过快时,偶极取向在交变周期内来不及变化,则该取向在此交变电场的作用下保持不变,调整界面处的静电应力强度、方向和链段松弛行为,进而强化界面处的微相混合效果,从而改善共混物的相容性,提高共混物的拉伸性能,且整个制备过程成本低廉、清洁、高效。
【附图说明】
[0016]图1为本发明实施例1与对比例I所制备共混膜的全反射红外对比图;
[0017]图2为本发明实施例1与对比例I所制备共混膜的SEM图。
【具体实施方式】
[0018]以下结合附图实施例对本发明作进一步详细描述。
[0019]实施例1:
[0020]将0.5g分子量为lOOOOg/mol的尼龙6溶于1ml甲酸中,获得成膜母液。向母液中加入分子量为lOOOOg/mol壳聚糖,脱乙酰度95%,壳聚糖与尼龙的重量比50%,搅拌24h后,静止8h;将母液置于导电成膜平板上;将成膜平板置于平行板电场中,在表面皿两侧施加电场,其中导电成膜平板上板带负电,导电成膜平板下板接地,交流电场场强为22kV/m(220V电压,平板间距lcm),频率50Hz。待溶剂挥发后,获得尼龙/壳聚糖共混膜。所得共混膜拉伸强度达10MPa,断裂伸长率达75%。
[0021]对比例1:
[0022]将0.5g分子量为lOOOOg/mol的尼龙6溶于1ml甲酸中,获得成膜母液。向母液中加入分子量为lOOOOg/mol的壳聚糖,脱乙酰度95%,壳聚糖与尼龙的重量比50%,搅拌24h后,静止Sh;将母液置于导电成膜平板上;不施加电压,带溶剂自然挥发后,获得尼龙/壳聚糖共混膜。所得共混膜的拉伸强度34MPa,断裂伸长率为1.5%。
[0023]由图1可以看出,3300cm—1处为PA6分子链N-H键的伸缩振动峰,3080cm—1处为N-H面内振动峰,1640cm—1处为C = O伸缩振动峰。1540cm—1处是CO-N-H的振动峰。3300cm—1处的宽峰为CS分子链的NH2的伸缩振动峰,898cm—1和1150cm—1处的峰对应于CS的糖结构。由图可知,在对比例I的重力场下制备的CS/PA共混物,上表面大多为PA6的红外特征峰,下表面大多为CS的红外特征峰。表明,相分离后CS沉积于膜下表面,PA更多的富集于膜上表面。而实施例1施加22kV/m、50Hz的交流电场后,上、下表面898cm—1和1150cm—1处CS的特征峰强度明显下降,下表面3300cm—1处的宽峰消失。1540cm—1处是⑶-N-H的振动峰和3300cm—1处的N-H键伸缩振动峰强度明显增加,表明CS与PA间的氢键作用增强。上下表面红外谱线相似,说明CS和PA的宏观尺度相分离现象被明显抑制。
[0024]图2中a)为对比例I制备的CS/PA断面图;b)为实施例1制备的CS/PA断面图,电压221^/111,50取;(3)为对比例1制备的05^^上表面图;(1)为实施例1制备的05^^上表面图,电压22kV/m,50Hz。由图可知,在对比例I的重力场下制备的复合膜断面存在明显的相界面,上表面十分粗糙,且有很多小突起。这表明,共混物混合效果很差,膜内存在宏观尺度的相分离。而在实施例1施加22kV/m、50Hz的交流电场后,复合膜断面形貌均匀,表面平整,说明了在电场力作用下,CS与PA的共混效果得到明显改善;混合效果的改善是复合膜拉伸强度大幅提升的根本原因。
[0025]实施例2:
[0026]将0.5g分子量为lOOOOOg/mol的尼龙66溶于500ml甲酸中,获得成膜母液。向母液中加入分子量为200000g/mol壳聚糖,脱乙酰度70%,壳聚糖与尼龙的重量比10%,搅拌72h后,静止4h;将母液置于导电成膜平板上;将成膜平板置于平行板电场中,在表面皿两侧施加电场,其中导电成膜平板上板带负电,导电成膜平板下板接地,交流电压场强为30kV/m,电场频率为0.01Hz。待溶剂挥发后,获得尼龙/壳聚糖混合膜。所得复合膜的拉伸强度达215MPa,断裂伸长率达175%。
[0027]实施例3:
[0028]将0.58分子量为100(^/11101的尼龙1010溶于0.5ml甲酸中,获得成膜母液。向母液中加入分子量为2000g/mol壳聚糖,脱乙酰度80%,壳聚糖与尼龙的重量比90%,搅拌72h后,静止6h;将母液置于导电成膜平板上;将成膜平板置于平行板电场中,在表面皿两侧施加电场,其中导电成膜平板上板带负电,导电成膜平板下板接地,交流电压场强为0.0lkV/m,频率为200Hz。待溶剂挥发后,获得尼龙/壳聚糖混合膜。所得复合膜的拉伸强度达95MPa,断裂伸长率达75%。
[0029]实施例4:
[0030]将0.5g分子量为5000g/mol的尼龙5溶于20ml甲酸中,获得成膜母液。向母液中加入分子量为lOOOOg/mol壳聚糖,脱乙酰度90%,壳聚糖与尼龙的重量比70%,搅拌48h后,静止8h;将母液置于导电成膜平板上;将成膜平板置于平行板电场中,在表面皿两侧施加电场,其中导电成膜平板上板带负电,导电成膜平板下板接地,交流电压场强为lkV/m,电场频率为60Hz。待溶剂挥发后,获得尼龙/壳聚糖混合膜。所得复合膜的拉伸强度达135MPa,断裂伸长率达85 %。
[0031]实施例5:
[0032]将0.5g分子量为5000g/mol的尼龙5溶于20ml甲酸中,获得成膜母液。向母液中加入分子量为lOOOOg/mol壳聚糖,脱乙酰度100%,壳聚糖与尼龙的重量比70%,搅拌48h后,静止8h;将母液置于导电成膜平板上;将成膜平板置于平行板电场中,在表面皿两侧施加电场,其中导电成膜平板上板带负电,导电成膜平板下板接地,交流电压场强为0.3kV/m,电场频率为10Hz。待溶剂挥发后,获得尼龙/壳聚糖混合膜。所得复合膜的拉伸强度达75MPa,断裂伸长率达65 %。
【主权项】
1.一种高拉伸强度尼龙CS共混膜的制备方法,其特征在于包括以下步骤: (1)将尼龙溶于有机溶剂中,制备母液; (2)向母液中加入壳聚糖,壳聚糖与尼龙的重量比为10%?90%,搅拌24?72h后,静止4?8h,得到共混液; (3)将共混液置于导电成膜平板上,在导电成膜平板上施加垂直于导电成膜平板的交流电场,该交流电场促使溶剂脱离母液并挥发,直至获得尼龙/壳聚糖共混膜。2.根据权利要求1所述的高拉伸强度尼龙CS共混膜的制备方法,其特征在于:所述导电成膜平板的上方设置有导电成膜上板,所述的导电成膜平板接地,所述的导电成膜上板接电源负极;所述的交流电场电压为0.01?30kV/m,交流频率为0.01?200Hz。3.根据权利要求1所述的高拉伸强度尼龙CS共混膜的制备方法,其特征在于:所述的有机溶剂为无水甲酸,所述共混液中尼龙与甲酸的填加比为0.001?lg/mL。4.根据权利要求1所述的高拉伸强度尼龙CS共混膜的制备方法,其特征在于:所述尼龙选自尼龙6、尼龙66、尼龙1010及其混合物。5.根据权利要求1所述的高拉伸强度尼龙CS共混膜的制备方法,其特征在于:所述壳聚糖的脱乙酰度为70%?100%。6.根据权利要求1所述的高拉伸强度尼龙CS共混膜的制备方法,其特征在于:所述尼龙的分子量为1000?100000g/mol,所述CS的分子量为2000?200000g/mol。
【文档编号】C08L5/08GK105924954SQ201610402304
【公开日】2016年9月7日
【申请日】2016年6月8日
【发明人】周琦, 张晶晶
【申请人】宁波工程学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1